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A letter from the Co-chairs of the ACM Education Board 
 
 
Dear Readers 
 
In 2009, Turing award winner Jim Gray spoke of data science as a fourth paradigm of science 
(empirical, theoretical, computational and data-driven) arising from and capitalizing on the huge 
amount of data that is now available for investigation. The confluence of the availability of data 
and increasing sophisticated tools, processes, and algorithms for analysing and drawing 
knowledge and insight from data has impacted every area of scientific engagement. It has also 
opened up exciting new opportunities for interdisciplinary work across the many fields including 
(but certainly not limited to) computer science, mathematics, statistics, and information science 
from which it draws foundational knowledge. 
 
For computer science, the emergence of data science offers both tremendous opportunity and 
something of a conundrum, as once again the emergence of a new and closely related computing 
practice or field raises inevitable questions about whether and how it fits into current post-
secondary computer science curricula.  
 
This document represents an effort by the ACM Education Board through the work of the Data 
Science Task Force to answer this question. It is an effort to put our own data science house in 
order. This document is not, however, an effort to claim ownership or even primacy in data 
science. To do so would be to negate the powerful interdisciplinarity that data science makes 
possible.  
 
It is our hope that this document will represent a productive step in a conversation that engages 
all relevant fields and disciplines. Toward this end, the ACM Education Board wishes to express 
our willingness and excitement about participating in future, more expansive and inclusive 
conversations regarding the promise and practice of data science. 
 
Chris Stephenson, Co-chair, ACM Education Board 
Elizabeth Hawthorne, Co-chair, ACM Education Board 
Jane Prey, Past Chair 
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Chapter 1: Introduction  
 

1.1 Task Force Charter  
 
At the August 2017 ACM Education Council meeting, a task force was formed to explore a 
process to add to the broad, interdisciplinary conversation on data science, with an articulation 
of the role of computing discipline-specific contributions to this emerging field.  Specifically, the 
task force would seek to define what the computing/computational contributions are to this new 
field, and provide guidance on computing-specific competencies in data science for departments 
offering such programs of study at the undergraduate level. 
 
There are many stakeholders in the discussion of data science – these include colleges and 
universities that (hope to) offer data science programs, employers who hope to hire a workforce 
with knowledge and experience in data science, as well as individuals and professional societies 
representing the fields of computing, statistics, machine learning, computational biology, 
computational social sciences, digital humanities, and others. There is a shared desire to form a 
broad interdisciplinary definition of data science and to develop curriculum guidance for degree 
programs in data science.   
 
This volume builds upon the important work of other groups who have published guidelines for 
data science education. There is a need to acknowledge the definition and description of the 
individual contributions to this interdisciplinary field. For instance, those interested in the 
business context for these concepts generally use the term “analytics”; in some cases, the 
abbreviation DSA appears, meaning Data Science and Analytics.   
 
This volume is the third draft articulation of computing-focused competencies for data science. It 
recognizes the inherent interdisciplinarity of data science and situates computing-specific 
competencies within the broader interdisciplinary space. 
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1.2 Motivating the study of Data Science 
 
Those who study Data Science have to develop a mind set with a strong focus on data – the 
collection of data and, through analysing it appropriately, using this to bring about beneficial 
insights and changes. For instance: 
 

● Obtaining data about the quality of air in a city can result in removing dangerous 
pollution or sending warning messages to those who suffer from asthma. 

 
● Collecting data about traffic in real time can result in steps being taken to avoid traffic 

congestion. 
 

● Collecting patient data can lead to new insights for disease diagnosis and treatment. 
 

● Recording data about speech in a certain area can assist with speech recognition. 
 
The possibilities are endless, and the contributions that Data Science can make to transforming 
businesses, transforming society and basically shaping the future for the better are huge. The 
possibilities also carry with them potentially negative consequences. 
 
Students of Data Science need to be imbued with the ‘joy of data,’ seeing data as the ‘currency 
or fuel of our time’. They also need to be imbued with a strong sense of professional and ethical 
responsibility. Data Science courses ought to reflect such sentiments; likewise, the education of 
data scientists. 
 
The topic of careers is of course important from a marketing perspective. Suffice it to say that the 
current demand is considerable and growing daily. 
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1.3 Committee work and processes 
 
The Data Science Task Force was initiated at a meeting of the ACM Education Council in 
August 2017. The Co-chairs were appointed at the meeting and were charged with developing a 
charter for the work, as well as assembling a task force with global representation. 
 
The Co-chairs drafted a proposal to create the Task Force, which was approved by the ACM 
Education Board in January 2018. The initial Task Force – approximately half of the members of 
the current committee – convened for a full-day meeting in February 2018. 
 
In preparation for a second face-to-face meeting in July 2018, the Task Force designed two 
surveys to gather input from academia and industry on the computing competencies most central 
to Data Science. The results of the survey are presented in this report, with details provided in 
Appendix B. During this time, the Co-chairs invited additional members to join the committee 
and began to develop a global advisory group. 
 
At the July 2018 meeting, the ACM Task Force developed the set of computing-focused 
Knowledge Areas for Data Science that appeared in the first public draft of this project (available 
at http://dstf.acm.org/DSReportInitialFull.pdf). With the release of the first draft report, the ACM 
Data Science Task Force called for discussion and feedback from all data science constituencies. 
They presented the report and gathered comments at conferences and meetings, including 
Educational Advances in Artificial Intelligence (EAAI-9), held at AAAI in January 2019; the 
SIGCSE Symposium in February 2019; the Conference Board of the Mathematical Sciences in 
May 2019; and the Joint Statistical Meetings in July 2019.  
 
he ACM Data Science Task Force held two additional face-to-face meetings at SIGCSE 2019 
and in August 2019. Based on feedback from the community, they (with the help and feedback 
of subcommittees) revised the list of Knowledge Areas as well as specified competencies for 
those in significantly greater detail than previously. 
 
The second public draft was released in December 2019, requesting comments by March 31, 
2020 and released a call for example courses. The report was presented, and feedback solicited, 
at virtual conferences and meetings including AMA MathFest in January 2020; the SIGCSE 
Symposium in March 2020; and ITiCSE 2020 in July 2020. 
 
With the release of this report, the ACM Data Science Task Force is calling for discussion 
from all data science constituencies that will lead to a robust and complete curriculum guide with 
competencies from all disciplines. To further the efforts towards a complete data science model 
curriculum, we recommend creating a multidisciplinary taskforce with representatives from 
computing, statistics, mathematics, and other societies. 
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Chapter 2: 
Current View of Data Science 

and Prior Work 
 
 

2.1 Interdisciplinarity in Data Science 
 
Data Science is an inherently interdisciplinary field.  The rise of Data Science is directly 
connected to the rise of large data sets across nearly every topic domain.  The sciences, social 
sciences, business, humanities, and engineering all are seeing opportunities for discovery and 
decision-making expanded by unprecedented amounts of raw or structured data.  The data is too 
large to allow effective human analysis without the automation of processes.  Data Science is the 
field that brings together domain data, computer science, and the statistical tools for interrogating 
the data and extracting useful information. 
 
Data Science requires effective integration of a domain to provide data and a context for its 
exploration, statistics, and computer science.  Domain experts understand their data and perhaps 
know what they can expect to learn from the data.  They want tools and techniques to get the job 
done.  They need to know enough about the tools and techniques to be confident that the results 
will be reliable.   
 
Statisticians bring expertise in “data analysis, data collection, modeling, and inference.”    [9, p 
7].  Statistical models “describe, predict, and explain processes” [9, p 8]. The PCMI Data 
Science Guidelines provide a full description of the statistics and mathematical foundations 
needed for data science. 
 
Computer scientists bring methods for dependable storage, for protecting privacy, and the 
integrity of the data.  They bring expertise in applying high performance computing and 
networked systems for efficient computation.  Algorithms for machine learning and deep 
learning techniques allow results that go beyond direct analysis of the existing data and offer 
opportunities for discovery that may not be anticipated by the data owners.  Computer Science 
offers tools for the analysis of data of all types, whether numeric, text, image, sound, or complex 
combinations of basic data types.   
 
Each component of the Data Science environment: the domain that provides the data; statistics 
and mathematics for analysis, modeling, and inference; and computer science for data access, 
management, protection, as well as effective processing in modern computer architectures, is 
essential. However, a random collection of the three elements does not constitute a meaningful 
Data Science program.  Data Science is interdisciplinary and requires the effective integration of 
the three components to produce meaningful results.   
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True interdisciplinary work is challenging. If each component remains independent, the 
relationships remain blurred and the opportunities for cross-fertilization are reduced [4].  Some 
see interdisciplinary efforts as a reduction in one or more of the component areas.  When dealing 
with a truly interdisciplinary subject, the goal must be to see the new whole that is composed of 
contributions from each part.  It is not possible to include everything from every part, but that is 
not the point.  The point is to define something new that takes important parts from each 
contributor.   
 
Early programs in Data Science will often work with a group of existing courses from the 
participating disciplines.  That is practical and easy to bring a new program into existence.  The 
difficulty in that scenario is to make the essential connections so that all the parts work together 
to support discovery and decision making in the domain.  Cross references between courses, 
projects that call upon topics learned in other courses, and a comprehensive project to bring all 
the pieces together are essential to turn a mixed set of courses into a cohesive, interdisciplinary 
program. 
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2.2 Prior work on defining data science curricula 
 
As an inherently interdisciplinary area, data science generates interest within many fields.  
Accordingly, there have been a number of Data Science curriculum efforts, each reflecting the 
perspective of the organization that created it. 
 
This project looks at data science from the perspective of the computing disciplines, but 
recognizes that other views contribute to the full picture. Beyond the curriculum guides from 
professional societies for Computer Science [1], Statistical Sciences [2], and Mathematical 
Sciences [11], the following examples are especially important, and have informed the 
committee’s work. 
 
The EDISON Data Science Framework [6,7] 
 
EDISON is a project started in September 2015 “with the purpose of accelerating the creation of 
the Data Science profession.” The core EDISON consortium consists of seven partners across 
Europe. Since 2015, the group has worked to create the EDISON Data Science Framework. This 
collection of documents includes a general introduction, as well as four detailed components, 
including: 
 

● Data Science Competences Framework 
● Data Science Body of Knowledge 
● Data Science Model Curriculum 
● Data Science Professional Framework 

 
This comprehensive set of curricular volumes parallels the intended structure of our work. 
EDISON was in earlier stages as this project began; at present, it is clear that there are significant 
overlaps, it is our intent to create a complementary volume, rather than a replicated or competing 
volume. 
 
The National Academies of Science, Engineering, and Medicine Report on Data Science for 
Undergraduates [8] 
 
As the press release announcing the publication of the National Academies report states, “Data 
science draws on skills and concepts from a wide array of disciplines that may not always 
overlap, making it a truly interdisciplinary field. Students in many fields need to learn about data 
collection, storage, integration, analysis, inference, communication, and ethics.” The report 
highlights the demand for data scientists and calls for a broad education for students across 
programs of study. Identifying many data science roles, including those related to hardware and 
software platforms, data storage and access, statistical modelling and machine learning, and 
business analytics, among others, the report does not presume that every data scientist will be 
expert in all areas, but rather that programs will develop to allow graduates to fulfil specific 
roles. 
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The intent of the National Academies report was to highlight the importance, breadth, and depth 
of data science, and to provide high-level guidance for data science programs. It is not a detailed 
curricular volume in the sense of the EDISON project or this ACM Data Science effort. 
 
The Park City Report [9] 
 
The Park City Math Institute 2016 Summer Undergraduate Faculty Program convened with the 
purpose of articulating guidelines for undergraduate programs in Data Science. The three-week 
workshop brought together 25 faculty from computer science, statistics and mathematics.  The 
base assertion of the report and proposed curriculum is that data is the core: “The recursive data 
cycle of obtaining, wrangling, curating, managing and processing data, exploring data, defining 
questions, performing analyses, and communicating the results lies at the core of the data science 
experience.” 
 
The resulting list of key competencies shows the interdisciplinary nature of data science, with an 
understandable focus on the mathematics and statistics: 
 

● Computational and statistical thinking 
● Mathematical foundations 
● Model building and assessment 
● Algorithms and software foundation 
● Data curation 
● Knowledge transference – communication and responsibility 

 
The role of computer science appears in the description of computational thinking: “Data science 
graduates should be proficient in many of the foundational software skills and the associated 
algorithmic, computational problem solving of the discipline of computer science.”  However, 
further description relates these skills to understanding the programming and algorithms behind 
“professional statistical analysis software tools.”  
 
The Park City report deserves further description. It includes an outline of the Data Science 
Major: 
 
 1.     Introduction to data science 

 a.     Introduction to Data Science I 
 b.     Introduction to Data Science II 

 2.     Mathematical foundations 
 a.     Mathematics for Data Science I 
 b.     Mathematics for Data Science II 

 3.     Computational thinking 
 a.     Algorithms and Software Foundations 
 b.     Data Curation—Databases and Data Management 

 4.     Statistical thinking 
 a.     Introduction to Statistical Models 
 b.     Statistical and Machine Learning 

 5.     Course in an outside discipline 
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The report also includes a description of each of the courses.  For the purposes of this report, it is 
noted that programming is introduced in Introduction to Data Science I and II, and appears again 
as a part of Algorithms and Software Foundations.  The course in Data Curation includes 
traditional databases as well as newer approaches to data storage and interaction. The course in 
Statistical and Machine Learning “blends the algorithmic perspective of machine learning in 
computer science and the predictive perspective of statistical thinking.” 
 
Although there certainly are additional aspects of computer science that are relevant to the 
preparation of a student of data science, there is clearly an effort to combine the mathematical 
and computer science contributions to produce a blended program. This ACM Data Science 
report builds on the Park City work with a heavy orientation toward computer science.  The 
position of the Task Force is that any Data Science program will have to reflect competencies in 
mathematics, statistics, and computer science, possibly with different emphases. This is 
consistent with the view of the National Academies report. Graduates of programs following the 
Park City guidelines will have valuable strengths and graduates of programs following these 
ACM guidelines will have different, but equally valuable strengths.  
 
The Business Higher Education Framework (BHEF) Data Science and Analytics (DSA) 
Competency Map [5] 
 
The work provides a four-level competency map.  The base, or Tier 1, level describes personal 
effectiveness competencies. These are not considered competencies learned in school, but rather 
part of an individual’s personal development.  Examples include integrity, initiative, 
dependability, adaptability, professionalism, teamwork, interpersonal communication, and 
respect. 
 
Tier 2 describes academic competencies to be acquired in higher education.  These are most 
relevant to this report and include the following: 
 

● Deriving value from data 
● Data Literacy 
● Data Governance and Ethics 
● Technology 
● Programming and Data Management 
● Analytic Planning 
● Analytics 
● Communication 

 
Tier 3 presents workplace competencies: planning and organizing, problem solving, decision-
making, business fundamentals, customer focus, and working with tools and technology.   
 
Tier 4 is for Industry-Wide Technical Competencies. These are not specified, but represent skills 
that are common across sectors of a larger industry context. 
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Though Tier 2 includes a competency in “Programming and Data Management,” the description 
mentions only “Write data analysis code using modern statistical software (e.g., R, Python, and 
SAS).”  This set of competencies does not address a need for developing new software or 
systems in support of data science, but relies on available tools.  
 
Business Analytics Curriculum for Undergraduate Majors [10] 
 
This report was produced in 2015 by the Institute for Operations Research and the Management 
Sciences (INFORMS).  Reflecting the focus of programs in Business, this INFORMS curriculum 
assumes basic computer literacy as a starting point.  It suggests revising some of the standard 
courses in statistics to meet newer needs. The resulting course list includes:  Data Management, 
Descriptive Analytics, Data Visualization, Predictive Analytics, Prescriptive Analytics, Data 
Mining, and Analytics Practicum. It also includes electives. 
 
Like the guidelines from the Business Higher Education Framework, the focus is on doing 
something with data, primarily to serve business needs.  There is no mention of programming. 
The data management course includes SQL, but has no prerequisites. The emphasis in the data 
mining course is on framing a business problem.  Data mining techniques are compared, and 
large datasets are to be used. The tools to be used for that purpose are not specified. 
 
Initial workshops related to this ACM Data Science Curriculum effort [3] 
 
In October 2015, the National Science Foundation sponsored a workshop with representatives of 
many perspectives on data science.  Some attendees represented established programs, others 
represented societies with an interest in data science.  The final report, “Strengthening Data 
Science Education Through Collaboration,” describes the discussions and reflects the diversity of 
opinions.  Although opinions varied, there were some areas of agreement. Those form the basis 
of the list of Knowledge Areas in this current ACM report. 
 
Summary 
 
The review of existing curricular efforts suggests that it would be important to capture in a single 
volume the contributions that computing makes to data science. Through developments such as 
the Internet of Things, sophisticated sensors, face recognition and voice recognition, automation, 
etc., computing opens up many avenues for data collection. It can play a vital role as a custodian 
of information with great attention being paid to maintenance but crucially also to security and 
confidentiality matters. Then the analysis of large amounts of information and utilization of that 
for the purposes of machine learning or augmented intelligence in its various roles can bring 
significant benefit. 
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2.3 Survey of academic and industry representatives 
 
In order to gain an understanding of the current data science landscape, the ACM Data Science 
Task Force, in early 2018 we conducted a survey of ACM members, representing academic 
institutions and industry organizations. Through outreach to ACM members, the Task Force was 
also able to reach computing professionals outside of ACM membership. In all cases, the Task 
Force sought global participation. There were 672 responses to the academic survey and 297 
responses to the industry survey. 
 
Academic Survey 
 
The academic survey asked academics whether their institution had any sort of data science 
program at the undergraduate level, asked what type of program was offered, in what 
department(s) it was housed, and what computing areas were required, elective, or not present in 
the program. It also allowed respondents to add to the list of computing areas specified in the 
survey. Finally, the survey asked participants whether their data science program had a “data 
science in context” requirement – i.e., a requirement that students apply data science to another 
area. 
 
Nearly half of respondents from academic institutions (47%) reported they did not offer an 
undergraduate data science program. However, over half of those who reported offering some 
type of program offered a full bachelor’s degree in data science. 
 
Nearly all of the programs offering a bachelor’s degree in data science required courses in 
programming skills and statistics. In addition, the majority of programs also required data 
management principles, probability, data structures and algorithms, data visualisation, data 
mining, and machine learning.  Other courses included topics such as ethics, calculus, discrete 
mathematics and linear algebra. We note that a majority of programs also required a “data 
science in context” course. 
 
Administratively, the largest percentage of programs were housed in a computer science 
department; however, almost as many were in an “other” category. This result might be 
somewhat skewed, given that the survey was fielded primarily with ACM members. 
 
Additionally, over half of these programs reported graduating 10 students or less annually. 
 
We expect that the number of Data Science programs will increase, as will the number of 
students choosing to study it. This, then, is an ideal time to articulate computing-based 
competencies for those programs. 
 
Industry Survey 
 
The industry survey roughly mirrored the academic survey; however, the primary question was 
whether a company looked for job applicants with data science experience and what computing 
experience they required or preferred those applicants to have. 
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In the survey of industry representatives, nearly half (48%) responded that they look for 
candidates specifically with data science or analytics degrees or educational backgrounds.  
We found it particularly interesting that the majority of employers reported these employees 
work as individual contributors on data science tasks. 
 
Industry respondents reported requiring experience or skills in similar areas to those required by 
college or university Data Science programs. One slight difference is that employers reported 
requiring more computing skills than statistical or mathematical skills.  
 
Other Observations 
 
The ACM Task Force was somewhat surprised by certain survey results. For instance, industry 
respondents did not report data security and privacy as a required competency area for job 
applicants. We note that this may reflect employers’ understanding of what Data Science (and 
Computer Science) programs are requiring of their majors. That is, it might reflect the reality of 
the applicant pool, rather than a “wish list” of competencies.  
 
Similarly, we note that academic institutions reported what they currently require, rather than 
what they would require in an ideal world. This might, in some cases, reflect the availability of 
courses and faculty at an institution, rather than a “gold standard” for Data Science programs. 
 
A more detailed summary of survey results is presented in Appendix B. 
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Chapter 3:  
Introduction to the Body of Knowledge 

 
 

3.1 Knowledge Areas 
 
Following the work of previous ACM curricular volumes (see [1], for instance), this report is 
organized around Knowledge Areas (KAs). The KAs identified for the first draft of this report 
(released in January 2019) were based on survey input (see Section 2.3) as well as prior work, 
with special attention being given to the results of the workshop reported in [5]. 
 
Feedback on the first draft prompted the Task Force to revise the list of KAs. The core 
computing discipline-specific Knowledge Areas for Data Science described in this (second) draft 
are (in alphabetical order): 
 

● Analysis and Presentation (AP) 
● Artificial Intelligence (AI) 
● Big Data Systems (BDS) 
● Computing and Computer Fundamentals (CCF) 
● Data Acquisition, Management, and Governance (DG) 
● Data Mining (DM) 
● Data Privacy, Security, Integrity, and Analysis for Security (DP) 
● Machine Learning (ML) 
● Professionalism (PR) 
● Programming, Data Structures, and Algorithms (PDA) 
● Software Development and Maintenance (SDM) 

 
For a full curriculum the above KAs need to be augmented with competencies in calculus, 
discrete structures, probability theory, elementary statistics, advanced topics in statistics, and 
linear algebra, among others. A complete curriculum would also include at least one domain 
context for application of Data Science concepts and methods. 
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3.2 The Competency Framework 
 
The Competency Framework provides a framework for the description of the various Knowledge 
Areas. 
 
In deciding on a competency framework, the Data Science Task Force looked to other ACM 
curricular volumes for guidance. In particular the 2013 ACM Computer Science volume ([1]) 
and Chapter 4 on Competencies in the IT 2017 ([6]) volume received significant attention. The 
notion of Knowledge Areas was present in both as was the notion of competence. The IT 2017 
volume had introduced the notion of disposition, a concept that had its origins in [3], as well as 
the concept of context to highlight distinctive situations; both of these featured in the thinking of 
the Task Force. 
 
In the final analysis, it was decided to adopt a competency framework that best suited the Task 
Force who had been charged with providing curricular guidance in the new area of Data Science. 
There was a wish to have some latitude in approach so as to be able to convey their thinking and 
permit an appropriate focus on the discipline and its implementation. 
 
The Framework 
 
In broad outline, the framework takes the form of a set of Knowledge Areas, each Knowledge 
Area representing a significant and coherent body of material to be included in Data Science 
degree programs. Knowledge areas provide a vocabulary of terms that the community will use 
and focus on in discussion about Data Science. They capture concepts that are significant and 
central to the discipline. The definition of these should be as self-contained as possible to reflect 
their central role.   
 
Each Knowledge Area description follows a template. (See Figure 3-1) To amplify:  
 

● Following the name of the Knowledge Area, there will be a relatively brief paragraph 
describing the area and its relevance in Data Science 

● A section addressing the scope of the Knowledge Area as it applies to Data Science 
● A section capturing very high-level competencies, skills as well as dispositions 
● A list of sub-domains, and finally 
● The definitions of the listed sub-domains 

 
The Knowledge Areas themselves are further refined into a set of sub-domains, each of these 
being defined by associated competencies. See Figure 3-2 at the end of this chapter for a list of 
Knowledge Areas and the accompanying sub-domains. 
 
Sub-domains 
 
In describing and defining the sub-domains, the initial text is intended to draw attention to the 
relevance of the topic within Data Science, bearing in mind that the overall report is to capture 
the study of Data Science at the undergraduate level in the areas related to computer science. 
This is followed by sections addressing knowledge, skills, dispositions and context. 
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The knowledge section takes the form of a bulleted list of major topics or topic areas within the 
sub-domain.  
 
The skills section is a bulleted list of skills to be acquired during study of the sub-domain. 
Naturally this tends to reference the knowledge items within that sub-domain.  
 
Skills are expressed in terms of learning outcomes (LOs). Formally, a learning outcome captures 
an aspect of what a student is expected to accomplish through study of particular topics. 
 
 
 
Knowledge Area Name 
 
Text giving a brief description of the knowledge area and its role in Data Science. 
 

Scope Competencies 

● High level description of the scope of this 
knowledge area, stressing its relevance to Data 
Science 

● The description should be in the form of a 
relatively small number of bullet points 

 

● To be kept at a very high level. More 
detail is provided with the sub-domains. 

● Provide bullet items that capture 
knowledge, skills, and dispositions 

Sub-domains 

List sub-domains here List additional sub-domains here 

   Figure 3-1 Template for Knowledge Area definitions 
 
The various sub-domains are then addressed in order. For each sub-domain, the sub-domain name is 
followed by an optional brief paragraph describing the sub-domain and then  
 

● A list of knowledge topics  
● A list of skills  
● An optional list of dispositions, and finally 
● An optional context section  

 
Likewise, for the other sub-domains. 
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LOs have their origins in Bloom’s taxonomy. This was originally developed in 1956 and has 
been the subject of much study and development over the years. See, for example, [5] which is a 
significant development and forms the basis of the approach used here; throughout, the Task 
Force has placed an emphasis on capturing aspects of the discipline of Data Science rather than 
always ensuring strict adherence to the framework. 
 
Basically, a set of cognitive processes is identified, namely to remember, understand, apply, 
analyze, evaluate and create. These cognitive processes are seen to be of increasing cognitive 
challenge, though the precise challenge owes much to the context (as defined by the set of topics 
to which it applies) as well as the background of a student.  Students can demonstrate a particular 
cognitive skill in various ways. Table 3-1 – which owes much to [2, 4] - gives a list of verbs that 
illustrate how achievement of a particular cognitive process can be demonstrated; within the list 
there are some illustrations of use. The list of verbs should be regarded as indicative and not 
exhaustive.  
 
The various learning outcomes then vary in terms of the level of challenge they represent. 
Moreover, the number of curriculum hours involved in achieving an LO can also vary. For a 
degree program in higher education, it would be expected that the higher-level cognitive 
processes feature in some of the LOs. 
 
Additional Features of sub-domains 
 
On the T1, T2, E designations 
 
The three designations T1, T2 and E have been used and are associated with the various 
knowledge, skills, and dispositions. In brief 
 

● T1 (Tier 1) denotes an item that all Data Science graduates should have mastered 
● T2 (Tier 2) denotes an item that most Data Science graduates would be expected to have 

mastered. Any given Data Science graduate would be expected to have mastered a 
majority of T2 items.  

● E (Elective) signifies an item that, although important, could reasonably be regarded as 
forming part of an elective 

 
These designations may appear at different levels of granularity 
 

● When placed at the level of a sub-domain, a designation applies to all items within that 
sub-domain 

● Otherwise, the designation applies at the item level 
 
The Data Science Task Force recognizes that it is unreasonable to expect all T2 topics to be 
accommodated within the one program.  This issue is further developed in Chapter 4 of this 
document, which addresses (at a high level) building a complete major curriculum.  These three 
designations are intended to offer guidance on the possible selection of topics for a newly 
designed Data Science program, facilitating, for instance, placing an emphasis on the statistical 
elements or the cognitive elements that support machine learning and/or artificial intelligence.  
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Remember – retrieve relevant knowledge from memory 
 Define Duplicate  Find Identify Label 
 List  Locate  Memorize Name Recall 
 Recognize Retrieve Select State  
      
Understand – construct meaning from instructional messages 
 Classify Convert Demonstrate Describe Differentiate 
 Discuss  Exemplify Explain  Infer Interpret  
 Paraphrase Report Summarize Translate  
      
Apply – carry out or use a procedure in a given situation 
 Apply Calculate Carry out Diagram Edit  
 Execute  Illustrate Implement Investigate Manipulate  
 Modify Operate Perform  Produce Solve  
 Use Write    
      
Analyse – break material into its constituent parts and determine how the parts relate to one another and to an 

overall situation 
 Analyze Attribute Categorize Compare Contrast  
 Decompose Deconstruct Deduce  Discriminate Distinguish 
 Examine Integrate  Organize Outline Structure 
      
Evaluate – make judgements based on criteria and standards 
 Appraise Argue  Assess Choose Critique  
 Debate Defend Estimate  Evaluate  Judge 
 Support  Test Value  Verify  
      
Create – put elements together to form a coherent or functional whole; reorganise elements into a new pattern or 

structure 
 Assemble  Construct Create Design  Develop  
 Devise Formulate  Hypothesize  Invent  Make 
 Plan     
      

Table 3-1 Cognitive Processes and Associated Competence Verbs 
 
On dispositions 
 
The concept of disposition arose in [3]. To quote: 
 

The dispositions and pre-dispositions category arose from an attempt to capture 
the “areas of values, motivations, feelings, stereotypes and attitudes” applicable 
to computational thinking.  
These included:  
● Confidence in dealing with complexity 
● Persistence in working with difficult problems 
● The ability to handle ambiguity 
● The ability to deal with open-ended problems 
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● Setting aside differences to work with others to achieve a common 
goal or solution, and 

● Knowing one's strengths and weaknesses when working with others.  

This concept was further amplified in [6] where it states that 

Dispositions encompass socio-emotional skills, behaviours, and attitudes that 
characterise the inclination to carry out tasks and the sensitivity to know when 
and how to engage in these tasks […]. To distinguish dispositions from knowledge 
and skills, [..], a disposition “concerns not what abilities people have, but how 
people are disposed to use these abilities.” 

 
In utilising dispositions, the Task Force followed the approach adopted in [7].  See Table 
3-2 that relies very heavily on that report. 
 

Disposition Elaboration 
  
Proactive: With initiative, self-starter, independent 
Self-directed:  Self-motivated, determination, independent 
Passionate: Conviction, strong commitment, compelling 
Purpose-driven:  Goal driven, achieve goals, business acumen 
Professional: Professionalism, discretion, ethical, astute 
Responsible: Use judgement, discretion, act appropriately 
Adaptable:  Flexible; agile, adjust in response to change 
Collaborative:  Team player, willing to work with others 
Responsive:  Respectful; react quickly and positively 
Meticulous:  Attentive to detail; thoroughness, accurate 
Inventive: Exploratory. Look beyond simple solutions 
   

Table 3-2  Dispositions from CC2020 
 
On the context sections 
 
An optional context section is used to draw attention to aspects of sub-domains that may vary 
depending on the environment, such as the geographical location (where laws and culture may 
vary).  
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The Body of Knowledge 
 
The complete definition of the Data Science Body of Knowledge (computing oriented) appears 
in Appendix A of this volume. 

Analysis and Presentation 
● Foundational considerations 
● Visualization 
● User-centered design  
● Interaction design 
● Interface design and development 

 
Artificial Intelligence 
● General 
● Knowledge representation and reasoning – logic 

based  
● Knowledge representation and reasoning – 

probability based  
● Planning and search strategies 

 
Big Data Systems 
● Problems of scale 
● Big data computing architectures 
● Parallel computing frameworks  
● Distributed data storage  
● Parallel programming 
● Techniques for Big Data applications  
● Cloud computing  
● Complexity theory 
● Software support for Big Data applications 

 
Computing and Computer Fundamentals 
● Basic computer architecture 
● Storage systems fundamentals 
● Operating system basics 
● File systems 
● Networks 
● The web and web programming 
● Compilers and interpreters 

 
Data Acquisition, Management, and Governance 
● Data acquisition 
● Information extraction 
● Working with various types of data 
● Data integration  
● Data reduction and compression  
● Data transformation  
● Data cleaning  
● Data privacy and security 

 

Data Mining 
● Proximity measurement 
● Data preparation 
● Information extraction 
● Cluster analysis 
● Classification and regression 
● Pattern mining 
● Outlier detection 
● Time series data  
● Mining web data 
● Information retrieval 

 
Data Privacy, Security, Integrity, and Analysis for 

Security 
● Data privacy 
● Data security 
● Data integrity 
● Analysis for security 

 
Machine learning 
● General 
● Supervised learning 
● Unsupervised learning  
● Mixed methods 
● Deep learning 

 
Professionalism 
● Continuing professional development  
● Communication  
● Teamwork             
● Economic considerations  
● Privacy and confidentiality  
● Ethical considerations  
● Legal considerations  
● Intellectual property 
● On automation 

 
Programming, data structures and algorithms 
● Algorithmic thinking and problem solving 
● Programming 
● Data structures 
● Algorithms 
● Basic complexity analysis 
● Numerical computing 

 
Software development and maintenance 
● Software design and development 
● Software testing 

Figure 3-2 The (Computing) Data Science Knowledge Areas (with sub-domains) 
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Chapter 4:  
Building a Program from Curricular 

Recommendations 
 
 
Borrowing heavily from the Computer Science 2013 volume [1]:  
 
As useful as the Body of Knowledge is, it is important to complement it with a thoughtful 
understanding of cross-cutting themes in a curriculum, the “big ideas” of [Data Science]. In 
designing a curriculum, it is also valuable to identify curriculum-wide objectives, for which the 
Principles and the Characteristics of Graduates chapter of this volume should prove useful. 
 
These observations are highly relevant in the context of this present report. How are they to be 
interpreted? Data scientists have to behave ethically, seeing opportunity and benefit in 
employing the methods and techniques of the discipline to analyze and derive new information 
from data. The methods and techniques have their origins in the basic disciplines of computer 
science, mathematics, statistics and machine learning reflecting the interdisciplinary nature of the 
discipline which, in given situations, may be complemented by application domain knowledge. 
Ethics, practical skills, recognizing the potential of data, assembling high quality data, and 
seeking new knowledge from that data to bring benefit must underpin the philosophy and ethos 
of a program in data science. 
 
In designing a Data Science program these matters need to be captured in a high-level 
description of the expected outcomes of the program, or more formally in a specification phrased 
in terms of the expected learning outcomes from study of the program. Since Data Science is an 
emerging discipline, it is to be expected that the curriculum will be revised regularly. Thought 
needs to be given to the implications of that. But there are other considerations that also need to 
be taken into account. 
 
4.1 Program design considerations 
 
Aspects of the nature of degree programs are often determined by national or by institution wide 
considerations. Below two particular cases are highlighted. But study programs throughout the 
world - for instance, in Australia / New Zealand, Canada, China and South America, tend to be a 
variant on these, though in some countries, e.g. Australia or South Africa, it is often possible to 
register for a program that provides two qualifications. 
 
Higher Education in the US 
 
A rich range of educational possibilities exists with large engineering schools, large research-
oriented schools, as well as liberal arts colleges, community colleges, and many others.  
Typically, Bachelor’s degree programs are 4 years in duration. In many institutions, students 
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have the chance to explore options especially in the early years. In the later years they have the 
possibility to touch on topics that border on research.  As well as these majors, the system also 
accommodates liberal arts degrees as well as minors, which can be taken in conjunction with 
study of another discipline. 
 
Possibilities for study abroad may exist and typically occur during the third year. Efforts have to 
be made to match the curricula in the home and abroad institutions so that students genuinely 
benefit and are not disadvantaged when they return to their home institution. 
 
Another common feature is to allow students to undertake internships in industry. These may be 
of 6 months duration but may also last for the full year (and this may extend the duration of the 
degree program). These need to be carefully planned.  The experience of the students should 
contribute significantly to the student’s knowledge and understanding of Data Science and the 
institution should ensure that proper quality checks are in place as a safeguard. Variants of this 
do exist, e.g. in the UK in the form of Graduate Apprenticeships, where there is a deeper bond 
with industry that involves a partnership throughout the entire study program.  
 
The European Scene 
 
The European Higher Education Area (EHEA) is “a group of 48 countries that cooperate to 
achieve comparable and compatible higher education systems throughout Europe” [2]. This is to 
facilitate student as well as staff mobility between EHEA countries with a view to facilitating 
employment. The system is underpinned by the Bologna process [3]. This is characterized by 
three cycles: the first is a Bachelor’s degree cycle lasting 3 years; the second is a Masters cycle 
lasting a further 2 years; and the third is for Doctorate degrees and lasts an additional 3 years. 
The Bologna system includes a qualifications framework, a system of credits and quality 
assurance. The European Credit Transfer System (ECTS) stipulates, for instance, that 90 credits 
is the typical number of credits per year. 
 
Despite the Bologna framework, there are differences in achievement across the various 
countries brought about by considerations such as the differing outputs from the school systems.  
 
 On detailed curricula 
 
In terms of detailed curricula, a wide variety of possibilities exists, even beyond the 
considerations mentioned above about program structures. For instance, a program can reflect 
different emphases on computing, statistics, machine learning, mathematics, or a particular 
discipline of application outside of those.  
 
Data Science is a new discipline, not always well understood by students nor by their parents / 
advisors. It is desirable that, in the early stages (e.g. the first semester), an initial course - with a 
title such as An Introduction to Data Science – should be provided to enthuse students and even 
attract additional students to the discipline. A significant premium should be placed on 
motivation and conveying the philosophy as well as the real achievements of the discipline; the 
course might be designed so that it is available to a wide cross section of the student community.  
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It is natural to expect that classes in the early stages of a degree program reflect the basis of 
computer science, statistics, mathematics and machine learning. However, certainly in the later 
phases, and even relatively early in the program, all the classes ought to have a distinctive Data 
Science flavor to reflect and promote the character of this emerging discipline.  In the later 
phases of the program, possibilities ought to exist allowing students to explore different options 
and possibilities, perhaps driven by career ambitions or research leanings.   
 
Most material in the compulsory classes should be T1 / T2 material, though the possibility 
should exist for particular expertise in an institution infusing the curriculum. For optional / 
elective classes in the later years, the material should be T2 / E. A major project in the final year 
(that demonstrates a student’s ability to solve a significant Data Science problem by pulling 
together material from several classes) should fall into the E category. 
 
As a final important comment, generally Data Science programs should exist in an environment 
where there is encouragement as well as incentives and rewards for exceptional performance.  
 
4.2 Data Science in context 
In addition to developing foundational skills in computing and statistics, data science students 
should also learn to apply those skills to real applications.  It is important for data science 
education to incorporate real data used in an appropriate context.  
Data Science curricula should include courses designed to promote dual coverage combining 
both data science fundamentals and applications, exploring why people turn to data to explain 
contextual phenomena. Such courses highlight how valuable context is in data analytics; where 
data are viewed with narratives, and questions often arise about ethics and bias.   It can be 
beneficial to teach some courses with a disciplinary context so that students appreciate that data 
science is not an abstract set of approaches.  Related application disciplines might include 
physics, biology, chemistry, the humanities, or other areas.  
Exemplar courses and programs 
Although there are a great variety of possible course possibilities, the above comments have been 
generic in nature. The next (final) draft of this document will include exemplar courses and 
programs that institutions may adopt or adapt for their local settings. 
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Chapter 5: Broadening Participation 
 
 
5.1 Overview  
 
Data Science (DS) is a new field with roots in Mathematics, Statistics, and Computer Science 
(CS) and applications to multiple fields. The fact that it is an emerging discipline provides an 
opportunity for diversity and inclusion; we should ensure from its inception that there is broad 
representation of students who are welcome and persist to graduation and beyond.  The fields 
most closely aligned to DS are also fields with relatively unbalanced representation of various 
groups, including, for example, women racial minorities, students with disabilities, and others. 
Data Science can learn from these degree programs’ successes and failures. 
 
Consider the following examples of disparity in fields frequently associated with Data Science. 
In the U.S. women represent 57% [7] and underrepresented minorities (URMs)1 represent 25% 
[5] of all Bachelor's recipients in the U.S., but only 19.5% and 12.6% of CS graduates, 
respectively [4]. According to the National Science Board Science and Engineering Indicators 
2018 [4], the gender disparity is true for both 2-year and 4-year degree programs in the U.S. 
According to EuroStat [8], a website of the European Union, over 1.3 million people were 
enrolled in the field of Information and Communication Technologies (ICT) in the European 
Union (EU) in 2016. Females were largely in a minority, accounting for only one in six ICT 
students (16.7%). The data for gender representation are somewhat better for Australia, although 
they still have lower than 35% female enrolment in CS. And Australia, like many nations, is 
grappling with disparities among other groups. Samaras [17] notes that “as social, economic, and 
political opportunity becomes increasingly wedded to ICT access in the information society, 
Indigenous digital disadvantage threatens to perpetuate or exacerbate the existing inequalities 
constraining access.  

This report is not the first to identify the emergence of Data Science as an opportunity to reverse 
the problem of imbalance observed in the fields from which DS has grown. Excellent work and 
recommendations for ensuring broad participation in Data Science exist.  As stated in the 
National Academies of Sciences, Engineering, and Medicine (NAS) report, Envisioning the data 
science discipline: the undergraduate perspective [12], the Data Science community has an 
opportunity to build DS curriculum to be welcoming and inclusive from the start. As such, Data 
Science, as a discipline, should take the best practices for broadening participation from 
Mathematics, Statistics, and Computer Science as well as successes from countries that have 
more balanced representation.  One of four key recommendations in the NAS report is proactive 
and intentional collaboration on Data Science curricula and broadening participation between 

 
1 URMs in CS include all U.S. minorities except Asian Americans who are well represented. 
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two- and four-year institutions.  Another key recommendation is to require assessment metrics 
for inclusion in the overall assessment of Data Science programs.    

 
The AAAS report Levers for Change: An assessment of progress on changing STEM instruction 
[1] discusses problems common to both Mathematics and Computer Science including the lack 
of support for using evidence-based teaching techniques, dearth of information on inclusion of 
Lesbian, Gay, and Transgendered students, and continued underrepresentation of Hispanics, 
African Americans and students from lower socio-economic homes. AAAS recommends support 
for faculty to use evidence-based instruction, providing more role models, acknowledging and 
confronting implicit bias, and reducing stereotype threat classes.  
 
For students with disabilities, the problems are different. Many tools in Data Science today are 
not accessible to such students. For example, screen reader technologies often do not read the 
raw pixels of a chart or graph out loud for students that are blind or visually impaired. Videos 
created on math or statistics often lack closed-captioning or sign language interpretation, or other 
issues like lack of compatibility with the WCAG 2.1 AA standard. These technical issues are not 
merely glitches that need to be fixed. They can fundamentally block students with disabilities 
from participating in data science at all [19]. 

 
The South Big Data Hub’s Keeping Data Science Broad: Negotiating the Digital & Data Divide 
report [15] includes ten asks for the community, including the following that directly impact 
curriculum:  Foster partnerships between different institutional types; Provide flexible pathways 
into data science education; Time & space to discuss collaboration; Hiring female faculty, 
faculty of color, and female faculty of color; and Provide examples of curriculum for 2-year 
college degrees, certificates or pathways. 
        
The ACM Data Science Task Force is focusing on undergraduate curriculum; however, it is 
equally important for data science industry professionals and graduate programs to embrace the 
goal of broadening participation by ensuring fair and inclusive work environments. In K-12, 
where laws like the Individuals with Disabilities Education Act require any course to be fully 
accessible, broadening participation to be inclusive is both an ethical, and a legal, requirement 
[22, 23]. 

 
5.2 Benefits of Broadening Participation 
   
A major argument for broadening participation in computing has been the shortage of computer 
scientists, whereby recruiting and retaining women and other underrepresented groups would 
help fill worker shortages. Similarly, shortages in the data science workforce are anticipated. 
According to [18], based on a survey of the data analysis department of China’s commercial 
commission, the gap between the need for and supply of basic data analysis talent exceeds 
14,000,000. According to a report by the European Commission in 2017 [9] the EU was 
forecasted to face a data skills gap corresponding to 769,000 unfilled positions by 2020. And 
[20] reports that the data scientist role will become increasingly important in all industries. 
Therefore, the argument for filling worker shortages applies here, however the value of ensuring 
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inclusion of women and other underrepresented groups goes beyond having a ready and ample 
workforce.  
 
As studies have repeatedly demonstrated, diverse teams are smarter; they focus more on facts, 
process facts more carefully, and are more innovative [16]. The National Council for Women & 
Information Technology (NCWIT)’s “What is the Impact of Gender Diversity on Technology 
Business Performance: Research Summary” [2] summarizes research studies and identifies key 
findings of benefits and costs of diverse teams.  Diversity is a prudent financial decision. 
Gender-balanced companies perform better financially, particularly when women occupy a 
significant proportion of top management positions. Furthermore, gender-balanced teams 
improve team productivity.  Teams that are more diverse adhere to project schedules in various 
technology companies, share knowledge and have lower project costs than homogeneous teams.     
 
Intentional inclusion and diversity are necessary to reduce societal bias as data science continues 
to be used for decision making from health care to hiring decisions.  News articles are published 
regularly (e.g., 43 articles in Google News with the terms “bias Artificial Intelligence” on 
12/13/2019) either discussing or highlighting bias in machine learning algorithms.  Propagation 
of societal biases should be anathema to Data Science. We do not claim that only 
underrepresented individuals can grapple with these issues, but as the data presented above 
demonstrate, diverse teams with members of many different backgrounds are smarter. 
 
Data Science should be open to all.  Data Science jobs, like computing and statistics jobs, pay 
high salaries – according to [10], the average data scientist earns $121,189 in the U.S. – and the 
field should be open to all, independent of class, race, gender, sexual orientation, gender identity, 
ethnicity and other factors that do not influence one’s ability to succeed in the field. If not, we 
are faced with an issue of social equity. 
 
5.3 Recommendations 
 
Data Science programs should report student and faculty demographics as part of assessment. 
 
The NAS report [12] recommends that assessment of diversity be part of all Data Science 
programs. This is paramount to ensuring Data Science does not repeat inequities that exist in 
other STEM programs. Data Science programs should monitor and report on enrollment and 
graduation rates by gender, race, national origin, socio-economic, and disability status.  
 
Assessment reporting should include demographics for faculty as well, and include recruitment 
activities in support of diverse faculty.  The composition of Data Science faculty must be 
considered as part of a holistic approach to broadening participation. The value of a diverse team 
is argued above, and this also applies to faculty. In addition, diversity and inclusion is improved 
for student populations when students experience diverse faculty and learn in an inclusive 
setting.  Ponjuan [14], for example, reports on the positive impacts on Latino students when 
Latino faculty are present. Therefore, Data Science programs should incorporate best practices in 
hiring to ensure a diverse group of faculty.  This requires intentional outreach to 
underrepresented faculty at research conferences and conferences for underrepresented groups.  
NCWIT offers multiple resources on how to construct the job advertisement and interview 
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techniques for welcoming new faculty.2 Once hired, it is even more important to provide a 
welcoming and supportive work environment for all faculty.  NCWIT has a number of references 
for recruiting and retaining females in technology, developing male allies, and having strong 
mentoring programs.   References include evidence-based guidelines (e.g., NCWIT Tips: 13 Tips 
for Creating and Sustaining a Women in Computing Group on Your Campus), promotional 
materials for students (e.g., Which computing path is right for me?) and relevant research (e.g., 
Results of a Large-Scale, Multi-Institutional Study of Undergraduate Retention in Computing). 
Materials are available at https://www.ncwit.org/resources.  
 
Data Science course content should be designed to support a diverse student body.  Faculty, 
trained in inclusive and diverse teaching pedagogy, should implement these methods to 
support all recruited students. 
 
“Inclusive pedagogy at its core is learner-centered and equity-focused, creating an overarching 
learning environment in which students feel equally invited and included. Drawing from a large 
body of research—much of it foundational scholarship on teaching and learning—it is clear 
that learning outcomes are improved for everyone when teachers attend to student differences 
and take deliberate steps to ensure that all students, across differences […] feel welcomed, 
valued, challenged, and supported in their academic work.” [6] Data Science faculty – indeed, all 
faculty, should learn about inclusive pedagogy, and what it means for tools to be accessible or 
not, and put such techniques into practice. 
 
Many resources provide guidance on inclusive pedagogy [3]. The National Center for Women & 
Information Technology (ncwit.org) provides resources for recruiting and retaining women, and 
The American Association for Advancement of Science Levers for Change: An Assessment on 
Changing STEM Instruction also provides recommendations [1]. Additionally, the ACM Special 
Interest Group on Computer Science Education (SIGCSE) has published significant work to 
improve diversity and inclusion, as have publications from Research on Equity & Sustained 
Participation in Engineering, Computing, & Technology (RESPECT). 
 
Promotion and review criteria should incorporate evaluation of evidence-based inclusive 
teaching practices. 
 
Providing professional development is not enough to ensure that effective teaching practices are 
maintained [1]. Therefore, it is important to devise promotion and review criteria that reward 
faculty for sustained implementation of inclusive teaching.   
 
Data Science programs should include sustained funding for faculty development in teaching. 
 

 
2 Such as “7 tips for Conducting Inclusive Faculty Searches,” available at 
https://www.ncwit.org/resources/ncwit-tips-7-tips-conducting-inclusive-faculty-searches/ncwit-tips-7-tips-
conducting 
 

https://www.ncwit.org/resources
https://www.ncwit.org/resources/ncwit-tips-7-tips-conducting-inclusive-faculty-searches/ncwit-tips-7-tips-conducting
https://www.ncwit.org/resources/ncwit-tips-7-tips-conducting-inclusive-faculty-searches/ncwit-tips-7-tips-conducting
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So that faculty may learn and continue to develop best practices in teaching, Data Science 
programs should provide the funding necessary for this. 
 
Intentional collaboration between 2-year and 4-year post-secondary colleges and 
universities. 
 
Community colleges in the U.S. enroll, on average, a diverse student body. This creates an 
opportunity, then, to recruit diverse students to Data Science. Efforts should be taken to create 
2+2 pathways for Community College students who wish to pursue an A.S. followed by a B.S. in 
Data Science.  As noted by Lyon and Denner [11], Community College faculty should be 
partners on 4-year advisory boards to ensure that students transferring from community college 
have a smooth, and clear, pathway to a bachelor’s degree.  
 
Similar collaboration should be initiated at analogous institutions, where they exist, across the 
globe. 
 
Tools and Curricula used should be accessible to people with disabilities. For students with 
disabilities to participate meaningfully and equally with data science, several requirements must 
be met. First, we recommend all web content meet, as a minimum bar, WCAG 2.1 AA 
guidelines for accessibility on the web [21]. At a high-level, this includes captioning videos, 
including alternate descriptions for images, and carefully formatting the HTML source code to 
meet other WCAG requirements. We imagine that this applies especially to any tools run on the 
web and perhaps especially any curricular materials. 
 
Second, many data science tools are not accessible today. We recommend that practitioners 
should choose to use data science tools that, at a minimum, are fully compatible with screen 
reading technologies, should have keyboard affordances and not just use the mouse, that have 
meaningful and easily remembered designs and naming conventions, and that use captions 
appropriately. This is not a complete list, as many other technologies exist, but these 
recommendations encompass a variety of disability groups. We finally note that it is important to 
understand that many of these requirements, like screen readers, may sound like they apply to 
only one group (e.g., the blind), but in fact many disability groups rely on the same underpinning 
technology. For example, students with motor impairments, blind users, and those with learning 
disabilities, all use similar affordances. Operating systems like Microsoft Windows create 
support for all people with disabilities in one library, not separate ones for each kind of person.  
As such, a data science tool that breaks support for students or professionals with one disability 
may in fact not work correctly for all students with disabilities. 
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Chapter 6: 
Characteristics of Data Science Graduates 

  
 
Graduates of Data Science (DS) programs should have fundamental competency in all areas 
described by the Body of Knowledge. However, there are also competencies that graduates of 
DS programs should have that are not explicitly listed in the Body of Knowledge.   
  
Data Science graduates should have an appreciation and knowledge of foundational work in 
Computer Science, Mathematics, Statistics, and other applied domain areas contributing to Data 
Science. Data Science graduates should be aware that while DS is a new discipline, it is founded 
on powerful mathematical, statistical, and computing foundations and approaches. When faced 
with a new problem, they can and should draw upon existing techniques when appropriate.  
Below, we describe the characteristics that we believe should be attained at least at an 
elementary level by graduates of Data Science programs. These characteristics will enable their 
success in the field and further professional development. Some of these characteristics and skills 
also apply to other computing fields. They are included here because the development of these 
skills and characteristics should be explicitly addressed and encouraged by Data Science 
programs. 
 
Preparation in basic mathematical, statistical, and computing skills: 
 
Data Science graduates should have acquired some basic education in computing (programming, 
databases, use of the Internet); be able to program on their own with one or two common 
languages (Python, R); be aware of some common libraries such as sklearn in Python, R 
packages, and several method or domain specific libraries; and be able to learn new languages 
and new libraries when needed. They should be familiar with concepts in applied mathematics, 
covering multivariate calculus, linear algebra, optimization, and graph theory, in addition to 
concepts in probability and basic methods in statistics. They should be sufficiently literate to 
read practitioner-oriented papers that contain descriptions of methods in basic mathematics and 
statistics terminology, and high-level descriptions of algorithms and experimental results. They 
should also be familiar with several public data depositories that may serve as application 
examples to illustrate methodologies. 
 
Flexibility and joy of learning and working in a fast-paced discipline: 
 
Data Science is a rapidly evolving discipline that sees development of new techniques, tools, and 
application domains every day. A DS graduate needs to be prepared to pursue continuous 
learning from colleagues, professional peers, and the community through various on-line sources 
and conferences, and be able to learn from experience. 
 
Broad interest in application domains, and preferably, with a few specializations: 
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Most Data Science graduates will work in an application discipline, driving forward exciting 
change and innovation in a business or other type of institution. Analytic methods learned in 
school are often generic and neutral to application domains. A Data Science graduate needs to 
understand the mission, challenges, and constraints of the application domain so as to guide the 
focus of the analysis and the selection of methods. This requires broad interests, strong curiosity, 
fast learning, accurate communication, and empathy of and dedication to the clients’ key 
concerns. These abilities are often amplified when the data science graduate has passion and 
intrinsic interest in the application domain. 
 
Staying alert of broader societal, non-technical concerns: 
 
The work environment of Data Science graduates operates in and interacts with a broader society 
through its lines of business. Collecting and using data from certain sources may need to take 
into account the societal impact. Data Science graduates should stay knowledgeable of current 
affairs, and stay alert of any sensitivity on privacy, security, and bias related issues, so as to plan 
and deliver studies with such concerns in mind. 
 
Strong communication skills: 
 
Data science graduates will need to learn about a topic of concern from clients of the hosting 
institution, and deliver results back to the clients in an understandable way. 
 
Knowledge and goal acquisition: The clients are often experts in other areas or are decision 
makers, and are not familiar with data science technology. The Data Science graduate needs to 
be able to identify the relevant analytic issues from the client’s concerns through dialogs or 
documents in the client’s preferred terminology. These require clear thinking, fluent 
communication skills, ability to ask the right questions, in addition to good interpersonal skills 
for building lasting engagement and collaborations. 
 
Result delivery: Likewise, on presentation of results, the Data Science graduate needs to explain 
and interpret the numerical conclusions in the client’s terminology, and deliver text and graphics 
ready to be digested by non-technical personnel.  

Commitment to professional responsibility:  

Graduates need to be aware of relevant social, legal, ethical, and cultural issues when working 
with various data sets and deriving meaning through data science.  In addition, awareness and 
understanding of the different international cultural and legal implications is critical.  As 
practicing professionals, they must understand their responsibility and the possible consequences 
of their work. They must understand the limitations of the tools they use and their own personal 
limitations.  A strong ethical dimension in the work of a graduate is important to be alert to bias, 
both in the tools they use and in data and the sampling of data. 
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Chapter 7: Challenges for Institutions 
 
Institutions offering an undergraduate degree in Data Science face a number of challenges. Who 
should host such an offering? An Institute or School of Data Science? A Department of Data 
Science? Should it be an interdisciplinary program? Or should it be housed as one of many 
offerings within a more broadly based unit or set of academic units? The particular choice is 
likely to depend on the philosophy underpinning institutional organization: is it research based, is 
it based on industrial considerations or is it education based? Inevitably personalities will play a 
role, reflecting the expertise, perspectives, interests and ambitions of individuals. 
 
Administrative Challenges 
 
The interdisciplinary nature of Data Science can create challenges for the administrative 
structure of an institution. It is vitally important that there is in place a structure that is fully 
supportive of the program, giving due attention to the wellbeing of the students and the faculty 
involved in the delivery of the curriculum. Support needs to be provided to ensure the ongoing 
health and development of the discipline and its promotion both within the institution and within 
the wider community. 
 
Marketing of the Program 
 
The marketing of a degree program will be a central concern. To establish a certain momentum, 
it is important to have cohorts of a reasonable size. Yet Data Science is a relatively new 
discipline, unfamiliar to many career advisors, parents or guardians who can exercise influence, 
or even to applicants themselves. Accordingly, information about the program has to provide a 
sharp and focused description of the discipline, provide a brief outline of what is involved in 
studying the discipline, explain some of the major accomplishments and relevance of Data 
Science, and give an indication of career opportunities. Further, it needs to be prominent and of 
high quality with an identified faculty contact. 
 
One area that merits particular concern is ensuring that the program is attractive to diverse 
audiences, including, for example, women and ethnic minorities. This necessitates a holistic 
approach involving broad consideration of all aspects from marketing, to the curriculum, to the 
ethos and atmosphere associated with the degree program. 
 
One way of attracting interest from students is to offer a very imaginative and highly motivating 
course to first year students and to have that open to a broad spectrum of students. If students 
find this sufficiently appealing, they may well opt for Data Science as a major. 
 
Faculty Considerations 
 
In some institutions, often in the US, departments are being encouraged by administration (with 
pressure from trustees, in some cases) to start Data Science programs. Those most 
frequently pushed in this direction are in Computer Science, Statistics and Mathematics 
departments who may already be facing staffing challenges and growing numbers of students. 
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Then strong leadership is required to address such challenges. 
 
Central to the delivery of a Data Science program is a collection of faculty members who have 
expertise in research / scholarship in data science. Of course they should be committed educators 
who can motivate and properly support students. Faculty should be particularly alert to the needs 
of the students.  Given the newness of Data Science and the breadth of it, students will be taking 
courses for a Data Science program/major from a wide range of faculty across an institution. 
This poses a challenge in ensuring that all faculty are on board with the aims, objectives and 
ethos of the program and reflect this in their approach.  
 
A valuable aspect of study is often lectures given by invited lecturers from industry. Faculty 
members can assist in organizing relevant talks and meetings. Student societies, prizes for 
exceptional student work, drawing attention to competitions and opportunities as well as having 
appropriately imaginative displays are all aspects that faculty can facilitate. 
 
Implementation of the Curriculum 
 
This Data Science volume provides guidance on education at the undergraduate level on the 
computing aspects of a Data Science program. Its instantiation in any one institution is likely to 
be governed by many factors such as the wider environment, the number of students in a cohort, 
and so on. Institutions are encouraged to consider how best to integrate the recommendations of 
this report into the existing provisions. A flexible approach is encouraged (with institutions 
‘playing to their strengths’ in Computer Science, Statistics and Mathematics); the identification 
of T1, T2 and E(lective) learning outcomes has been undertaken to further encourage and 
facilitate just that. 
 
Students will inevitably experience applications during their study and the range should be 
broad. Beyond this, through options / electives, students can be given the opportunity to study 
topics in some detail so that they can be better informed about possible areas of application. 
 
In the teaching of Data Science, the ethical issues should be seen to pervade the whole 
curriculum. The privacy and confidentiality of information is a vital matter and must be treated 
with the utmost care and attention. During their education as well as in their professional lives, 
ethical issues have to be seen to receive attention.  
 
Data Science Minors 
 
A Data Science minor will include a number of core modules but will fall short of a full 
program. The intention should be to allow students from other disciplines to gain a solid 
understanding of the principles and potential of Data Science with a view to their application in 
other fields of endeavour. 
 
An important aspect of the existence of minors is the creation of links with other departments. 
Such links should lead to greater understanding and hopefully mutually beneficial collaboration. 
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Resources 
 
In terms of resources to support Data Science, languages (such as Python) are an important 
consideration. It is desirable that the language implementation should include libraries to support 
Data Science and so various aspects of visualization, statistics, and machine learning. Moreover, 
there should be software to support the teaching of relevant mathematics. 
 
But different communities prefer different languages, popular alternatives to Python being Scala 
or Java; Python alone is often considered ineffective for processing Big Data. Then there should 
be available multi-server cluster resources such as an Apache Spark or an Apache Hadoop 
cluster, or other cluster resource that facilitates the storage and processing of Big Data. The 
cluster might be on the premises (on-prem) of the home institution or in a public, private, or 
hybrid cloud. A single server is not sufficient. 
 
Again, for the purposes of dealing with Big Data, tools for topics such as visualization, machine 
learning, etc. need to run in a distributed fashion. Running on a single server is typically not 
sufficient. 
 
Most clusters are Linux-based. Accordingly, students will need access to Linux command line 
training to learn how to navigate and run code from the command line. There need to be cluster 
administrators who maintain the cluster hardware and software and support the user community. 
 
Beyond the basic languages and related tools, students should have access to web services that 
are relevant to Data Science as well as data sets of various kinds. During their studies the 
attention of students should be drawn to important collections of data. 
 
Appropriate financial resources may be needed to ensure appropriate access to staff, equipment, 
resources, laboratories, web services, etc. 
 
Keeping current 
 
Given the rate at which Data Science is evolving as a discipline, students need to be guided in 
how to keep current in terms of their knowledge and skills. The availability of online material is 
important in this regard. One possible set of resources are offered as MOOCs; students would 
benefit from guidance on how to use a wide variety of relevant resources effectively and indeed 
how to identify those of quality. 
 
Remaining current can also be facilitated by being a member of a network of similarly minded 
professionals. Again, guidance can be provided on how best to proceed on this topic. 
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Appendix A: 
The Body of Knowledge: Computing 

Competencies for Data Science 
 
This appendix contains 11 Knowledge Areas (KAs): 
 

● Analysis and Presentation (AP) 
● Artificial Intelligence (AI) 
● Big Data Systems (BDS) 
● Computing and Computer Fundamentals (CCF) 
● Data Acquisition, Management, and Governance (DG) 
● Data Mining (DM) 
● Data Privacy, Security, Integrity, and Analysis for Security (DP) 
● Machine Learning (ML) 
● Professionalism (PR) 
● Programming, Data Structures, and Algorithms (PDA) 
● Software Development and Maintenance (SDM) 

 
The KAs are further divided into sub-domains. Competencies (with “tiers” – i.e., the 
recommended level of requirement for a Data Science degree) are given for each. 
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Analysis and Presentation (AP) 
 
The human computer interface provides the means whereby users interact with computer 
systems. The quality of that interface significantly affects usability in all its forms and 
encompasses a vast range of technologies: animation, visualisation, simulation, speech, video, 
recognition (of faces, of hand-writing, etc.) and graphics.  For the data scientist, it is important to 
be aware of the range of options and possibilities, and to be able to deploy these as appropriate. 
Through the use of graphs and other forms of diagrams, visualisation can be used in providing 
readily understood summaries but can also greatly assist in guiding such activities as clustering 
and classification. 
 

Scope Competencies 

● Importance of effectively presenting 
data, models, and inferences to 
clients in oral, written, and graphical 
formats.  

● Visualization techniques for 
exploring data and making 
inferences, as well as for presenting 
information to clients.  

● Effective visualizations for different 
types of data, including time-varying 
data, spatial data, multivariate data, 
high-dimensional multivariate data, 
tree- or graph-structured data, 
discrete / continuous data, and text.  

● Knowing the audience: the client or 
audience for a data science project is 
not, in general, another data scientist.  

● Human-Computer Interface 
considerations for clients of data 
science products.  

● Recognize the main strands of 
knowledge underpinning approaches to 
Analysis and Presentation 

● Summarize the skills and techniques 
(including tools) that can be employed 
in addressing each of the challenges of 
Analysis and Presentation to create 
efficient and effective interfaces 

● Apply a critical demeanor but also 
confidence and creativity regarding all 
aspects of the human computer interface 

● Execute the selection of tools 
appropriate for the size of the data/Big 
Data to be rendered 

Sub-domains 

AP-Foundational considerations – T1 
AP-Visualization – T1 
AP-User-centered design – T2 
AP-Interaction design – T2 
AP-Interface design and development – E 
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AP-Foundational considerations – T1 
 
Presenting data in a suitable form is a challenging but important endeavor. For the data scientist 
this is fundamentally enabling them to display data in a form that is attractive to users / 
audiences and readily and appropriately understandable, but is also potentially of great value in 
providing insights and characteristics including underlying structure. Fundamentally it influences 
usability. 
 
Knowledge 

● Contexts for addressing the human computer interface: visualization of data, web pages, 
multimedia material, instructional material, the general computing environment paying 
attention to navigational considerations 

● Applicable theories, models, principles, guidelines, and standards for interface design and 
implementation 

● Different measures of effectiveness and attractiveness of an interface 
● The use of color and multimedia as well as ergonomics and web services 
● Cognitive models that influence interaction 
● The scope, advantages, and disadvantages of augmented reality 
● Software support to assist with perception regarding analysis and presentation 
● Accessibility considerations for different groupings of users including those with special 

needs 
 
Skills 

● Justify the adoption of a user centred approach to analysis and presentation 
● Critique how considerations of attention, perception, recognition, speech, movement 

affect the usability of an interface through a variety of contexts.  
● Indicate how formal documents (theories, models, guidelines, etc.) affect the analysis and 

presentation of data 
● Explain the desirable impact of differently-abled users and differently aged groups 

(including children) on interfaces 
● Outline ways in which bias may be perceived in interfaces 
● Outline the range of software that can be employed in support of analysis and 

presentation 
● Demonstrate the added value and challenges of an augmented reality interface. 

 
Dispositions 

● Passionate and responsible recognition of the vital role of an interface in affecting all 
aspects of usability 

 

AP-Visualization – T1 
 
Different kinds of data benefit from different approaches to their Visualization. Data scientists 
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need to be aware of this and be familiar with the techniques to be employed in any particular 
situation. 
 
Knowledge  

● The role of visualization in Data Science 
● Illustrations, including both historical and contemporary examples, of visualization 
● Characteristics of effective visualization 
● Suitability of different techniques for different data and for different users 
● Dashboards and interactive visualisation 
● Software to support visualization 
● Inference based on visualization 
● Preparing for visualization - scaling, the role of color 
● Chart types - tables, scatter plots, pie charts, histograms, graphs, data maps including 

pixel-, glyph-, graph- and map-based representations 
 
Skills 

● Interpret famous examples of visualization in common use 
● Identify the various roles that visualization can play in Data Science 
● Implement an effective visualization, given a set of data that has to be used for a 

particular purpose 
● Describe the role of visualization in classification and categorization and identify 

approaches that facilitate this 
● Create a variety of visualizations for a variety of data-types in a variety of software. 

 
Dispositions 

● Appropriate appreciation of the role of visualization 
 

AP-User-centred design – T2 
 
The fundamental approaches to the design of interfaces that benefit users are explored. Inevitably 
testing is involved to provide assurances about a successful outcome. 
 
Knowledge  

● The user-centred design process 
● Relevant life cycle models and standards 
● Interaction design patterns, visual hierarchy, navigational considerations 
● Identification and capturing of functionality and requirements 
● Quality considerations including completeness and consistency and checking for these 
● Prototyping 
● Design for resource constrained situations (e.g. mobile devices) 
● Maintenance considerations 
● Relevant software support 

 
Skills 
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● Discuss a range of approaches to prototyping, including the strengths and weaknesses of 
the various approaches 

● Summarize approaches to checking the consistency and completeness of functionality 
and requirements given a particular application. 

● Discuss the role of statistics in evaluating interfaces 
● Identify standards, languages and tools that support the design of high-quality user 

interfaces 
● Diagram the life of an interface, dashboard, or visualization including long-term use and 

maintenance on a variety of devices 
 
Dispositions 

● Professional commitment to the design of high-quality interfaces. 
● Inventive attitude towards the design of high-quality interfaces. 
● Exhibit business acumen in approaches to designing high quality interfaces. 

 
 

AP-Interaction Design – T2 
 
It is desirable to review the range of issues that have to be addressed and the techniques that can 
be employed. Best practices (at the time of their creation) will have been captured in appropriate 
user interface standards 
 
Knowledge 

● The various possible roles of an interface; issues associated with addressing the main 
possibilities 

● Implications of collaborative activity 
● Characteristics of high-quality interface design 
● Approaches to the evaluation of interfaces including walkthroughs, experiments, 

heuristics 
● Consideration of color, multimedia, speech recognition, animation, touch and gestures 
● Data driven applications (with database back end) 
● Handling failure, help facilities 
● Addressing accessibility considerations 
● User interface standards 

 
Skills 

● Evaluate the effectiveness of interfaces used for a variety of tasks and a variety of 
purposes and users 

● Identify a national and an international user interface standard and the implications of 
adherence to them 

● Explain the possible implications of collaborative activity on interaction design 
● Explain the importance of the design parameters that have to be addressed in creating 

educational material 
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Dispositions 
● Pro-active in having awareness of the possibilities regarding the computer interface  
● Responsive to both national and international user interface standards 

 
 

AP-Interface design and development – E 
 
The data scientist has to be able to apply a range of programming techniques to the creation of 
ever more effective interfaces 
 
Knowledge 

● Software architecture patterns  
● Interaction styles and interaction techniques 
● GUI libraries 
● Software support including GUI libraries 
● Interface animation techniques 
● Role of animation and multimedia in interfaces 

 
Skills 

● Explain the importance of software architecture patterns and interface design patterns to 
interface design 

● Explain the problems associated with navigation in interface design, and how to address 
these 

● Create a GUI interface for a given data science application 
● Explain the considerations in creating an interface for a resource constrained device 
● Apply animation techniques in an appropriate manner for a user interface. 

 
Dispositions 

● A passionate and responsible approach to interfaces 
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Artificial Intelligence (AI)  
 
Artificial Intelligence (AI) includes the methodologies for modelling and simulating several 
human abilities that are widely accepted as representing intelligence.  Perceiving, representing, 
learning, planning, and reasoning with knowledge and evidence are key themes.  
 
Concepts and methods developed for building AI systems are useful in Data Science. 
For example, knowledge graphs such as semantic ontologies are both used and generated by data 
scientists. Computer vision algorithms can be used in analysis of image data; speech and natural 
language processing algorithms can be applied in analysis of speech or text data. Machine 
learning algorithms are applied extensively to extract patterns from data. Thus, a student who is 
well versed in AI will be able to apply those techniques in a Data Science context. 
 
Conversely, Data Science methods are applied extensively in AI systems. Data Science students 
should have an understanding of AI systems and the way they work, if they plan to apply their 
work to AI.  
 
Due to their centrality in Data Science, AI competencies related to images, text, and machine 
learning are highlighted elsewhere. Working with images and text is in the Data Acquisition, 
Management and Governance KA; Machine Learning is its own KA but is also referenced 
extensively in the Data Mining KA. This knowledge area addresses knowledge representation, 
reasoning, and planning. 
 

Scope Competencies 

● Major subfields of AI 
● Representation and reasoning 
● Planning and problem solving 
● Ethical considerations 

 

● Describe major areas of AI as well as 
contexts in which AI methods may be 
applied. 

● Represent information in a logic 
formalism and apply relevant 
reasoning methods. 

● Represent information in a 
probabilistic formalism and apply 
relevant reasoning methods. 

● Be aware of the wide range of ethical 
considerations around AI systems, as 
well as mechanisms to mitigate 
problems. 

Sub-domains 
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AI-General – T1, T2 
AI-Knowledge Representation and Reasoning 
(Logic-based models) – T2, E 
AI-Knowledge Representation and Reasoning 
(Probability-based models) – T1, T2, E 

AI-Planning and Search Strategies – T2, E 

 
 

AI-General 
 
Given the utility of AI approaches for knowledge representation and inference, a data scientist 
should be aware of their range and history. A data scientist should develop a good sense of 
existing work in order to know where to look for possible solutions to the full range of possible 
problems one might encounter. 
 
Knowledge 
T1: 

● History of AI 
● Reality of AI (what it is, what it does) versus perception 
● Major subfields of AI: knowledge representation, logical and probabilistic reasoning, 

planning, perception, natural language processing, learning, robotics (both physical and 
virtual) 

 
Skills 
T1: 

● Explain how the origins of AI have led to the current status of AI  
● Describe major branches of AI in order to recognize useful concepts and methods when 

needed in Data Science 
T2: 

● State what AI systems are and that they both collect and use data to implement AI as well 
as collect and generate data that can be used by data scientists. 

● Describe qualitatively how robots (physical or virtual), agents, and multi-agent systems 
collect and use data to embed, deliver, or implement artificial intelligence. 

● Describe data collected and produced by AI systems that can be useful for data science 
applications. 
 

Dispositions 
T1: 

● Astute to, and respectful of, the fact that AI is not a new field, but rather one with a long 
and rich history. 

 
 
AI-Knowledge Representation and Reasoning (Logic-based Models) 
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For certain types of problems, methods of formal logic can be appropriate for representing 
information and performing inference. A data scientist should be aware of such approaches and 
know how to map them to inference problems. 
 
Knowledge 
T2: 

● Predicate logic and example uses 
● Automated reasoning: forward chaining, backward chaining 
● Reasoning integrated into large-scale systems (e.g., Watson) 

Elective: 
● Ontologies, knowledge graphs (e.g., protege, ConceptNet, YAGO, UMLS) 
● Automated reasoning: resolution, theorem proving 
● Languages for automated reasoning 

 
Skills 
T2: 

● Convert natural language statements to predicate logic. 
● Convert predicate logic statements to natural language. 
● State example uses and limitations of predicate logic. 
● Name example algorithms and/or systems for efficient automated reasoning. 
● Describe automated reasoning in a logic-based framework by, for example, forward or 

backward chaining.  
● Name examples of cases where reasoning is integrated into large-scale data-driven 

systems (e.g., Watson) 
Elective: 

● Describe a specific method for automated theorem-proving. 
● Describe what an ontology is, giving examples of existing technologies, contexts in 

which they can be used (e.g., question answering), and how they are used (e.g., to aid in 
disambiguation). 

● Describe how ontologies are constructed. 
● Implement a medium-sized reasoning problem. 

 
Dispositions 
T2: 

● Respectful of the benefits and limitations of logic-based representations of knowledge. 
● Attentive to the rich history behind formal logic and logic-based algorithms, in order to 

draw upon them for specific applications. 
  



 

51 
 

AI-Knowledge Representation and Reasoning (Probability-based Models) 
 
Probability models lie at the heart of many inference techniques for data science. A data scientist 
should be aware of a wide range of ways in which information can be modeled in formal 
probability-based systems. 
 
[Note: The items designated T1 in this knowledge area will likely move to a new KA when a 
joint task force develops complete curriculum guidelines for Data Science.] 
 
Knowledge 
T1: 

● Fundamental concepts: random variables, axioms of probability, independence, 
conditional probability, marginal probability. (x-ref Probability, a fundamental 
knowledge area for DS, not computing discipline-specific) 

● Causal models 
T2:  

● Bayesian networks 
● Markov Decision Processes (MDPs) 

Elective: 
● Reinforcement Learning 
● Probabilistic logic models (e.g., Markov logic networks) 

 
Skills 
T1: 

● Justify the need for probabilistic reasoning. 
● Define fundamental concepts such as random variables, independence, etc. 
● State axioms of probability. 
● Use the above fundamental concepts and axioms to model a simple system and answer 

questions. 
● Describe what causal models are, and how they may be used. 

T2: 
● State what a Bayesian network is, giving a small- or medium-sized example. 
● Demonstrate contexts in which Bayesian networks can be useful (e.g., diagnostic 

problems). 
● Demonstrate how Bayesian networks can be used to make inferences; understand that 

exact reasoning is intractable in most cases; state examples of approaches for more 
efficient reasoning (e.g., Belief Propagation). 

● Identify independence relationships implied by a Bayesian network. 
● State what a Markov Decision Process is, giving a small or medium sized example. 
● Demonstrate contexts in which MDPs can be useful (e.g., optimization or control 

problems). 
● Demonstrate how MDPs can be used to make inferences. 

Elective: 
● Construct a Bayesian network for a small- or medium-sized problem. 
● Apply a learning algorithm to construct a Bayesian network for a small- or medium-sized 

problem. 
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● State how the parameters of a MDP can be learned. Give examples of algorithms that can 
be used to do so.  

● Apply a reinforcement learning algorithm to an appropriate problem. 
● State examples of probabilistic logic models, such as Markov logic networks, identifying 

applications for which they are useful. 
● Apply a probabilistic logic model to a small- or medium-sized problem. 

 
Dispositions 
T1: 

● Respectful of the benefits and limitations of probability-based representations of 
knowledge and methods for performing inference over them. 

 
 

AI-Planning and Search Strategies 
 
Beyond representing and reasoning about the world, AI methods allow for planning a step-by-
step solution and then carrying it out. A data scientist should be aware of these techniques in 
order to apply data-driven methods to improve performance or to understand how to gather data 
from such systems. Note that while several of the methods included here (e.g., breadth- and 
depth-first search) also appear in the KA on Programming, Data Structures, and Algorithms. 
 
Knowledge 
T2: 

● State space representation of possible solutions to a problem 
● Breadth- and depth-first (i.e., uninformed) search of a state space 
● Heuristic (i.e., informed) search of a state space (e.g., A* search) 

Elective: 
● Stochastic search algorithms (e.g., genetic algorithms, simulated annealing) 
● Constraint satisfaction problems and methods 

 
Skills 
T2: 

● Explain how a solution to a problem can be viewed as a state in a space of possible 
solutions (e.g., assignments of values to variables). 

● For a given problem, produce a model of it as search in a multidimensional state space. 
● Explain how breadth- and depth-first search can be used to search a space of solutions 

modeled as a graph. 
● Explain how heuristics can be used to (potentially) speed up graph/state space search.  

Elective: 
● Apply uninformed search to find a solution to a problem modeled as a state space (where 

the graph representing the space is likely developed as the search is performed, rather 
than provided as input). 

● Design a heuristic for a small problem. 
● Apply an informed search approach to a small- or medium-sized problem. 
● Apply a stochastic search approach to a small- or medium-sized problem. 



 

53 
 

● Explain how a stochastic search algorithm addresses issues of exploring a space (e.g., 
avoiding local minima); explain how a stochastic search algorithm addresses local search 
in a space of promising solutions. 

● Explain how the solution to a problem may involve specific constraints on particular 
variables as well as their relationships to each other; describe methods for articulating 
these constraints. 

● Implement search algorithms. 
● Formulate a model for a small problem as a constraint satisfaction problem. 
● Apply a constraint-satisfaction algorithm to a small- or medium-sized problem. 

 
Dispositions 
T2: 

● Respectful in understanding that there may be multiple acceptable solutions in a state 
space, as well as multiple ways to find them. Using judgement to evaluate different 
solutions or problem-solving approaches, depending on external conditions, such as the 
need for optimality, time constraints, etc. 

● Adaptable in utilizing the relationship between algorithm, heuristics, and optimality for 
designing a solution to a problem. 
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Big Data Systems (BDS) 
 
The term ‘Big Data’ has been coined to describe systems that are truly large; these might 
include, for instance, files of videos, images, handwriting, etc. that cannot be accommodated on a 
single server. Such systems introduce problems of scale: how to store vast quantities of data, 
how to be certain the data is of high quality, how to process that in ways that are efficient and 
how to derive insights that prove useful. These matters are addressed below under the headings 
of problems of scale, data storage, high performance computing, and complexity theory. These 
topics include a range of techniques typically used in addressing the problems of scale.  Such 
systems can be complex and so consideration is given also to software support for Big Data 
applications.  
 

Scope Competencies 

● Problems of scale and the 
implications of Big Data on 
computation requirements 

● Theoretical and methodological 
issues employed in the context of 
Big Data 

● Appropriate algorithms to harness 
the processing power of the cluster 

● Approaches to simplifying the 
programming interface used in 
developing Big Data applications 

● Describe the main strands of knowledge 
needed to address Big Data applications, 
highlighting areas where collaboration is 
desirable 

● Provide familiarity with a range of skills 
that may be used in the implementation 
of Big Data applications 

● Instil confidence in dealing with the 
problems of Big Data 

Sub-domains 

BDS-Problems of Scale – T1 
BDS-Big Data Computing Architectures - E 
BDS-Parallel Computing Frameworks - E 
BDS-Distributed Data Storage – T2, E 
BDS-Parallel Programming – T2 
BDS-Techniques for Big Data Applications 
– T2 

BDS-Cloud Computing – T2 
BDS-Complexity Theory - E 
BDS-Software Support for Big Data 
Applications – T2 
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BDS-Problems of Scale – T1 
 
The computational problems associated with managing and processing very large amounts of 
data typically increase as the amount of data increases. Measurement provides insights into the 
rate of increase and the attendant computational consequences. 
 
Knowledge 

● The need for measurement in the context of Big Data, including size, capacity and timing 
● The concept of the size of a problem 
● Consequences of rapid rate of growth considerations for computation 
● Storage consequences of rapid rate of data growth 
● The need to place an emphasis on simplicity  
● Approaches to addressing the problems of coordination with increasing numbers of 

agents / processes  
● Approaches to addressing the problems of scale while accommodating scalability 

 
Skills 

● Outline reasons for Big Data applications leading to increased complexity, and give 
guidance on the nature of that complexity 

● Justify the importance of placing an emphasis on simplicity, though not excessive 
simplicity 

● Describe steps that can typically be taken to reduce complexity 
● Evaluate data scale and speed for applications according to the descriptions 
● Execute a computational task at multiple scale-levels successfully 

 
Dispositions 

● Adjust in response to changing difficulties created by scale 
● Act appropriately in addressing problems of scale 

 
 

BDS-Big Data Computing Architectures – E  
 
An historical perspective suggests the former existence of two communities: one engaged in I/O 
intensive activities, the other engaged in compute intensive applications. The systems (preferred 
hardware and software) used by these communities were largely separate and customised to meet 
their needs.  Recent developments, e.g. those involving advances in machine learning and deep 
learning, have tended to bring about a convergence of these communities with them now sharing 
all the facilities. 
 
Knowledge 

● Mechanisms that support fast and efficient input / output 
● The concepts and requirements of data-centric high-performance computing 
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● Memory considerations: cache considerations including cache coherence 
● The various parallel computing architectures, their strengths and their limitations: multi-

core, grid computing, GPUs, shared memory, distributed memory, symmetric 
multiprocessing, vector processing 

● Flynn’s taxonomy 
● Instruction considerations in support of parallelism 
● Parallel storage hierarchy   

 
Skills 

● Identify approaches to achieving fast input / output 
● Explain the nature of any impediments to achieving fast input / output 
● Compare and contrast the various parallel computing architectures 
● Describe the nature of the applications to which the various parallel architectures are best 

suited  
● Choose the system architecture that best suits a particular computation model and 

framework as captured in the computation patterns and data features  
 
Dispositions 

● Thoroughness in addressing hardware issues in support of Data Science applications 
 
 

BDS-Parallel Computing Frameworks – E  
 
Important high-level support is provided through parallel computation models for the generation 
of parallel programs. 
 
Knowledge 

● Definition and purpose of a parallel computation model 
● Classification of models 
● Distributed systems 
● Grid search 
● Process interaction: issues of communication and coordination 
● Problem decomposition: task based decomposition, data-parallel decomposition 

 
Skills 

● Diagram a parallel computation system 
●  
● Evaluate a parallel computation’s planned process interactions and problem 

decomposition. for efficiency and effectiveness  
● Outline the design and deployment of large-scale data processing parallel systems 

 
Dispositions 

● Astute in evaluating or designing potentially complex systems 
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BDS-Distributed Data Storage  
 
Big Data applications benefit from approaches to data storage that are scalable, accommodate 
vast amounts of data, possibly straddling various machines, and yet facilitating processing within 
an appropriate time frame. 
 
Knowledge 
T2: 

● Approaches to storing vast quantities of data, including storage across a range of devices 
● Storage hierarchies 
● Ensuring clean, consistent and representative data 
● Protecting and maintaining the data 
● Retrieval issues 
● The benefits and limitations of a range of techniques used in addressing the problems of 

scale such as hashing, filtering, sampling 
● Data backup 

 
Skills 
T2: 

● Explain the role of the storage hierarchy in dealing with Big Data 
● Outline advantages of certain kinds of redundancy in Big Data 
● Demonstrate how unwanted redundancy may be removed efficiently from a Big Data set 
● Describe approaches to protecting and maintaining data for a Big Data application, 

ensuring that it remains current and useful 
Elective: 

● Develop a distributed data storage system, choosing and producing arguments that 
support mechanisms that will scale 

● Design storage systems with related strategies such as backup, migration and 
compression for data-centric systems to ensure scalability, usability, efficiency and 
security 

 
Dispositions 
T2: 

● A strong commitment to the design of storage mechanisms in support of Big Data 
applications 

 
 

BDS-Parallel Programming – T2  
 
Parallel programming, whereby several activities may take place simultaneously, is an important 
approach to increasing the efficiency of programs. Novel forms of programming constructs are 
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required to support this. In practice, new kinds of programming errors may result and there are 
limitations to the efficiencies that can be achieved. 
 
Knowledge 

● Concurrency, parallelism, and distributed systems 
● Limitations of parallelism including the overheads 
● Parallel algorithms and how they best fit particular hardware architectures; load 

balancing issues 
● Typical parallel programming paradigm such as MapReduce 
● Complexity of parallel / concurrent algorithms 

 
Skills 

● Explain the limitations of concurrency / parallelism in dealing with problems of scale 
● Identify the overheads and computational complexity associated with parallelism in 

particular algorithms 
● Implement methods for data-centric parallel programs 
● Construct data-centric parallel computation systems according to the data scale and data 

operations  
● Develop optimized data-centric parallel programs 
● Formulate well-tuned algorithms within a parallel programming paradigm 
● Evaluate a parallel algorithm’s load-balance on a variety of hardware architectures 

 
Dispositions 

● Attention to detail in factoring in that the overheads of parallelism can become excessive 
in particular cases 

● Astute in dealing with parallel systems in appropriate cases   
 
 

BDS-Techniques used in Big Data applications – T2  
 
A number of techniques have been devised and, if deployed carefully, have proved valuable in 
increasing the efficiency of application programs. 
 
Knowledge 

● The need for techniques to assist with handling Big Data 
● Hashing, Sampling, filtering and their limitations 
● Data sketch and synopsis 

 
Skills 

● Illustrate the role of hashing in dealing with Big Data 
● Explain a range of criteria that may be used in guiding sampling and filtering 
● Perform sample selection, to conform to given guidelines, for a particular application 

involving Big Data 
● Critically review a variety of approaches to filtering, illustrating their use 
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● Design a data sketch and synopsis structure according to the available space and permit 
accuracy loss, and analyze the performance  

 
Dispositions 

● Be attentive of pitfalls such as bias in performing sampling and filtering 
 
 
 
 

BDS-Cloud Computing – T2 
 
The Cloud offers a number of advantages (over clusters, for instance) in the context of Big Data. 
It is important to understand these and be able to exploit them effectively; they include web 
services. 
 
Knowledge 

● The nature of Cloud Computing and its advantages 
● The architecture of a data center 
● Risks associated with Cloud Computing 
● Different approaches to supporting Cloud Computing 
● Distributed file-systems 
● Cloud Services in support of Big Data applications 
● Virtualization technology 
● Security issues for cloud including cloud computing, cloud storage and virtual machines 

 
Skills 

● Outline the main tasks performed by a cloud-based system 
● Design a data center 
● Identify the range of Cloud Services typically supplied in support of Big Data applications 
● Apply Cloud Services that support particular Big Data applications 
● Design security strategies for cloud 
● Explain distributed file-systems and virtualization technology 

 
Dispositions 

● Act appropriately when using Cloud Services 
 
Context dependencies 

● Different sets of Cloud Services are available, for instance, from Amazon, Google, 
Microsoft 

 
 

BDS-Complexity Theory – E  
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An understanding of how to measure the efficiency of Big Data algorithms, both sequential and 
parallel, as well as the theoretical limitations to efficiency underpin an informed approach to 
applications 
 
Knowledge 

● Problems of computation and the efficiency of algorithms 
● The notion of computational complexity, its use in the context of concurrency / 

parallelism and its importance in the context of Big Data 
● Limitations to the concept of complexity  
● Evaluation of the complexity of a range of commonly used algorithms including those 

exhibiting concurrency / parallelism 
 
Skills 

● Explain why mathematical analysis alone is not always sufficient in dealing with 
efficiency considerations 

● Analyze whether the problem could be solved or solved approximately with some ratio 
bound from the aspect of complexity, given a problem description with data size, time 
constraints and resource constraints,  

● Demonstrate how to evaluate the efficiency of an algorithm to be used in processing Big 
Data 

● Select algorithms appropriate to a particular application involving Big Data, taking 
account of the problems of scale 

 
Dispositions 

● Conviction and initiative in dealing with complexity 
● Responsive to the fact that there may be limits to complexity gains 

 
 

BDS-Software Support for Big Data Applications – T2 
 
Having access to a suite of high-quality software tools that can be deployed and work together 
effectively can simplify the task of processing large data sets and elevate thinking away from 
detail and towards greater insight and innovation. 
 
Knowledge 

● The need for programming environments to support Big Data applications and the nature 
of these 

● Concepts of auto scaling and serverless computing 
● Review of the availability of sophisticated web services for the support of data 

movement, analytics and machine learning in the context of Big Data 
 
Skills 

● Compare and contrast the use of auto scaling and serverless computing 
● Identify the relationship between load balancing and auto scaling 
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Dispositions 
● Ethical approach to the use of web services including possible bias, and other such 

deficiencies  
● Independent in dealing with Big Data applications 
● Attentive to simplicity, but not excessive simplicity, in the context of Big Data 

applications 
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Computing and Computer Fundamentals (CCF)  
Modern Data Science relies heavily on computing and on computing devices: to gather and store 
data; to analyze data; to present analyses and conclusions; and to field systems based on analyses 
and results. Therefore, a Data Scientist should understand -- at least at a high level -- the 
structure of operating systems, file systems, compilers, and networks, as well as security issues 
related to them.  
 
Note that many of the competencies in this KA are taken or adapted from CS2013. 
Note also that the majority of competencies in this knowledge area are intended to indicate high-
level understanding and appreciation of concepts, rather than deep technical understanding. 
 

Scope Competencies 

●      Digital representation of data 
●      Processors 
●      Memory management 
●      Operating system functions and 
        vulnerabilities 
●      File organization 
●      Network structure and communication 
●      Web programming 
●      Compilers vs interpreters 
 
 
 
 
 
 
 
 

● Appreciate ways in which digital 
representations of data affect 
efficiency and precision 

● Recognize that there are different 
types of processors and configurations 
of them 

● Understand the trade-offs between 
expensive/fast memory and 
inexpensive/slower memory 

● Summarize the important role of an 
operating system and the ways in 
which it is both vulnerable to and can 
be protected from attack 

● Carry out the creation, organization, 
and protection of files  

● Understand at a high level how 
networks are organized and transmit 
information  

● Recognize the web as an application 
layer on the internet 

● Use the web to gather information and 
build useful applications 

● Understand that while compilers and 
interpreters are both translators of 
code, they have relative benefits and 
limitations 

Sub-domains 

CCF-Basic Computer Architecture – T1, T2 
CCF-Storage System Fundamentals – T1 
CCF-Operating System Basics – T1, T2 

CCF-File Systems – T1, T2 
CCF-Networks – T1, T2 
CCF-The Web & Web Programming – T1, T2 
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 CCF-Compilers and Interpreters – T1 

CCF-Basic Computer Architecture 
A data scientist will benefit from understanding the ways in which digital representations of data 
affect precision, as well as the ways that different processor types and configurations can affect 
the efficiency of computation. 
 
Knowledge 
T1: 

● “Power wall” 
● Bits, bytes, and words 
● Representation of numeric data 
● CPUs and GPUs 

T2: 
● Representation of non-numeric data 
● Multi-core and multi-processing 
● Basic organization of the von Neumann machine 
● Parallel architectures (e.g., SIMD, MIMD) 

 
Skills 
T1: 

● Explain the implications of the “power wall” in terms of further processor performance 
improvements and the drive towards harnessing parallelism. 

● Explain how fixed-length number representations affect accuracy and precision. [x-ref 
KA: Programming] 

● Describe the role of CPUs; compare and contrast with the specialized purpose of GPUs. 
T2: 

● Describe the internal representation of non-numeric data, such as characters, strings, and 
images. 

● Describe the difference between multi-core and multi-processor systems. 
● Explain the organization of the classical von Neumann machine and its major functional 

units. 
● Discuss the concept of parallel processing beyond the classical von Neumann model. 

 
Dispositions 
T1: 

● Respectful of the benefits and limitations of data representation and processor speed in 
modern computing devices. 

CCF-Storage System Fundamentals – T1 
In contexts where data scientists are analyzing large quantities of data, they will benefit from 
knowing how those data are stored and moved during processing. This may be of help both in 
understanding the time needed to complete large analyses as well as in selecting hardware 
infrastructure and configurations to enable such work. 
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Knowledge 

● Storage systems and their technology 
● Registers, Cache, RAM 
● Virtual memory 

 
Skills 

● Identify major types of memory technology (e.g., SRAM, DRAM, Flash, magnetic disk) 
and their relative cost and performance. 

● Describe how the use of memory hierarchy reduces effective memory latency. 
 
Dispositions 

● Proactive and adaptable regarding the trade-off between expensive/fast memory and less 
expensive/slower memory. 

CCF-Operating System Basics 
Given the important considerations of security and privacy in data science analyses and 
applications, the data scientist will benefit from a high-level understanding of operating systems 
and the ways in which they are vulnerable to attack. 
 
Knowledge 
T1: 

● Role and purpose of an operating system 
● Types of security threats and mitigation approaches 

T2: 
● Networked, client-server, and distributed operating systems 
● Reliability and availability 

 
Skills 
T1: 

● Describe the objectives and functions of modern operating systems. 
● List potential threats to operating systems (e.g., software vulnerabilities, authentication 

issues, malware) and the types of security features designed to guard against them. 
T2: 

● Discuss networked, client-server, and distributed operating systems and how they differ 
from single-user operating systems. 

● Discuss the importance of computer reliability and availability; describe methods of fault 
tolerance for ensuring both. 

 
Dispositions 
T1:  

● Respectful of the important role of operating systems in providing an interface between 
humans and system resources as well as between system resources; 

● Act appropriately to avoid operating system attacks 
 

CCF-File Systems 
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File systems provide the mechanism by which data and programs are organized. A data scientist 
should be aware of how individual files are stored, how they are organized in relationship to each 
other, and how they can be protected for purposes of security and privacy. A data scientist should 
know how to select the appropriate file system for the size of the data to be accommodated (e.g., 
for Big Data, a local file system on a single server would not be a good choice). 
 
Knowledge 
T1: 

● Files: data, metadata, operations, organization 
● Directories: contents and structure 
● File protection 

T2: 
● Files: sequential, nonsequential 

 
Skills 
T1: 

● Compare and contrast different approaches to file organization, recognizing the strengths 
and weaknesses of each. 

● Describe levels of file protection and mechanisms for setting them. 
 
T2: 

● Compare and contrast sequential and non-sequential file storage.  
 
Dispositions 
T1: 

● Attentive to the importance of good file organization as well as the importance of 
protecting files from inappropriate access. 

CCF-Networks 
Data and applications are shared over computer networks. Knowing how they work is helpful for 
understanding the ways in which data and applications are vulnerable to the introduction of 
errors, loss of information, or attacks, as well as the ways in which data and applications may be 
protected from those. In addition, knowledge of networks is important to understand cloud 
systems, Big Data clusters, and performance. 
 
Knowledge 
T2: 

● Components of networks: hosts, routers, switches, ISPs, wireless access points, firewalls 
● Local area networks; LAN topology (e.g., bus, ring) 
● Organization of the Internet: Internet Service Providers (ISPs), Content Providers, etc. 
● Circuit- vs packet-switched networks 
● Layered network structure 
● Naming and address schemes (DNS, IP addresses, Uniform Resource Identifiers, etc.) 
● Basic protocols: TCP, IP 
● HTTP / HTTPS as application-layer protocols 
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Skills 
T2: 

● List major components of standard computer networks 
● Recognize that LANs can be organized in a variety of topologies. 
● Discuss (at a high level) the organization of the Internet 
● Explain the difference between circuit- and packet-switching 
● Describe the layered structure of a typical networked architecture 
● List the differences and relations between names and addresses in a network 
● Describe how basic protocols such as TCP and IP work 
● Describe how application-layer protocols such as HTTPS work 

 
Dispositions 
T1: 

● Use discretion concerning the complexity of transmitting information over a network, as 
well as the mechanisms for mitigating issues that can arise during transmission. 

CCF-The Web and Web Programming 
Data are frequently obtained via web applications. A data scientist should be able to write and 
use web applications, as well as appreciate the potential pitfalls of doing so. 
 
Knowledge 
T1: 

● Relationship between Internet and World Wide Web 
● Awareness of web application vulnerabilities and security attacks (e.g., SQL injection, 

Distributed Denial of Service Attacks) 
T2: 

● Security attack detection and mitigation 
 
Skills 
T1: 

● Describe the relationship between the Internet and the World Wide Web 
● Design and implement a simple browser-based application 
● Describe common web application vulnerabilities and security attacks 
● Web programming languages (e.g., HTML5, Java Script, PHP, CSS) 

T2: 
● Identify and apply methods to protect against security attacks 

 
Dispositions 
T1: 

● Be accurate in avoiding the potential security risks of writing and using web applications 
in order to do both as securely as possible. 



 

67 
 

CCF - Compilers and Interpreters – T1 
Whether for purposes of gathering data, doing analysis, or fielding applications based on 
analyses, data scientists use and write software. Appreciating the purpose of and differences 
between compilers and interpreters can be useful in selecting programming languages and tools. 
 
Knowledge 

● Programs that take (other) programs as input: interpreters, compilers, type-checkers, 
documentation generators 

● Interpretation vs. compilation to native code vs. compilation to portable intermediate 
representation 

● Syntax and parsing vs. semantics and evaluation 
● Examples of languages that fall into interpreted vs. compiled categories 

 
Skills 

● Explain how programs that process other programs treat the other programs as their input 
data 

● Discuss advantages and disadvantages of interpreted vs compiled code 
● Distinguish syntax and parsing from semantics and evaluation 
● Identify interpreted and compiled languages 

 
Dispositions 

● Accurate evaluating the speed trade-offs of interpreted vs compiled code. 
● Accurate evaluating the flexibility trade-offs of compilation to native code vs portable 

intermediate representations. 
● Using judgement evaluating the utility of interpreters during code development. 

 
  



 

68 
 

Data Acquisition, Management, and Governance (DG) 
  
As the base of data science, data should be acquired, integrated and pre-processed. This is an 
important step to ensure both quantity and quality of data and improve the effectiveness of the 
following steps of data processing. Thus, a data scientist must understand concepts and 
approaches of data acquisition and governance including data shaping, information extraction, 
information integration, data reduction and compression, data transformation as well as data 
cleaning. In our ever-increasing reliance on the quantity and quality of data in all forms of 
decision making, the data scientist has an ethical responsibility of protecting the integrity of data 
and proper use of data. 
  

Scope Competencies 

● Shaping data and their relationships 
● Acquiring data from physical world 

and extracting data to a form suitable 
for analysis 

● Traditional Data Integration Methods: 
Pattern Mapping, Data Matching, 
Entity Recognition 

● Integrating heterogeneous data sources 
● Pre-processing and cleaning data for 

applications 
● Improving data quality 
● Ensuring data integrity including 

privacy and security  

● Construct a data governance process 
according to the requirements of 
applications, including data preparation 
algorithms and steps. (Process Construction 
and Tuning)  

● Write semantics rules for data governance, 
including information extraction, data 
integration and data cleaning (Rules 
Definition) 

● Develop scalable and efficient algorithms for 
data governance according to the 
requirements of applications (including data 
extraction, integration, sampling, reduction, 
data compression, transformation and 
cleaning algorithm (Algorithm 
Development) 

● Diagram the static and dynamic properties of 
data, changing mechanisms of data and 
similarity between data. (Property 
Description and Discovery) 

● Develop policies and processes to ensure the 
privacy and security of data. 

Sub-domains 
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DG-Data Acquisition – T1, T2 
DG-Information Extraction – T1, T2 
DG-Working with Various Types of Data – 
T2 
DG-Data Integration – T1 

DG-Data Reduction and Compression – T1, T2 
DG-Data Transformation – T1 
DG-Data Cleaning – T1 
DG-Data Privacy and Security – T1 

  
 
DG-Data Acquisition – T1 
 
As the initial step in data governance policies, data acquisition is the process of obtaining raw 
data from real-world objects. The process of data acquisition should fully consider the physical 
properties of the subject, and at the same time consider the characteristics of the data application. 
Due to the limited resources available during data acquisition (such as network bandwidth, 
sensor node energy, website tokens, etc.), it is necessary to effectively design data collection 
techniques to maximize valuable data within limited resources and minimize valueless data. Also 
due to resource constraints, the data acquisition process is unlikely to obtain all the information 
of the data description object, so the data acquisition technology needs to be carefully designed 
to minimize the deviation between the collected data and the real objects. 
  
Knowledge 

● The sources of data 
● Pull-based and push-based approaches 
● Various data acquisition with the features of acquired data 
● Data acquisition acceleration techniques 
● Data discretization method 
● Security and Privacy standards and best practices 

  
Skills 
T1: 

● Select data source for the applications 
● Design techniques for data acquisition according to the features of data sources and 

applications.  
● Plan following steps including data discretization, transmission as well as storage to 

ensure security, privacy, and effective use. 
T2: 

● Design the acceleration and parallelization strategies for data acquisition according to the 
applications 

  
Dispositions 

● Show business acumen in the ability to assess the trade-off between accuracy and 
efficiency in data acquisition. 
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DG-Information Extraction – T2 
 
Information extraction (IE) is the task of automatically extracting structured information from 
unstructured and/or semi-structured machine-readable documents. It is an important technique to 
acquire data from documents, web pages, and even multimedia. 
  
Information Extraction is relevant to the requirements of data acquisition and governance, but is 
described elsewhere in this report. See Information Extraction in the Data Mining KA. 
 
 
DG-Working with Various Types of Data – T2 
  
Data comes in many forms.  Some projects will rely completely on numeric data.  Others will 
require processing of text or image or other media data.  The data scientist must have an 
overview of all types of data representation and processing, and must be competent to interact 
with some types of data as an expert. 
  
Knowledge 

● Data representation: numbers, text, images, data precision 
● Text data processing: bag-of-words, word-count, TF-IDF, n-grams, Lexical analysis, 

syntax analysis, semantic analysis, stop word filtering, stemming, basic applications 
● Image processing: data representation: multi-dimensional matrices of integers, features, 

image operators, video operators.  Object recognition.  Higher order feature extraction 
  
Skills 

● Write programs to perform basic operations on data of each type: compute summary 
statistics, extract n-grams, do modifications to an image, etc. 

 
Dispositions 

● Accurate in the choice of data type for encoding information. 
 
  
DG-Data Integration – T1 
 
In the data acquisition process, since the data may come from an autonomous data source, it is 
difficult to ensure the consistency of the data mode, modality, semantics, etc.. However, in many 
applications, these data from multiple autonomous data sources need to be summarized and used 
together to generate new value, this is the task of data integration, which is a crucial step for data 
acquisition and governance. 
  
Knowledge 

● The concepts and application scenarios of government database, data warehouse and 
mediator-based information integration 

● The concepts and approaches of schema mapping 
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● The concepts and approaches of data mapping 
● The concepts and approaches of data semantic transformation 
● The techniques of cross-domain data integration 

  
Skills 

● Choose the scheme of data integration, i.e. traditional data integration VS. cross-domain 
data integration 

● Choose the architecture of data integration according to the features of applications 
● Select or develop appropriate algorithms for schema mapping, data mapping and data 

semantic transformation 
● Develop proper algorithms for cross-domain data integration 

  
Dispositions 

● Astute about the challenges brought by heterogeneous data sources 
● Astute about the roles of AI in data integration 

  
 
DG-Data Reduction and Compression 
 
The goal of data reduction and compression is to eliminate the redundancy of data and decrease 
the size of data involved in the next data processing steps. This involves data sampling, filtering 
and compression.  
  
Knowledge 
T1: 

● The role of reduction and compression in data process 
● Various data sampling approaches 
● Data filter techniques  
● Data compression techniques 

  
Skills 
T1: 

● Examine whether data reduction and compression steps are required 
● Perform data sampling and filtering 

T2: 
● Analyse the properties of data sampling 
● Select data compression techniques according to the computation, communication and 

storage requirements 
● Develop query-friendly data compression approach 

  
Dispositions 

● Attention to detail evaluating the trade-off between data computation effectiveness and 
efficiency.  

  
 
DG-Data Transformation – T1 
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Data collected from data sources often have different dimensions and ranges. These data may be 
correct, but they cannot be directly used. It is often necessary to transform the collected data and 
convert the data into "appropriate" form to understand the data or visualize the data to achieve 
effective application of the data. 
  
Knowledge 

● Data Transformation pipeline 
● Simple function transformation methods and their applications 
● Data standardization and its applications 
● Data normalization and its applications 
● Data encoding approaches and their applications 
● Data smoothing approaches and their applications 

  
Skills 

● Evaluate and compare the dimension and range of data and those of the requirements in 
the applications.  

● Determine the process of data transformation 
● Choose proper data algorithms for the task 
● Evaluate the effectiveness of data transformation  

  
Dispositions 

● Astute about the importance of data transformation to data usage 
● Astute about the links between data transformation and data quality 

  
 
DG-Data Cleaning – T1 
 
Data quality is an important aspect of data usability. There is a perception that if data is “suitable 
for its intended use in operations, decision making, and planning,” it is generally considered to 
be of high quality. There are also views that if the data correctly represents the real-world entities 
that it refers to, then it is also considered to be of high quality. Data quality issues and the 
resulting knowledge and decision-making mistakes have had terrible consequences on a global 
scale. Data cleaning is an important solution for data quality problems. 
  
Knowledge 

● The dimensions of data quality  
● The approaches to improve data quality 
● Data cleaning algorithms including entity resolution, truth discovery, rule-based data 

cleaning. 
● Various forms for data quality rules such as functional dependencies (FD), conditional 

functional dependencies (CFD), conditional inclusion dependencies (CIND), and 
matching dependencies (MD) 

  
Skills 

● Evaluate data quality 
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● Write rules for data cleaning according to the requirement of applications and data 
semantics 

● Develop a data cleaning pipeline according to the data quality requirements. 
● Develop algorithms for efficient and effective data cleaning 

  
Dispositions 

● Astute about the harm of data quality problems 
● Strong commitment to handle the role of data cleaning in data usage. 

  
 
DG-Data Privacy and Security – T1 
 
Knowledge 

● The relationships between individuals, organizations, or governmental privacy 
requirements 

● The cross-border privacy and data security laws and responsibilities 
● A comprehension of how organizations with international engagement must consider 

variances in privacy laws, regulations, and standards across the jurisdictions in which 
they operate.  

Skills 
● Explain how laws and technology intersect in the context of the judicial structures that 

are present – international, national and local – as organizations safeguard information 
systems from cyberattacks. 

● Explain requirements of the General Data Protection Regulation (GDPR), and Privacy 
Shield agreement between countries, such as the United States and the United Kingdom, 
allowing the transfer of personal data. 

● Describe how [Section 5 of the U.S. Federal Trade Commission, State data security laws, 
State data-breach notification laws, Health Insurance Portability Accountability Act 
(HIPAA), Gramm Leach Bliley Act (GLBA), and Information sharing through US-
CERT, Cybersecurity Act of 2015] and other laws impact data security 

Dispositions 
● Act ethically in data governance policies and actions 
● Accurate about the harm of data loss due to security and privacy failures 
● Maintain the utmost ethical standards regarding legal and social responsibility for data 

 
  



 

74 
 

Data Mining (DM) 
 
At its core, Data Mining involves the processing, analysis, and presentation of data in order to 
gain valuable information. An important prerequisite is that appropriate data of a high quality has 
been prepared and is relevant to the task at hand. The basic types of analysis include clustering, 
classification, regression, pattern mining, prediction, association and outlier detection with 
attention being given to various forms of data including time series data and web data. Many of 
these concepts depend on the notion of data proximity.  
  

Scope Competencies 

● Data mining and its relationship to 
data preparation and data 
management  

● Data mining models for a variety of 
data types and applications  

● Selection and application of data 
mining algorithms for various tasks  

 

● Equip students with knowledge about 
the range of techniques available for 
mining data as well as the related 
algorithms and their suitability 

● Equip students with the ability to 
identify and use tools and techniques for 
mining data which may exist in various 
forms 

● Engender in students a high level of 
well-founded confidence in mining data  

Sub-domains 

DM-Proximity Measurement – T1, T2 
DM-Data Preparation – T1 
DM-Information Extraction – E  
DM-Cluster Analysis – T1, T2 
DM-Classification and Regression – T1, T2, 
E 

DM-Pattern Mining – T2 
DM-Outlier Detection – T2 
DM-Time Series Data – E  
DM-Mining Web Data – T2 
DM-Information Retrieval – T2 

 
 
DM-Proximity Measurement 
 
Various possibilities exist for measuring differences as well as similarities among data points. 
For numerical data the methods are typically phrased in terms of distance between two vectors. 
But measures for other types of data may include different notions of proximity (such as cosine 
similarity for text) or correlation.  Special definitions may be needed, customized to particular 
situations. 
 
Knowledge 
T1: 

● Basic properties of metrics 
● Lk measure; special cases – Euclidean distance, Manhattan distance 
● Use of scores and rankings; desirable characteristics of scores and ranking regimes 
● Normalization of data to support comparison 
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T2: 
● Metrics involving text 
● Metrics such as correlation coefficient for sequences of data 
● Metrics such as SimRank for similarity based on relationships, as in graphs 
● Graph based metrics  
● Metrics for measuring the similarity of time series, e.g. dynamic time warping  

 
Skills 
T1: 

● Describe and compare measurement concepts and their relevance to different kinds of 
data – nominal, ordinal, interval and ratios 

● Select metrics appropriate for comparison of various kinds of data  
 
Dispositions 
T1: 

● An accurate, yet inventive, approach to the use of scores and metrics recognizing that 
typically many approaches exist 

 
 
DM-Data Preparation – T1 
 
The availability and preparation of high-quality data is essential to data science. There is the 
initial gathering of relevant data, possibly from a wide variety of sources, and then ensuring the 
data set is fit for purpose.  
 
Knowledge 

● Gathering data, its relationship to problem solving, importance of expert knowledge and 
being open to the views of experts 

● Sources of data including databases, the Internet of Things, photographs and videos, 
online information sources; adequacy of data for particular purposes 

● Ethical considerations around obtaining and using data for particular purposes; privacy 
concerns around collocating data; concerns around potential bias in data 

● Munging data - dealing with errors in data, gaps in data, cleansing data, validating data, 
profiling data, transforming data, and joining datasets as appropriate; quality 
considerations 

● Methods of dealing with dataset issues such as imbalance, insufficient or extraneous 
attributes; automated and manual approaches and trade-offs between these 

● The concept of a ‘feature’; feature extraction and representation; feature selection and 
feature generation 

 
Skills 

● Illustrate the connection between the process of framing a question with the process of 
obtaining data to answer the question. 

● Demonstrate expertise in a particular domain by interacting appropriately with experts. 
● Use summary statistics and visualizations in exploratory data analysis to make inferences. 
● Illustrate the impact and resolution of issues that may arise with datasets 
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● Explain the benefits and implications of various methods of generating features. 
● Describe the similarities and differences between feature selection and feature generation  
● Demonstrate how feature generation can result in fewer or more features. 

 
Disposition 

● Accurate in the selection and preparation of data as well as an understanding of the 
importance of dealing with quality data. 

 
 
DM-Information extraction - E 
 
Information extraction (IE) is concerned with the techniques and processes used to extract 
structured information from unstructured data that exists in different forms. It is an important 
technique used to acquire data from documents, web pages and even multimedia. 
 
Knowledge 

● Applications where information extraction plays a useful role 
● Entity and relation extraction 
● Rule-based information extraction approaches and their applications 
● Statistics-based information extraction approaches and their applications 
● The possible problems in the extracted data 

 
Skills 

● Design a schema according to the application requirements and data 
● Write information extraction rules for an application using both rule-based and statistics-

based approaches 
● Apply learning algorithms for information extraction tasks such as rule or model learning 

and relationship prediction 
 
Disposition 

● Astute that there are various approaches to extracting information from data. 
 

 
DM-Cluster Analysis 
 
Clustering involves grouping together data points that exhibit some element of similarity. This 
implies some interpretation of proximity and there can be various interpretations of that. Clusters 
in 2- or 3-dimensions can often be identified on the basis of visualization but that is not always 
readily available especially in higher dimensions. Generally, clusters may be compact and well 
separated but again this is not always the case.  (See also ML-Unsupervised Learning.) 
 
 
Knowledge 
T1: 

● Identification of appropriate similarity measure for clustering activity 
● Clustering quality evaluation 
● k-means clustering algorithm, including iteration considerations 
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● Density-based algorithms 
● Applications of clustering 

T2: 
● Mean shift clustering 
● Agglomerative clustering 
● Grid-based algorithms 
● Clustering algorithms acceleration and parallelization strategies 

 
Skills  
T1: 

● Explain the importance of feature selection for clustering. 
● Provide guidance on the selection of initialization criteria for the k-means algorithm. 

T2: 
● Compare clustering approaches, highlighting relative benefits and shortcomings. 
● Indicate the circumstances in which the various clustering algorithms should be used, and 

when other alternatives are preferable. 
● Apply algorithms to a test set of data and compare the results. 
● Provide illustrations to highlight the utility and value of clustering. 

 
Dispositions 
T1: 

● Accurate about the role of clustering in Data Science. 
● Astute about the importance of scalable and efficient clustering algorithms for real 

scenarios. 
 
 
DM-Classification and Regression 
 
There are many application domains that involve assigning a class value to a (possibly complex) 
instance of data. Similarly, there are many application domains that involve assigning a numeric 
value to an instance of data. The former is referred to as classification. Regression involves 
estimating the relationship between a dependent variable and one or more independent variables. 
Though these are different tasks, they are related, and many data mining approaches can be 
adapted to both scenarios. A distinguishing feature of both is that they require labeled training 
data – i.e., representative samples that have been assigned class / dependent variable values. 
(See ML-Supervised Learning and ML-Deep Learning.) 
 
Knowledge  
T1: 

● Considerations regarding feature selection for classification 
● Instance-based methods such as K-Nearest Neighbor (KNN) 
● Decision tree methods 
● Probabilistic models, Naïve Bayes 

T2: 
● Rule-based methods 
● Support vector machines 
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● Neural networks 
● Real world applications of classification and regression 
● Deep learning and related software support (such as Caffe, TensorFlow, PyTorch) 

E: 
● Acceleration and parallelization strategies 

 
Skills 
T1: 

● Explain the importance of feature selection for classification and regression. 
● Describe criteria that might lead to selection of one method over another, such as 

predictive accuracy, comprehensibility of the learned model, etc. 
T2: 

● Identify the relationship between regression and classification. 
● Identify critical situations that may benefit from the use of classifiers or regression 

models. 
● Identify software to support each of the approaches and apply the software. 
● Demonstrate the ability to select and justify an approach to classification and to apply it 

to an example of modest complexity. 
 
Dispositions 
T1: 

● Astute regarding the importance of scalable and efficient classification and regression 
algorithms for real scenarios. 

T2: 
● Thoroughness in depicting links between classification and regression, and more 

generally statistics, as well as machine learning. 
 
 
DM-Pattern Mining – T2 
 
This topic is concerned with seeking patterns within data. For data collections of considerable 
size, brute force approaches are often computationally infeasible but selected algorithms provide 
a way forward. (Pattern matching has important applications in biotechnology through genome 
sequencing but that is not developed here.)  
 
Knowledge 

● The concept of association pattern mining 
● Computational complexity considerations 
● Association rule mining; Apriori and Frequent pattern (FP) growth algorithms 
● Sequential pattern mining; the GSP algorithms 
● Efficient and parallel algorithms for pattern mining 
● Application areas 

 
Skills 

● Report a range of areas in which the Apriori algorithm may be used to beneficial effect in 
day-to-day settings. 
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● Apply an implementation of the Apriori algorithm to a significant application. 
● Compare and contrast the utility of pattern mining algorithms. 

 
Dispositions 

●  Conviction that pattern mining is a very broad topic with widespread applications. 
 

 
DM-Outlier Detection – T2  
 
An outlier is a data point that exhibits very different characteristics from the vast majority of 
other data. It is desirable to identify such data points since excessive attention to these can lead to 
distortion (and may even suggest maliciousness); though it is also important to understand the 
domain well enough to determine whether there are (legitimate) exceptional cases. In what 
follows it will be assumed that data has already been cleansed and that a true outlier is present. 
 
Knowledge 

● Definition of the concept of outlier 
● General approach - develop a model of the data and then note that a data point does not 

fit 
● Parametric methods, such as z-score to identify numeric outliers in 1-D 
● Use of probability distribution functions 
● Use of depth first approaches - having identified the expected convex hull of a set of 

points, is it inside or outside; use of related graphical approaches 
 
Skills 

● Apply algorithms for a range of outlier detection methods. 
● Compare and contrast parametric and non-parametric approaches to outlier detection. 
● Explain how outlier detection methods might assist with plagiarism detection, cases of 

financial fraud, network intrusion detection or other application areas. 
● Illustrate the importance of outlier detection through appropriate examples. 

 
Disposition 

●  Thoroughness and astute perspective on outlier analysis and detection. 
 
 
DM-Time Series Data – E  
 
For certain kinds of data, the inclusion of time or date stamps is important. For instance, this can 
be used in measuring growth over time, or measuring traffic congestion during particular 
periods. See also ML-Mixed Methods. 
 
Knowledge 

● The nature of time series data, including comparison with sequential temporal data 
● Data transformation - noise removal, data normalization of time series data 
● Stationary and non-stationary time series 
● Converting time series data to discrete sequence data 
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● Time series forecasting - predicting future values on the basis of past values 
● Time series motifs - frequently occurring patterns in time series data 
● Time series clustering and classification 
● Outlier detection in time series - point outliers and shape outliers 

 
Skills 

● List a range of situations for which there is relevant time series data and indicate the 
importance of mining that data. 

● Illustrate when converting time series data to sequence data is desirable. 
● Explain techniques used for the clustering and classification of time series data. 

 
Disposition 

● Attention to detail in that the data mining of time series data is highly relevant in certain 
critical applications. 

 
 
DM-Mining Web Data – T2 
 
Increasing amounts of data exist on the web, along with mechanisms for mining that data. As 
always in doing data collection and mining, ethical considerations should be observed. 
 
Knowledge  

● The processes of scraping and spidering / web crawling associated with web access 
● Ethical guidelines associated with accessing web data 
● The structure and functionality of software libraries for accessing web data 
● Knowledge discovery approaches for web data such as community discovery and link 

prediction 
 
Skills 

● Compare and contrast community discovery and link prediction 
● Use software to scrape precise data from publicly available sites. constraints. 
● Develop efficient algorithms to discover knowledge from the web. 

 
Disposition 

● Passionate and collaborative access to high quality data taking account of the ethical 
framework. 

 
 
DM-Information Retrieval – T2 
 
Information Retrieval includes a disciplined approach to identifying and retrieving information 
from a larger (usually unstructured) data set.  This should be seen to involve searching 
documents themselves, searching for documents, or searching the web. The documents may take 
a variety of forms: text, images, videos, sound recordings, etc. The manner in which data is 
stored initially can significantly influence the efficiency and effectiveness of the processes of 
retrieving information. Information retrieval is particularly important in certain areas such as in 
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the context of digital libraries, or in extracting information from medical health records. There 
are strong links with the Data Mining Knowledge Area. 
 
Knowledge 

● Techniques used for measuring the efficiency of retrieval processes 
● Range of approaches to storing and organizing data so that information can be extracted 

efficiently; the use of encoding functions 
● The concept of a search strategy; the related role of narrowing and broadening 
● Keyword(s) selection for the retrieval process; use of Boolean operators 
● Search of ordered data 
● Techniques for searching text-based material 
● Searching a set of documents; strategies for listing the names of selected items 
● Feature identification and extraction for non-text-based data; searching strategies used 

with photographs, sound, video 
● Role of hashing, indexing and filtering 
● Approaches to searching text-based material 
● Techniques for creating and searching relational database systems 
● Various relational, non-relational, and other database formats 
● Web-based information retrieval; the web viewed as a graph of interconnected nodes; 

relevant measures from graph theory; PageRank and related metrics that facilitate web-
based search 

 
Skills 

● Devise a search strategy for a given information retrieval task. 
● Explain ethical concerns that may be associated with the information retrieval processes. 
● Identify opportunities for the use of parallelism to speed up search. 
● Outline the main elements of an effective strategy underpinning web-based search. 
● Identify software that can be used in information retrieval tasks associated with images, 

sound recordings and video clips. 
● Create and use a relational database structure using SQL. 
● Explain the roles that information retrieval may play in the operation of digital libraries. 

 
Dispositions 

● Attention to detail about the importance of a range of considerations that should underpin 
an efficient and effective approach to information retrieval. 
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Data Privacy, Security, Integrity, and Analysis for Security (DPSIA) 
 
Issues around privacy, security, and integrity are cross-cutting – that is, they relate to 
competencies in all of the Knowledge Areas. Therefore, this KA is somewhat larger than others. 
It is organized into sub-KAs, which are then further divided into sub-domains. 
 
Data Privacy (DPSIA/DP)  
 
Data scientists should be able to consider data privacy concerns and its related challenges when 
they acquire, process, and produce data. They should recognize the trade-offs between sharing 
and protecting sensitive information and how domestic and international privacy rights impact a 
company’s responsibility for collecting, storing, and handling data. Within the extensive area of 
cybersecurity, there are a number of concepts and subdomains that are cross-referenced within 
the cybersecurity knowledge areas in addition to Professionalism and Data Acquirement and 
Governance. 
 

DPSIA / Data Privacy 

Scope Competencies 

● Interdisciplinary trade-offs of privacy 
and security 

● Individual rights and impact on needs of 
society. 

● Technologies to safeguard data privacy. 
● Relationships between individuals, 

organizations, and governmental privacy 
requirements. 

● Justify the concept of privacy, including the 
societal definition of what constitutes 
personally private information and the trade-
offs between individual privacy and security. 

● Summarize the trade-off between the rights to 
privacy by the individual versus the needs of 
society. 

● Evaluate common practices, technologies, and 
tools that reduce the risk of data breaches and 
safeguard data privacy. 

● Debate how organizations with international 
engagement must consider variances in privacy 
laws, regulations, and standards across the 
jurisdictions in which they operate. This topic 
includes how laws and technology intersect in 
the context of the judicial structures that are 
present – international, national and local – as 
organizations safeguard information systems 
from cyberattacks. 

Sub-domains 

DPSIA/DP-Social Responsibility–T1, T2, E 
DPSIA/DP-Cryptography – T1, T2 

DPSIA/DP-Information Systems – T1, T2, E 
DPSIA/DP-Communication Protocols – T1, T2 
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DPSIA/DP-Social Responsibility 
 
Summarize the trade-off between the rights to privacy by the individual versus the needs of 
society. 
 
Knowledge 
T1: 

● Sensitive data that can be exposed by using social engineering and social media 
● Trade-offs between the right to privacy and the need of transparency through information 

dissemination 
● Ethical responsibilities about disclosing, transmitting, and sharing information obtained 

from analytics tools 
T2: 

● Legal codes that involve privacy concerns of using data to perform certain actions 
● International privacy laws that impact society and computing development assets 

 
Skills 
T1: 

● Demonstrate awareness about data sensitiveness when data is processed as an input. 
● Identify scenarios where data cleaning must be considered before processing information. 
● Apply techniques to provide data privacy during raw data processing, such as provide 

ranges or salting techniques. 
Elective: 

● Demonstrate awareness of global policy and regulations such as HIPAA, FCRA, ECPA, 
that may affect decision making. 

● Demonstrate awareness of well-known search engines and their information storage 
policies that identify and jeopardize computer users’ privacy. 
 

Dispositions 
T1: 

● Ethical understanding that data provided to any entity may impact the loss of data 
privacy. 

● Accurate and ethical handling of data through computing systems or channels, 
recognizing the public and private implications in society of inappropriately doing so.  

DPSIA/DP-Cryptography 
 
Summarize the usage of cryptographic techniques to emphasize data privacy. 
 
Knowledge  
T1: 

● Importance of encrypting data before transmitting it through any channel. 
● Computational time trade-offs of using encrypted vs unencrypted data for statistical 

analysis. 
T2: 

● Differences between symmetric and asymmetric algorithms 



 

84 
 

● Hash functions for privacy checking and protecting authentication data 
● Encryption algorithms 

 
Skills 
T1: 

● Identify tools/mechanisms to encrypt data to reduce the risk of data breaches while 
keeping in mind computational performance. 

● Performing training for different entities such as individuals, organizations, and 
government agencies about data encryption processes that impact privacy requirements. 

● Illustrate the use of cryptography to provide privacy, such as message authentication 
codes, digital signatures, authenticated encryption, and hash trees. 

● Identify the trade-offs  between processing plain text data and encrypted data. 
T2: 

● Analyze which cryptographic protocols, tools, and techniques are appropriate for 
providing data privacy, protection, integrity, authentication, non-repudiation, and 
obfuscation. 

 
Dispositions 
T1: 

● Astute about the need for different mechanisms of encryption. 
 

DPSIA/DP-Information Systems 
 
Summarizing the concept of information systems by contextualizing information and the privacy 
of such by using well-known models. 
 
Knowledge  
T1: 

● Concepts and techniques to achieve authentication, authorization, access control, and data 
privacy. 

● Layered defenses to achieve maximum confidentiality, integrity, and availability (CIA). 
T2: 

● Different access control mechanisms that enforce data privacy such as Bell-LaPadula, 
Chinese Wall, and Clinical Information Systems Security, to resolve different privacy 
and transparency conflicts of interest. 

● Well-known information system designs and implementations and the impact on data 
privacy. 

Elective: 
● Traffic analysis to demonstrate how private information can be jeopardized in a given 

secure system. 
 
Skills 
T1: 

● Explain how the data privacy needs of a system might impact the security of the system. 
● Discuss the trade-offs between data transparency and data privacy. 
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T2: 
● Outline what information should be provided to a computer entity, balancing usability 

and privacy and how to report information. 
 
Dispositions 
T1: 

● Use discretion when protecting information in a given computer system. 
 

DPSIA/DP-Communication Protocols 
 
Summarizing how communication protocols can be used to guarantee a secure communication 
over channels (secure and insecure); the consideration of cryptographic protocols used in 
communication protocols; and recognizing the impact on data privacy by using well-known 
applications’ protocols. 
  
Knowledge  
T1: 

● The importance of security protocols that enable secure communication over insecure 
channels 

● The importance of privacy protocols to enable private interactions over secure channels 
● Internet/communication protocols that can guarantee private communication between 

applications and servers 
T2: 

● Balancing security protocols vs privacy protocols by using and not using cryptography 
 
Skills 
T2: 

● Use security protocols to set up secure channels using different cryptographic primitives. 
● Apply privacy protocols to set up private channels using secure transmission techniques. 

 
Dispositions 
T2: 

● Accurate selection of secure protocols to ensure a private connection between utilities. 
● Astute about the secure protocols that interchange data sets without jeopardizing privacy 

characteristics. 
 
 

Data Security (DPSIA/DS) 
 
This knowledge unit focuses on the protection of data at rest, during processing, and in transit. It 
requires the application of mathematical and analytical algorithms to fully implement the 
necessary security objectives over data-driven applications. This unit allows deeper 
understanding of data security objectives along with various tools to achieve them. 
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DPSIA / Data Security 
Scope Competencies 
● Cryptographic concepts: 
o Encryption/decryption, message 

authentication, data integrity, non-
repudiation; Attack classification 
(ciphertext-only, known plaintext, 
chosen plaintext, chosen ciphertext); 
Secret key (symmetric), cryptography 
and public-key (asymmetric) 
cryptography. 

● Threat models for data driven applications 
● The role mathematical techniques play in 

producing useful encryption knowledge. 
● Public key cryptography for data security 
● The data security part of CSEC 2017 

document provides additional scope. 

● Describe the purpose of cryptography and 
list ways it is used in data communications; 
and which cryptographic protocols, tools 
and techniques that are appropriate for a 
given situation. 

● Understand cipher, cryptanalysis, 
cryptographic algorithm, and cryptology 

● Explain how public key infrastructure 
supports digital signing and encryption and 
discuss the limitations/vulnerabilities. 

● Exhibit a mathematical understanding 
behind encryption algorithms  

● Explain the difference between, and 
applications of, Symmetric and 
Asymmetric ciphers.  

● Analyze threats to real-time applications 
that consume/produce critical data 

● Utilize attack vectors and attack tree 
concepts to model threats 

● Explain how data transmissions over a 
network or the web can be protected 

 
Sub-domains 

DPSIA/DS-Data quality and handling for 
security – T1, T2 
DPSIA/DS-Classification of cryptographic 
tools – T2 
DPSIA/DS-Security and performance trade-
off – T2 

DPSIA/DS-Network and web protocols – T1 
DPSIA/DS-Privacy and data governance – see 
DPSIA/DP 

 
 
DPSIA/DS-Data quality and handling for security  
 
Knowledge 
T1: 

● Qualitative metrics 
● Security importance of data assets 
● Type of security objectives needed 
● Data sources and assets 
● Controlling and managing accessibility to data assets 

T2: 
● Attack vectors and trees 
● Threat models of different use cases 
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● Impact of threats on data sources  
 
Skills 
T1: 

● Understand data flow in applications. 
● Derive important security objectives to achieve. 
● Explain the reasons for selecting what data assets to secure. 

T2: 
● Deduce possible security and privacy threats based on the data flow in applications. 
● Implement access control mechanisms to restrict data leaks. 
● Implement required authentication processes for securely accessing data assets. 
● Assess the significance of data assets based on external and internal factors. 
● Perform threat analysis on practical systems. 
● Categorize threats based on their impacts. 

Dispositions 
T2: 

● Accurate ability to extract threats on data-driven systems. 
 
DPSIA/DS-Classification of cryptographic tools – T2  
 
Knowledge 

● Cryptographic techniques 
● Usability of various techniques and tools 
● Cryptographic protocol designs using discrete mathematical concepts 
● Public key cryptosystems vs. secret key cryptosystems 

 
Skills 

● Apply various cryptographic techniques to achieve necessary security objectives. 
● Compare merits and demerits of various techniques. 
● Explain performance characteristics of various techniques. 
● List attack models for each cryptographic technique. 
● Implement data security mechanisms using available cryptographic schemes. 

 
Dispositions 

● Recognize the importance and unique characteristics of various crypto protocols. 
● Choose the right protocols depending on application requirements. 

 
DPSIA/DS-Security and performance trade-off – T2 
 
Knowledge 

● Performance requirements of data driven applications 
● Impact of security schemes on performance of applications 

 
Skills 

● Apply design principles to balance performance and security needs. 
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● Investigate the operational environments to characterize critical parameters that affect 
both performance and security of a system. 

● Develop mechanisms that enable high data availability while achieving necessary 
security. 

 
Dispositions 

● Understand the performance and security trade-offs among different protocols. 
● Recognize which ciphering technique to opt for based on application requirements. 

 

DPSIA/DS-Network and web protocols – T1 
 
Knowledge 

● Insight on data transactions over networks for data-driven applications 
● Network and web protocols 
● Available and/or enabled security modules in communication protocols 
● Operations (storage, retrieval, remote compute) on data network and web 

 
Skills 

● Dissect and tune communication protocols to enable security. 
● Explain the unique characteristics and working principles of network and web protocols. 
● Understand how data gets communicated to various entities over the network or web. 

 
Dispositions 

● Strong commitment to network/web protocol security.   
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Data Integrity (DPSIA/DI) 
 
This knowledge unit focuses on the completeness, accuracy, and consistency of data over its 
entire life cycle starting from generation through transmitting, storing, retrieving, and processing 
of data. Preservation of data integrity is mandatory in the realm of data science since malicious 
actions on data can lead to incorrect inference and muddle the decision-making process. Data 
scientists must be aware of integrity preservation tools and techniques while understanding their 
roles and efficiency in order to correctly implement the integrity requirements in data science 
applications.   
 

DPSIA / Data Integrity 
Scope Competencies 
● The accuracy, consistency, and validity of 

data 
● Need for integrity requirements from 

security perspective 
● Techniques and mechanisms to ensure 

data integrity 
● Common security threats in data 

integrity  

● Explain the differences of data integrity, data 
security, and data privacy 

● Describe the main strands of knowledge 
needed to address data integrity 

● Demonstrate the skills to apply commonly-
used methods to ensure data integrity 

● Perform confidently when dealing with 
security threats affecting data integrity. 

Sub-domains 
DPSIA/DI-Logical integrity – T1 
DPSIA/DI-Physical integrity – T1 
DPSIA/DI-Security threats affecting data 
integrity – T1 

DPSIA/DI-Methods to ensure data integrity – T1 
DPSIA/DI-Data corruption and data validation – 
T2 
 

 
DPSIA/DI-Logical integrity – T1 
 
Knowledge 

● The concept of logical integrity 
● Types of integrity constraints in database systems 
● Entity integrity, referential integrity, domain integrity, user-defined integrity 
 

Skills 
● Explain concepts in logical integrity 
 

Dispositions 
● Accurate in explaining logical integrity 

 
DPSIA/DI-Physical integrity – T1 
 
Knowledge 

● The concept of physical integrity 
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● Physical and hardware methods to ensure data integrity such as RAID, redundant hardware, 
uninterruptible power supply, error-correcting memory, and server cluster 

 
Skills 

● Explain concepts in physical integrity 
● Describe physical and hardware methods to ensure physical integrity 
 

Dispositions 
● Confidence in addressing physical integrity through hardware methods 

 
DPSIA/DI-Security threats affecting data integrity – T1 
 
Knowledge 

● Common data integrity threats including human errors, software errors, transmission 
errors, malware, insider threats, cyber-attacks, and compromised hardware 

● Data and information poisoning 
● Data provenance assurance  
 

Skills 
● List common types of security threats affecting data integrity. 
● Describe the potential vulnerabilities behind different hash functions, such as SHA-1 and 

MD5. 
 

Dispositions 
● Confidence in describing common security threats. 

 
DPSIA/DI-Methods to ensure data integrity – T1 
 
Knowledge 

● Role of hash algorithms in integrity preservation 
● Role of Message Authentication Codes (MACs) and its variants 
● CRC and checksum for achieving integrity 
● Mechanism behind digital signature schemes (RSA and ECDSA) 
 

Skills 
● Explain how to use hash algorithms and MAC mechanisms to ensure data integrity. 
● Describe digital signature schemes and their needs in integrity preservation context. 
● Compare and contrast different integrity preservation techniques in terms of performance 

and security. 
● Understand how to use the integrity models in multiple data ownership domains to ensure 

provenance and maintain data validity. 
 

Dispositions 
● Thoroughness when addressing data integrity through the use of various methods and 

techniques. 
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DPSIA/DI-Data corruption and data validation – T2 
 
Knowledge 

● The concept of data corruption 
● The concept of data validation 
● Methods to prevent data corruption including checksums and error correcting codes 
● Validation methods including input validation, data type validation, range and constraint 

validation, and cross-reference validation 
 

Skills 
● Explain concepts in data corruption and data validation. 
● Describe methods to prevent data corruption and ensure data validation. 

 
 

Analysis for Security (DPSIA/AS): 
  
This knowledge unit focuses on data science analytical techniques including statistics, 
probability, machine learning, and data mining, with a specific focus on security and privacy 
problems. This unit allows deeper understanding of data science tools, algorithms and techniques 
for security and privacy. 
 

DPSIA / Data Analysis for Security 

Scope Competencies 

● Understand security data telemetry 
and different security applications 

● Statistical analysis for security 
telemetry data 

● Machine learning for security 
telemetry data 

● Explainable machine learning 
methods for security-critical 
applications 

● Machine learning vulnerability and 
robustness 

● Categorize different security-critical 
applications and understand various 
security telemetry data. 

● Demonstrate in-depth knowledge and 
strong hands-on implementation skills in 
machine learning (ML) and statistical 
methods to improve security applications. 

● Recognize when ML explainability and 
resiliency are necessary in a security 
application. 

Sub-domains 
DPSIA/AS-Machine learning (ML) algorithms 
and statistical methods for security – T1 
 

DPSIA/AS-Machine learning (ML) robustness 
and explainability – T1 
DPSIA/AS-Categories of security applications 
– T2 
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DPSIA/AS-Machine learning (ML) algorithms and statistical methods for security – T1 
 
Knowledge 

● Statistical methods for exploratory data analysis on security data including descriptive 
statistics, summary plots, outlier detection, point estimation, hypothesis testing, test 
statistics, linear regression, and generalized linear regression. 

● Computer vision-based approaches such as malware-as-an-image technique, transfer 
learning, hierarchical ensemble neural network (HeNet) built on hardware for both static 
and dynamic threat classification and malware detection.  

 
Skills 

● Translate security applications into problems that can use ML. 
● Design malware detection solutions by employing malware-as-an-image, transfer 

learning and hierarchical ensemble neural network (HeNet) for static and dynamic 
detection mechanisms.  

● Explain decisions made by ML models for security applications to audiences with 
different backgrounds. 

 
Dispositions 

● Understand different perspectives from computer vision, natural language processing and 
classical data analysis to approach threat detection, malware intelligence and exploit 
identification problems 

 
DPSIA/AS-Machine learning (ML) robustness and explainability – T1 
 
Knowledge 

● Basic concept of adversarial machine learning, types of attacks against ML models, and 
● Adversarial machine learning techniques such as fast gradient sign, iterative fast gradient, 

universal adversarial perturbation 
● Defense techniques such as adversarial training to better protect ML models 
● Explainable machine learning methods for security applications. Explanations include 

local explanation, which is per-sample based, and global explanation, which considers the 
dataset as a whole. Know how to employ model-agnostic explanations on natural images 
to vision-based malware detection mechanisms.  

 
Skills 

● Evaluate ML resiliency in terms of identifying its blind spot and bypassing its detection.  
● Improve ML resiliency by conducting adversarial training.  
● Conduct studies on ML algorithms and explain the impact of these models to security 

experts. 
● Communicate with various stakeholders to define ML metrics to address interpretability 

and vulnerability. 
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● Explain why ML resiliency and vulnerability are a key metric for ML used in security 
and privacy applications. 

● Apply explainable AI methods such as LIME, LEMNA, TCAV to ML models built for 
security applications.  

● Perform and conduct ML model selection based on the trustworthy scores. Especially 
when using malware-as-an-image approach, be efficient at applying LIME for malware 
classification model interpretability.  
 

Dispositions  
● Attention to detail in ML evaluation using robustness and potential vulnerabilities in 

addition to typical metrics assessing classification accuracy, false positive, precision, 
along other characteristics.  

 
DPSIA/AS-Categories of security applications – T2 
 
Knowledge  

● Security-critical applications: network analysis, malware intelligence, malware triage, 
dynamic malware analysis, hardware telemetry analysis. 

● Types of security telemetry data: dynamic logs, binary, static code, dynamic code.  
 

Skills  
● Select ML methods to use based on the nature of security telemetry data. 

 
Dispositions 

● Initiative to increase knowledge of data usage through various security applications and 
optimal use of datasets.  
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Machine Learning (ML) 
 
Machine learning, sometimes known as Statistical Learning, refers to a broad set of algorithms 
for identifying patterns in data to build models that might then be productionized and possibly 
productized. These methods are critical for data science. Data scientists should understand the 
algorithms they apply and make principled decisions about their use. 
 
 

Scope Competencies 

● Broad categories of machine learning 
approaches (e.g., supervised and 
unsupervised). 

● Algorithms and tools (i.e., 
implementations of those algorithms) 
for machine learning. 

● Machine Learning as a set of 
principled algorithms (e.g., 
optimization algorithms), rather than 
as a “bag of tricks.” 

● Challenges (e.g., overfitting) and 
techniques for approaching those 
challenges. 

● Performance metrics. 
● Training and testing methodology. 
● Algorithmic and data bias, integrity of 

data, and professional responsibility 
for fielding learned models. 

● Recognize the breadth and utility of 
machine learning methods  

● Compare and contrast machine 
learning methods 

● Select appropriate (classes of) machine 
learning methods for specific 
problems. 

● Use appropriate training and testing 
methodologies when deploying 
machine learning algorithms. 

● Explain methods to mitigate the 
effects of overfitting and curse of 
dimensionality in the context of 
machine learning algorithms. 

● Identify an appropriate performance 
metric for evaluating machine learning 
algorithms/tools for a given problem. 

● Recognize problems related to 
algorithmic and data bias, as well as 
privacy and integrity of data. 

● Debate the possible effects -- both 
positive and negative -- of decisions 
arising from machine learning 
conclusions. 

Sub-domains 

ML-General – T1, T2, E 
ML-Supervised Learning – T1, T2, E 
ML-Unsupervised Learning – T1, T2, E 
ML-Mixed Methods – E 
ML-Deep Learning – T1, T2, E 

Note that Reinforcement Learning appears in 
AI-Knowledge Representation and Reasoning 
(Probability-based Models) 
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ML-General  
 
Given the centrality of machine learning algorithms to many data science tasks, data scientists 
should be aware of a wide range of machine learning approaches, as well as the long history of 
work in this area. A data scientist should be aware of where to look for possible techniques to 
apply to new problems. 
 
A data scientist should also be aware of cross-cutting concepts, such as the need to evaluate 
performance and general classes of challenges faced in machine learning. 
 
Knowledge 
T1:  

● Major tasks of machine learning, including supervised, unsupervised, reinforcement, and 
deep learning 

● Difference between symbolic versus numerical learning, statistical versus 
structural/syntactic approaches 

● Learning algorithms as principled optimization approaches 
● “Doing machine learning” as one method of data mining. “Doing machine learning” as a 

process. 
● Importance of robust evaluation 
● Challenges for machine learning, including quality of data, need for regularization 

 
Skills 
T1: 

● Compare the goals, inputs, and outputs of supervised, unsupervised, reinforcement, and 
deep learning. 

● Recognize that different types of data-driven questions can be answered by different 
approaches;  

● For a given data-driven question, explain why a particular approach is appropriate. 
● Explain at a high level that ML models and algorithms are principled techniques based on 

mathematical and statistical foundations. 
● Describe the process of “doing machine learning” as a method of data mining: 

understanding the question / problem a client cares to solve, gathering the data relevant to 
solving that problem, converting raw data into features, selecting appropriate machine 
learning methods, tuning those methods, evaluating performance (often against a 
baseline), and presenting results and insights. 

● Discuss the trade-off between fitting to training data and generalizing to new data and 
how model complexity, as well as the number of examples and features, affect this trade-
off. Relate this trade-off to the role and setting of hyperparameters. 

● List trade-offs across performance, interpretability, scalability.  
● Recognize that different optimization functions and techniques may yield different trade-

offs in this space. 
T2:  

● Explain a provided derivation of a simple optimization function and learning algorithm 
from first principles, e.g. decision trees using information theory, logistic regression 
using maximum likelihood and stochastic gradient descent, PCA using variance 
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minimization and eigenvalues. I.e., the student should be able to follow the derivation 
and explain it -- not generate it from scratch. 

● Analyze performance across models using bootstrapping and statistical significance 
testing. 

● Explain how to efficiently transition a model into production and with appropriate tools 
that support that transition from the onset. 

● Choose which tools to use based on the size of the data -- for Big Data, it is essential to 
choose a machine learning tool that can run parallelized, otherwise, the learning process 
may take much longer than is acceptable. 

● List state-of-the-art machine learning tools available. 
Elective:  

● Describe the process of automated (or meta-) learning, specifically how to automate the 
machine learning pipeline, including data pre-processing, model selection, model 
structure search, and hyperparameter tuning. 

 
Dispositions 
T1:  

● Professional use of machine learning.  Appreciate that, though recently made popular, 
machine learning is not a recent innovation. Look for existing solutions before presuming 
a new invention is required. 

● Accurate and ethical use of machine learning (i.e., is not an ad-hoc set of “tricks” and that 
it should be used responsibly.) 

● Strong commitment to applying machine learning as part of a process toward a goal for a 
client. doing machine learning” is not, in the general case, a simple process of applying a 
machine learning program to a conveniently-formatted data set. Thoroughness when 
comparing learned models.  There are several dimensions along which learned models 
may be compared, ranging from empirical loss minimization to model size and 
complexity to human interpretability.  

● Ethically present results that are fair and honest comparisons considering all aspects of 
model comparison (quality, efficiency, interpretability, etc.). 

 
 

ML-Supervised Learning 
 
One major class of learning approaches can be described as “supervised” and includes 
techniques for both classification and regression. A data scientist should be aware of these types 
of algorithms, including challenges and methodologies that are unique to this type of learning.  
Note the relationship of this sub-domain with DM-Classification and Regression. 
 
Knowledge 
T1:  

● Major tasks of supervised learning: regression and classification 
● Use cases of regression and classification 
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● Important considerations and trade-offs in supervised learning, including the relationship 
between model complexity and generality; the trade-off between bias and variance; 
Occam’s razor as motivation for simple models. 

● The need for separation of training, test, and validation data.  Define training error and 
testing error. 

● Common evaluation metrics for classification tasks (e.g., accuracy, sensitivity, 
specificity, precision, recall, F1, AUROC, regret) and regression tasks (e.g., root mean 
squared error, mean absolute error, R^2) 

● The need for validation data.  Cross-validation procedures and goals: tuning 
hyperparameters and measuring model performance. 

● Criteria for assessing the quality of training, test, and validation data, such as number of 
examples or class stratification.  

● Classification and regression algorithms, including at least one linear and one non-linear 
algorithm for each. (e.g., linear regression/classification, logistic regression, nearest 
neighbor, Naive Bayes, decision tree learning algorithms). 

● Common extensions to basic algorithms, including polynomial features and ensembles 
(e.g., bagged models, boosted models, random forests). 

T2:  
● Approaches for determining whether a model has high bias or high variance, e.g. training 

vs test performance, learning curves.  
● Reasons to augment or reduce feature set; at least two approaches for each and trade-offs. 
● How supervised classifier-learning models can be applied to multiclass problems, 

including how binary classification models can be extended to multi-class tasks. 
● How to express performance using macro- and micro- metrics. 
● At least one advanced supervised learning algorithm (e.g. SVMs with kernels, neural 

networks). 
Elective:  

● Derivation of supervised learning algorithms from first principles. 
 
Skills 
T1: 

● Explain performance of a classifier model using a confusion matrix. 
● Compare strengths and weaknesses of evaluation metrics for classification tasks and 

regression tasks. 
● Compare the trade-offs of at least two applied classification algorithms; compare the 

trade-offs of at least two regression algorithms. 
● Apply at least two classification and two regression algorithms to small and medium data 

sets. 
● Compare training and testing error in terms of what they tell us about learned models. 
● Compare the performance of algorithms using various metrics. 
● Apply at least two extensions (e.g., ensemble methods) to small, medium, and large data 

sets. 
● Justify when extensions such as polynomial features and ensembles are appropriate based 

on the problems each is able to address. 
T2: 

● Execute at least two classification and two regression algorithms on a large dataset. 



 

98 
 

● Illustrate at least one extension to a large dataset. 
● Implement methods to mitigate high bias or high variance. 
● Perform feature augmentation and selection on a medium or large sized problem. 
● Apply advanced supervised learning algorithms (e.g. SVMs with kernels, neural 

networks). 
Elective:  

● Devise a simple optimization function and learning algorithm from first principles, e.g. 
logistic regression using maximum likelihood and stochastic gradient descent.  

Dispositions 
T1:  

● Thorough and astute algorithm selection and evaluation.  Know that these choices have 
implications for and must be made with important stakeholders -- i.e., those for whom 
models are being developed. 

● Apply accurate and ethical evaluation approaches for models in which we can have high 
confidence. 
 

 

ML - Unsupervised Learning 
 
A major class of machine learning approaches can be described as “unsupervised” and include 
techniques for clustering and dimensionality reduction. A data scientist should be aware of these 
types of algorithms, including challenges and methodologies that are unique to this type of 
learning.  
Note the relationship of this sub-domain with DM-Cluster Analysis. 
 
Knowledge 
T1: 

● Major tasks of unsupervised learning, including clustering and dimensionality reduction. 
● Use cases for both tasks (e.g., data exploration/summarization/visualization, feature 

selection, data compression, data denoising, prototype learning, recommender systems, 
topic modeling). 

● At least one simple clustering algorithm, e.g. k-means or hierarchical clustering. 
● Trade-offs of connectivity-based vs centroid-based clustering. 
● At least one simple dimensionality reduction algorithm, e.g. principal component analysis 

(PCA). 
● Similarities and differences between feature transformation, feature selection, and feature 

projection. 
T2: 

● At least one advanced clustering algorithm, e.g. density-based methods such as Gaussian 
mixture models (GMMs). 

● At least one advanced dimensionality reduction algorithm, e.g. independent component 
analysis (ICA) or non-negative matrix factorization (NMF). 

Elective: 
● At least one mathematical method for implementing algorithms efficiently, e.g. matrix 

factorization and singular value decomposition (SVD) vs eigendecomposition for PCA. 
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● At least one advanced algorithm, e.g. spectral clustering, kernel k-means, kernel PCA, 
latent Dirichlet allocation (LDA). 

● The connection of PCA to autoencoders; generalization to non-linear dimensionality 
reduction.  

● Derivation of unsupervised learning algorithms from first principles. 
 
Skills 
T1: 

● Apply at least one clustering and one dimensionality reduction algorithm to small, 
medium, and large data sets.  

● Explain the performance of an unsupervised learning algorithm using various metrics 
(e.g., visualization; comparison to ground truth, if available; computing metrics such as 
cluster density; indirect metrics via utility towards another application). 

● Implement methods for choosing hyperparameters, e.g. the number of clusters for k-
means or the number of components for PCA. 

T2: 
● Compare the trade-offs of at least two clustering algorithms. 
● Compare the trade-offs  of at least two dimensionality reduction algorithms. 

Elective: 
● Apply advanced unsupervised algorithms. 
● Devise a simple optimization function and learning algorithm from first principles, e.g. 

PCA using variance minimization and eigenvalues. Extend these techniques to similar 
models. 

 
Dispositions 
T1: 

● Thorough and astute algorithm selection and evaluation. Appreciate the importance of 
algorithm choice and evaluation metric on the quality of a learned model. Know that 
these choices have implications for and must be made with important stakeholders -- i.e., 
those for whom models are being developed. [See ML - Supervised Learning] 

●  
● Appreciate the importance of applying accurate and ethical principled evaluation 

approaches for models in which we can have high confidence. 
● [See ML - Supervised Learning] 

T2: 
● Attention to dealing in unsupervised learning which offers useful techniques for data 

exploration, understanding, summarization, and visualization.  
● Attention to detail in that unsupervised learning which can be a useful pre-processing 

step to improve the quality or efficiency of supervised learning algorithms.  
 
 

ML-Applications that Require Mixed Methods – E  
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Some learning problems and domains have special structure that can be leveraged by specialized 
techniques. A data scientist should be aware of these broad classes of applications and should 
know where to turn for possible methods to approach them. 
Note the relationship of this sub-domain with DM-Time Series Data. 
 
Knowledge 

● Examples of learning problems and domains in which the structure of data or 
interrelatedness of data points may be leveraged in the learned model. For example, time 
series prediction, sequence prediction, recommender systems. 

● How time dependencies or assumptions of shared information across data points may be 
leveraged in learning. 

● Shortcomings of using a supervised or unsupervised approach instead of a mixed 
approach, e.g. problems of model interpretability or performance. 

T2: 
● For one such problem, at least one standard approach for learning, e.g., Hidden Markov 

Models (HMMs) for sequence prediction or Collaborative Filtering for recommender 
systems. 

● The need for separation of training and test data in this context. 
● Common evaluation metrics for the selected task, e.g., recall, precision, F1 score for 

recommender systems. 
● Criteria for assessing the quality of training, test, and validation data for the selected 

problem. 
 
Skills 

● Integrate one such problem to a framework for learning. I.e., map data to inputs and 
outputs, consider settings of hyperparameters, run an appropriate learning algorithm.  

 
Dispositions 

● Attention to detail regarding challenges (e.g., time inhomogeneity, data sparsity) present 
in ML models generally may be more salient in specific contexts. 

 
 

ML-Deep Learning 
 
The availability of data, as well as the availability of computational processing power have led to 
new and powerful techniques for large-scale learning. A data scientist should be aware of these 
types of algorithms, including challenges and methodologies that are unique to this type of 
learning.  
 
Knowledge 
T2: 

● How multilayer neural networks (including non-deep networks) learn and encode higher-
level features from input features. 
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● Common deep learning architectures, such as deep feedforward networks, convolutional 
neural networks (CNNs), recurrent neural networks (RNNs), and LSTMs; purpose and 
properties of each. 

● Practical challenges of common deep learning approaches, e.g., choosing a deep learning 
architecture, having sufficient data / possibility of overfitting, length of learning time, 
interpretability. 

● Examples of regularization methods for deep learning architectures, such as early 
stopping, parameter sharing, and dropout. 

● Examples of methods for mitigating other challenges of deep learning, such as tools that 
work with GPUs or on distributed systems. 

● Selection of appropriate tools that scale with the size of the data -- specifically, 
processing Big Data calls for Deep Learning tools that run in a parallelized way. 

● Be aware of the state-of-the-art deep learning tools available. 
● At least one commonly used algorithm for learning in the context of deep networks, e.g., 

how backpropagation is used in a deep feedforward network or how backpropagation is 
used to learn higher-order features in a convolutional network; how backpropagation 
through time is used in recurrent networks. 

● The operation of convolution and why it may be useful, e.g., detecting vertical edges in 
an image. 

● Pooling; examples of pooling functions such as max pooling and use cases. 
● Challenge of long- vs short-term dependencies in recurrent neural networks; at least one 

solution, such as LSTMs. 
Elective: 

● Deep generative models, such as generative adversarial neural networks (GANNs) and 
applications for which they may be used. 

● Practical challenges of such approaches, e.g., convergence, mode collapse, etc. 
● Approaches for handling or mitigating the effects of the above. 

 
Skills 
T2:  

● Choose the type of deep learning approach(es) that would be most appropriate to apply 
for a given data set and task. 

● Use a deep learning toolkit (e.g., PyTorch, Tensorflow) to study a learned model’s output 
from a dataset. 

● Use a deep learning toolkit (e.g., PyTorch, Tensorflow) to learn a model for a dataset, 
including configuring a network. 

Elective: 
● Implement, from scratch, a generative approach for a specific goal with a deep learning 

toolkit. 
● Modify a toolkit to work for a given system architecture. 

 
Dispositions 
T1: 

● Professionalism in machine-learned modeling, understanding the potential negative 
implications of using a machine-learned model that is difficult or impossible to interpret 
or explain. 
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● Responsible use of deep learning, since there are many problems for which the power of 
deep learning is more than what is necessary. 

● Collaborative and ethical commitment to the social and political concerns around 
deepfakes. 
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Professionalism (PR) 
 
In their technical activities, data scientists should behave in a responsible manner that brings 
credit to the profession. One aspect of this is being positive and proactive in seeking to bring 
benefit, to undertake positive developments and doing so in a way that is responsible and ethical. 
Much of this is amplified in general terms in [1]. The section below serves to highlight relevant 
issues of specific concern to the data scientist. 
 

Scope Competencies 

● The meaning of competency and 
being able to demonstrate 
competency 

● The acquisition of competencies 
particularly relevant to the data 
scientist 

● Acquiring expertise / mastery or 
extending competency; the role of 
journals, conferences, courses, 
webinars 

● Technological change and its 
impact on competency 

● The role of professional societies in 
CPD and professional activity 

● Recognise the range of 
knowledge that underpins a 
professional approach to data 
science 

● Demonstrate the skills that 
underpins a current and 
ongoing professional approach 
to data science 

● Construct a set of dispositions 
that underpin a confident, 
effective and professional 
approach to all aspects of data 
science as well as the 
wherewithal to maintain such 
an approach 

Sub-domains 

PR-Continuing Professional Development 
– T1 
PR-Communication – T1 
PR-Teamwork – T1 
PR-Economic Considerations – T2 

PR-Privacy and Confidentiality – T1 
PR-Ethical Considerations – T1 
PR-Legal Considerations – T2 
PR-Intellectual Property – E  
PR-On Automation – E  

 

PR-Continuing Professional Development – T1 
 
The essence of a professional is being competent in certain aspects of data science.  It is the 
responsibility of the professionals to undertake only tasks for which they are competent. There 
are then implications for keeping up-to-date in a manner that is demonstrable to stakeholders 
(e.g. employers). 
 
Knowledge  
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● The meaning of competency and being able to demonstrate competency 
● Acquiring expertise / mastery or extending competency; the role of journals, conferences, 

courses, webinars 
● Technological change and its impact on competency 
● The role of professional societies in CPD and professional activity 

 
Skills 

● Justify the importance to professional data scientists of maintaining competence. 
● Describe the steps that professionals would typically take to extend competence or 

acquire mastery, explaining the advantages of the latter. 
● Argue the importance of the role of professional societies in supporting career 

development. 
 
Dispositions 

● Being proactive and passionate about recognition that data science is a rapidly changing 
field where keeping current, as well as knowing how to stay current, are vital. 

 
 

PR-Communication – T1 
 
There are various contexts in which the data scientist is required to undertake communication 
with very diverse audiences.  That communication may be oral, written or electronic. There is 
often the need to engage in discussion about the role that data science can play, to communicate 
multiple aspects of the data science process with colleagues, to convey results that may lead to 
change or may provide new insights.  Being able to articulate the need for change and being 
sensitive to the consequences of change are important professional attributes.  These activities 
may entail the ability to have a discussion about limitations in certain contexts and to suggest 
research activities.  
 
Communication from the data scientist must be underpinned by an evidence-based approach to 
decision making. There is special significance to this in the context of machine learning and 
automation where the reasons for decisions may require clarification.  
 
An important consequence of developments in machine learning is the ability of machines to 
understand natural language (and so voice input), which can then be employed in such contexts 
as robotics, word processors or intelligence driven search engines (e.g. Siri, Cortana, Google 
Assistant, Alexa).  
 
Knowledge 

● Different forms of communication – written, oral, electronic - and their effective use 
● The technical literature relevant to data science 
● Audiences relevant for communication involving the data scientist – including small 

groups, large groups, experts and non-experts, younger groups, senior managers, 
machines – and the elements of effective communication in each case 
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Skills 
● Evaluate aspects of the technical literature relevant to data science 
● Produce a technical document for colleagues to guide technical development 
● Produce presentations for a range of audiences who have an interest in aspects of data 

science 
● Design situation reports for senior managers outlining significant initiatives stemming 

from a data science investigation including as necessary general issues associated with 
change management 

 
Dispositions 

● Adjust in response to changes in relevant changing technology, know how to do so 
effectively and be alert to opportunities for new developments 

● Proactive and self-motivated determining the significance of new learning and new 
experiences  

● Accurate and respectful about one’s strengths and weaknesses regarding knowledge 
 
 
PR-Teamwork – T1 
 
The data scientist will often become a member of a team. This may entail being a team leader, or 
supporting the work of a team (which may be sensitive). It is important to understand the nature 
of the different team roles as well as the typical dynamics of teams. In terms of teamwork, the 
data scientist often needs to be able to collaborate not only with data scientists with different tool 
sets but, in general, with a diverse group of problem solvers.  
 
Knowledge 

● Team selection, the need to complement abilities and skills of team members 
● The dynamics of teams and team discipline 
● Elements of effective team operation 

 
Skills 

● Outline steps that could be taken to deal with conflict situations within teams. 
● Summarise the considerations involved is selecting a team to undertake a specific data 

science investigation. 
● Recognise the qualities desirable in the team leader for a data science research 

investigation. 
 
Dispositions 

● Respectful, collaborative and act appropriately to sensitivities regarding the formation 
and operation of teams. 

● Be willing to work with others and act appropriately, setting aside unimportant 
differences when working with others. 

 

PR-Economic Considerations – T2 
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Data scientists should justify their own positions as well as the kind of activity in which they 
engage. 
 
Knowledge 

● The cost and value of high quality data sets, and of their maintenance  
● Justification in cost regarding data science activities 
● Estimation of project costs  
● Promotion of data science 
● Automation stemming from data science activity 

 
Skills 

● Assess the value of data sets for organizations, taking into account any requirement for 
maintenance. 

● Argue the case for what data an organization should routinely gather; design a related 
data collection process identifying the attributes to be included and the form the 
collection should take, having an eye to quality. 

● Assess the cost (in terms of resources generally) of collecting high quality data for a 
particular purpose. 

● Justify the creation of data science activities within an organization and quantify their 
cost. 

● Infer the value to an organization of undertaking a particular investigation or research 
project. 

● Monitor the resources needed to carry out in-house investigations and compare that with 
outsourcing such activities. 

● Evaluate the costs associated with the automation of a particular activity. 
 
Dispositions 

● Respectful and act appropriately to costs associated with data science activities. 
 
 

PR-Privacy and confidentiality – T1 
 
It is possible to gain access to data in a multitude of ways, by accessing databases, using surveys 
or questionnaires, taking account of conditions of access to some resource, and even with 
developments such as the Internet of Things, specialized sensors, video capture and surveillance 
systems. Although gaining access to all kinds of information is important, professionals must do 
this legally and in such a way that the information is accurate and it protects the rights of 
individuals, as well as organizations and other groups, are protected.  
 
Note the relationship of this sub-domain and the Knowledge Area on Data Privacy. 
 
Knowledge 

● Freedom of information 
● Data protection regulations including General Data Protection Regulation (GDPR) 

regulation – see [5] 
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● Privacy legislation  
● Ways of maintaining the confidentiality of data 
● Threats to privacy and confidentiality 
● The international dimension 

 
Skills 

● Describe technical mechanisms for maintaining the confidentiality of data. 
● Compare the privacy legislation from different countries, highlighting problems arising 

from any differences. 
● Recognize the privacy and confidentiality issues arising from the use of video, voice and 

face recognition software. 
● Summarize the contexts in which particular privacy legislation should be applied, having 

an eye to international standards. 
 
Dispositions 

● Responsible for maintaining privacy and confidentiality to ensure confidence in data 
science activities. 

 
Contextual issues 

● The legal framework associated with privacy and security can vary from one country to 
another. 

 
 

PR-Ethical Considerations – T1 
 
Ethical issues are of vital importance for all involved in computing and information activities as 
captured extensively in [1]. Underpinning these activities is a view that professionals should 
undertake only tasks for which they are competent, and even then should carry out such tasks in 
a way that reflects good practice in its many forms. Maintaining or extending competence is 
essential.  A heightened awareness of legal and ethical issues must underpin the work of the data 
scientist. Professionals should consider the ethical issues associated with their decisions as a very 
important starting point that enables them to recognize themselves as “independent, ethical 
agents.”    
 
Knowledge 

● Ethical issues associated with competence and the maintenance of that competence 
● Confidentiality issues associated with data and its use 
● General Data Protection Regulation (GDPR) regulation – see [5] 
● Need for data, including samples of data, to be truly representative of a situation 
● Awareness of, and the possible nature of, bias in data and in algorithms; mechanisms for 

checking and avoiding bias 
● Algorithmic transparency and accountability 

 
Skills 
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● Illustrate a range of situations in which a data scientist may venture beyond their range of 
competence and identify steps to mitigate such situations. 

● Demonstrate techniques for establishing lack of bias in data sets or in algorithms. 
● Debate the merits of joining a network of professionals in the data science area. 

 
Dispositions 

● Responsive to the deep ethical issues associated with gathering data and its use. 
● Responsive to issues of bias and be proactive in seeking to remove these. 
● Self-directed and self-motivated in the advancement of data science. 

 
 

PR-Legal considerations – T2 
 
Computer crime has continued to increase both in volume and its severity over recent years.  In 
many cases criminals have brought disruption, even chaos, to many organizations. Their threat 
cannot be ignored and professionals must take steps to counter the possibility of severe 
disruption. In many cases the law has adjusted to counter these trends but this is an ongoing area 
of continuous change and adjustment. 
 
Knowledge 

● Computer crime relevant to data science 
● Cyber security 
● Crime prevention 
● Mechanisms for detecting criminal activity, including the need for diverse approaches 
● Recovery mechanisms and maintaining 100% operation 
● Laws to counter computer crime 

 
Skills 

● Assess a range of mechanisms for detecting a stated form of criminal activity. 
● Justify the desirability of having multiple diverse approaches to countering threats. 

 
Dispositions 

● Responsible and ethical, but sensitive and caring attitude, when confronted with possible 
criminal situations. 

 
Contextual issues 

● The legal framework can vary from one country to another. 
 
 

PR-Intellectual property – E  
 
Intellectual Property Rights (IPRs) such as copyright, patents, designs, trademarks and moral 
rights, exist to protect the creators or owners of creations of the human mind. Moral rights 
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include the right to be named as a creator of intellectual property (IP), and the right to avoid 
derogatory treatment of creations.  For the data scientist the items requiring protection, in 
possibly different ways, include software, designs including graphical user interfaces (GUIs), 
data sets, moral rights and reputation. Trade secrets may also be relevant. 
 
Knowledge 

● Patents, copyrights, trademarks, trade secrets, moral rights and trademarks 
● What data science related IP can and cannot be protected, and what kinds of protection 

are available  
● Types of data science related IPs that can and cannot have legal protection and which 

kind of protection is available 
● Regulation related to IP, IP ownership, the territorial nature of IP rights including the 

effects of international agreements (e.g. the European Directive on trade secrets) and the 
issue of IP rights being time limited 

● Kinds of IP rights that vest automatically and which require registration, including 
overview of the processes involved in acquiring registered IP rights  

● Possibility of infringing the rights of others and validly utilizing protected IP 
 
Skills 

● Describe those kinds of IP that are relevant to data scientists. 
● Argue the difference between patents, copyrights, designs and trademarks and illustrate 

their use in the context of data science. 
● Describe the role of trade secrets in relation to data science. 
● Illustrate the processes involved in registering IP rights. 
● Explain the issues relating to IP ownership and moral rights. 
● Evaluate the risks involved in using protected IP and ways to overcome them validly. 

 
Dispositions 

● responsive and astute to the existence and importance of, as well as responsibilities and 
opportunities afforded by, intellectual property. 

 
Contextual issues 

● Thoroughness and adaptability dealing with ethical and legal frameworks associated 
with intellectual property will vary from one country to another. Patent attorneys can 
typically advise. 

 
 

PR-On Automation – E  
 
Automation often creates concerns about loss of employment and, in general terms, about 
machines behaving unreasonably. Professionals should seek explanations about machine 
behaviour. Related issues are the subject of [3] and [6]. Automation can occur in critical 
situations where serious loss may be possible, and then typically there is an expectation that 
machines will operate according to a code of ethics that is in harmony with human behaviour. 
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Knowledge 
● Automation, its benefits and its justification  
● The particular concerns of automation in critical situations 
● Transparency and accountability in algorithms 

 
Skills 

● Explain to a non-technical audience the extent to which automated decision making 
occurs in a particular situation. 

● Analyze the impact on a design requirement to provide insights into decisions made 
autonomously by machines. 

● Argue the benefits of automation for different situations. 
● Identify steps needed to ensure that a decision-making system is auditable. 

 
Dispositions 

● Responsive and astute to issues of automation and its effect on employment. 
● Respectful and ethical approach to issues of automation. 
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Programming, Data Structures, and Algorithms (PDA) 
Data scientists should be able to implement and understand algorithms for data collection and 
analysis, as well as integrate them with existing software and/or tools. They should understand 
the time and space considerations of algorithms, as well as particular issues around numerical 
computing. 
 
Note that this knowledge area draws from various CS2013 knowledge areas but does not 
duplicate them: Algorithms and Complexity (AL), Computational Science (CN), Programming 
Languages (PL), and Software Development Fundamentals (SDF). 
 
 

Scope Competencies 

●   Problem solving through algorithmic 
     thinking. 
●   Development and implementation of    
     programs, including integration with  
     various existing software and/or tools. 
●   Use of traditional programming 
     languages to integrate existing interfaces 
     between datasets and applications. 
●   Use of a programming language designed 
     for statistical computing in the context of 
     a data science problem. 
●  Knowledge and use of Abstract Data 
    Types (ADTs) 
●  Knowledge and use of numerical 
    computing algorithms 
●  Algorithm design and analysis 
●  Factors that influence algorithmic 
     complexity and performance 
●  Complexity analysis and comparison 

● Design an algorithm in a programming 
language to solve a small or medium 
size problem. 

● Write clear and correct code in a 
programming language that includes 
primitive data types, references, 
variables, expressions, assignments, 
I/O, control structures, functions, and 
recursion. 

● Implement good documentation 
practices in programming. 

● Use techniques of decomposition to 
modularize a program. 

● Use standard libraries for a given 
programming language. 

● Write appropriate database queries. 
● Select appropriate data structures for a 

given problem. 
● Select appropriate algorithms for a 

given problem. 
● Discuss the importance of time and 

space complexity on the practical 
utility of an algorithm. 

Sub-domains 

PDA-Algorithmic Thinking & Problem 
Solving – T1, T2 
PDA-Programming – T1, T2, E 
PDA-Data Structures – T1, T2, E 

PDA-Algorithms – T1, T2, E 
PDA-Basic Complexity Analysis – T1, T2 
PDA-Numerical Computing – T1, T2 
 

 
 



 

112 
 

PDA-Algorithmic Thinking & Problem Solving 
In order to develop correct, efficient, clear, and usable code -- either in the process of data 
analysis and presentation or for production-level systems -- a data scientist should have 
fundamental algorithmic problem-solving skills. 
 
Knowledge 
T1: 

● Definition of an algorithm 
● Importance of algorithms in the problem-solving process 
● At least one formal technique for approaching problem solving 
● Fundamental object-oriented design concepts and principles 

○ Abstraction 
○ Encapsulation and information hiding 
○ Separation of behavior and implementation 

 
Skills 
T1: 

● Describe a problem solution using a formalism other than code (e.g., flowcharts or 
pseudocode). 

● Diagram the flow of data (input, transformations, output) through a problem solution in 
some formalism (e.g., a data flow diagram). 

● Identify the inputs (e.g., data, hyperparameters, user responses) and outputs essential to 
implementing a program to solve a problem 

● Identify the data components and behaviors of multiple abstract data types (See PDA-
Data Structures). 

T2: 
● Use at least one formal technique for approaching problem solving.  

 
Dispositions 
T1: 

● Accurate descriptions of algorithms and programs, that algorithms are different from 
programs. 

● Accurate understanding that there are principled approaches for breaking large problems 
into implementable solutions and expressing those solutions in some formalism. 

 
 

PDA-Programming 
 
In order to collect, analyze, and present data, a data scientist needs to develop programming 
skills and should be well-versed in fundamental programming constructs. Because the data 
scientist will interface with many systems, they should be able to develop programs that can 
either stand alone or integrate with existing software and/or tools. 
 
Knowledge 
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T1: 
● Core coding concepts 

○ Variables and primitive data types 
○ Expressions and assignments 
○ Conditional and iterative control structures 
○ Recursive functions 
○ Functions and parameter passing 
○ Simple I/O, including files or other static data sources 
○ Exceptions 

● Core practices 
○ Documentation 
○ Testing 
○ Version Control 

● Decomposition to break a program into smaller pieces 
● Types of errors (syntax, logic, runtime), how they might occur, and how they can be 

handled 
● Methods for querying and parsing data sources 

T2: 
● Regular refactoring and program maintenance 
● Variety of strategies for testing and debugging 
● Utility of APIs; when to look for one 

Elective 
● Advanced concepts 

○ in-line/anonymous functions (e.g., Lambda functions in Python) 
○ variable argument lists for functions and programs 
○ classes and objects 

 
Skills 
T1: 

● Write programs that include core concepts and practices listed above. 
● Deduce the execution of code segments and articulate summaries of their computation. 
● Apply techniques of decomposition to break a program into smaller pieces. 
● Manipulate data from selected sources (e.g., databases, spreadsheets, text documents, 

XML) utilizing appropriate techniques (e.g., database queries, API calls, regular 
expressions). 

● Construct program solutions using recursion and iteration. 
● Use consistent documentation and program style standards that contribute to the 

readability and maintainability of software. 
● Apply strategies for testing and debugging programs. 

T2: 
● Describe the need for regular refactoring and program maintenance. 
● Carry out refactoring, maintenance, and improvements on programs following core 

practices. 
● Construct program solutions using classes and objects. 
● Develop programs using a modern IDE and associated tools such as unit testing tools and 

visual debuggers. 
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● Construct programs using standard libraries available with a programming language. 
● Integrate typical Application Program Interfaces (APIs) into software. 

Elective: 
● Effectively design and implement program solutions using templates and generic 

functions. 
● Design and implement unique Application Program Interfaces (APIs). 
● Collect and parse data using specialized techniques (e.g. for natural language processing, 

image processing, etc.). (x-ref KA: Data Acquisition, Management, and Governance) 
● Read, understand, write and debug programs that include advanced concepts. 

 
Dispositions 
T1: 

● Strong commitment to using software engineering concepts and design principles on the 
practice of programming. (x-ref KA: Software Development and Maintenance.) 

● Proactive in going beyond what has been directly taught. Appreciate that programming 
constructs and methods are general and useful in many contexts. 

● Look beyond simple solutions and be inventive.  A data scientist should not be bound by 
tweaking existing solutions. 

 
 

PDA-Data Structures  
 
In order to write effective and efficient code, a data scientist should know a variety of data 
structures, be able to use them, and understand the implications of choosing one over 
another. Given their role in many data science applications, particular attention is given to 
matrix representations and operations here. 
 
Knowledge 
T1: 

● Basic data structures and Abstract Data Types (ADTs) (lists, arrays, stacks, queues, 
strings, sets, records/structs, maps, hash tables) 

○ purpose 
○ usage 

● Basic matrix representation structures (sparse/dense, row, column) 
○ matrix representation types 
○ pros/cons of basic matrix operations based on representation types 

T2: 
● Advanced structures (trees, graphs) 

○ purpose 
○ usage 

Elective: 
● Matrix operation optimization 

 
Skills 
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T1: 
● Select basic data structures appropriately in programming 
● Appropriately use standard data type libraries for a given programming language 

T2: 
● Select advanced data types appropriately in programming 
● Appropriately use standard libraries for a given programming language 

Elective: 
● Implement a coherent abstract data type, with loose coupling between components and 

behaviors 
● Compare/contrast the time/space of standard operations (e.g., find, insert, delete) for 

various data structures 
 
Dispositions 
T1: 

● Thoroughness in implementation and data structure choice and their impact on usage, 
efficiency (time and space), and readability. 

 

PDA-Algorithms  
A data scientist should recognize that the choice of algorithm will have an impact on the time 
and space required for a problem. A data scientist should be familiar with a range of algorithmic 
techniques in order to select the appropriate one in a given situation. 
 
Knowledge 
T1: 

● Simple numerical algorithms, such as computing the average of a list of numbers, finding 
the min, max, or mode in a list 

● Sorting and Searching  
○ Sequential and binary search 
○ O(n2) (e.g., Insertion) versus O(n log n) (e.g., Merge) sorts. 
○ Randomized algorithms for searching and sorting (e.g., Quicksort) 
○ Potential efficiency benefits of hash-based searching and sorting  

● Properties of graphs: connectedness, betweenness, centrality, etc. 
● Graph algorithms 
● Basic algorithmic strategies, such as greedy, divide-and-conquer 
● Algorithms for solving linear systems 

T2: 
● Algorithms for combinatorial optimization problems 
● Heuristic optimization techniques 

Elective: 
● Hashing and hash functions 

 
Skills 
T1: 

● Apply simple numerical algorithms (e.g., computing the average, finding the min, etc.). 
● Apply searching and sorting algorithms. 
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● Contrast the trade-offs of various array-based searching and sorting algorithms. 
● Perform a graph or tree traversal using the general framework of a breadth or depth first 

algorithm. 
● Identify a shortest path in a graph or tree using an efficient algorithm, such as a greedy 

algorithm. 
● Apply linear system solvers to appropriate problems. 

T2: 
● Identify a max- or min-flow through a graph or tree using an efficient algorithm. 
● Use common algorithms for combinatorial optimization problems (e.g., Branch and 

Bound algorithms) 
● Apply heuristic optimization techniques (Particle swarm, genetic algs, evolutionary) to 

appropriate problems. 
● Implement Dynamic Programming solutions for appropriate problems. 

Elective: 
● Implement or use search/sort algorithms on distributed systems or data 
● Compare hashing functions in context. 
● Graphs 

○ Implement traversal, shortest path, and flow algorithms 
● Analyze randomized algorithms 

 
Dispositions 
T1: 

● Agile and accurate when selecting algorithmic techniques. Be aware that there are often a 
variety of algorithmic techniques that can successfully address a problem. 

● Astute that the choice of algorithm has significant implications for efficiency.  
● Astute about the implications of efficiency (time, space, etc.) for all code stake-holders 

such as clients, consumers, and maintainers. 
 
 

PDA-Basic Complexity Analysis 
 
Data scientists should be aware of the time and space required to solve a problem and should 
know that certain problems may not be solvable in a reasonable amount of time. They should 
also take into consideration how the platform on which they may be running their code will 
schedule their tasks. 
 
Knowledge 
T1: 

● Definitions of time and space complexity 
● Differences among best, expected, and worst case behaviors of an algorithm 
● Trade-offs in managing time and space complexity 
● Taxonomies for analyzing algorithms, such as 

○ Deterministic vs. Non-Deterministic 
○ Time/Space hierarchies  
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Skills 
T1: 

● Perform informal comparison of algorithm efficiency (e.g., operation counts). 
● Execute algorithms on input of various sizes and compare performance. 
● Demonstrate, via examples, that implementation and algorithm choice have an effect on 

execution time or space. 
● Explain how problem representations / data structures and algorithms are related/coupled. 

T2: 
● Formally apply a variety of classification taxonomies to understand algorithms. 

 
Dispositions 
T1: 

● Thoroughness in evaluating space/time complexity.   There may be trade-offs in 
managing time and space complexity and appreciate the implications of those trade-offs 
for clients/users of software. 
 

 
PDA-Numerical Computing 
 
The types of problems data scientists solve often involve numerical computing. Data scientists 
should be aware of the power and limits of numerical representations. They should also be aware 
of standard numerical computing algorithms and their uses. 

 
Knowledge 
T1: 

● Random Number Generators (RNGs) 
● Simulation of probability distributions 
● Limitations of numerical representations with bits, and their impact on the accumulation 

of error (overflow, underflow, round off, truncation) in results 
● Implications of numerical representations with respect to their computational 

complexities 
T2: 

● Algorithmic and mathematical methods involved in advanced numerical algorithms for 
data analysis, such as: 

○ Principal Component Analysis (PCA) 
○ Singular Value Decomposition (SVD) 
○ Eigenvalue decompositions 
○ Newton’s Method 
○ Monte Carlo Simulation 

● Connection between good problem representations and mathematical models for solving 
numerical problems. For example: 

○ The use of SVD in representing documents 
○ The representation of graphs as adjacency lists or sparse matrices 
○ The use of kd-trees to represent metric spaces 

  
Skills 
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T1: 
● Describe how numerical computing algorithms and processes affect the execution of 

simulations, data sampling, and data generation. 
● Describe appropriate numerical computing algorithms to perform data analysis with a 

recognition of their limitations and numerically driven constraints. 
● Use random number generators and simulated probability distributions to 

○ Allow reproducibility in data analysis with non-deterministic algorithms 
○ Introduce non-determinism into algorithms to ensure proper statistical and 

numerical conditions 
T2: 

● Apply appropriate numerical algorithms for solving a variety of problems. Algorithms 
may include (non-exhaustive, non-ordered): 

○ Principal Component Analysis (PCA) 
○ Singular Value Decomposition (SVD) 
○ Eigenvalue decompositions 
○ Newton’s Method 
○ Monte Carlo Simulation 

 
Dispositions 
T1: 

● Astute about benefits and limitations of (pseudo)-random number generation  
● Astute about the limitations of numerical computing algorithms 
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Software Development and Maintenance (SDM) 
Data scientists may be expected to build (or contribute to building) deployable systems either for 
the purposes of data analytics or to put into practice the results of data analytics. To this end, 
they should be familiar with fundamental software development principles and practices. 
 
Note that this knowledge area draws from the CS2013 knowledge area on Software Engineering 
(SE). 
 
Note that development and testing are addressed separately below. Testing is integral to the 
development process. They are separated below only for purposes of readability. 
 

Scope Competencies 

●   Software engineering principles, 
      including design, implementation and 
      testing of programs.  
●   Potential vulnerabilities  

● Implement a small software project 
that uses a defined coding standard. 

● Test code by including security, unit 
testing, system testing, integration 
testing, and interface usability. 

Sub-domains 

SDM-Software Design and Development – 
T1, T2, E 

SDM-Software Testing – T1, T2, E 

 
SDM-Software Design and Development 
A data scientist should understand design principles and their implications for issues such as 
modularization, reusability, and security. Design, implementation, and testing are tightly 
integrated components of software development. In this KA, we itemize design and testing 
competencies separately for the sake of readability. 
 
Knowledge 
T1: 

● Coding and Design Standards 
● Integration with Information Management/Database Systems 
● Software lifecycle 
● Data lifecycle 

T2:  
● Project management methodology 

Elective: 
● Integration with Embedded, Process Control, and/or Communications systems 

 
Skills 
T1: 

● Explain project Coding Standards 
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● Explain project Design Standards 
● Describe how to integrate or interact with Information Management/Database Systems 
● Explain the scope and types of different testing paradigms/needs for all areas. [x-ref 

Testing below] 
● Individually, implement a small software project that meets design specifications 
● Develop to completion a team software project that meets design specifications  
● Implement given design, documentation, and implementation standards 
● Execute a basic Software Lifecycle on a simple program 
● Execute a basic Data (Science) Lifecycle on a simple data product 
● Integrate or interact with Information Management/Database Systems 

T2: 
● Execute a given project management methodology 
● Plan and design a team software project that meets stakeholder specifications 
● As leader, develop a project to completion, meeting stakeholder requirements 
● Implement the data science lifecycle to build data-driven decisions in appropriate stages 

of the software lifecycle 
Elective: 

● Integrate or interact with Embedded, Process Control, and/or Communications systems 
 
Dispositions 
T1: 

● Collaborative and ethical team member, recognizing the value of a team built on respect, 
diversity, and collaboration 

● Conviction to adhering to project Coding and Design Standards 
● Collaborative and flexible, through good listening skills, the ability to present an idea, 

and the ability to negotiate 
● Strong commitment to approach data and software projects with a lifecycle mindset 
● Astute about the benefits of using test-driven development [x-ref Testing below] 

T2: 
● Professional and ethical leadership.  Lead a project to completion following principles of 

respect, good listening, responsibility, etc. 
● Commitment and professionalism in promoting and encourage adherence to project 

Coding and Design Standards 

SDM-Software Testing 
A data scientist should understand the importance of good testing in software development and 
deployment. 
 
Knowledge 
T1: 

● Testing paradigms/needs for 
○ Unit/Execution 
○ Integration 
○ Interface/User 
○ Regression/Continuous 
○ System  
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○ Security 
T2: 

● Potential security problems in programs 
○ Buffer and other types of overflows 
○ Race conditions 
○ Improper initialization, including choice of privileges 
○ Not checking input 
○ Assuming success and correctness 
○ Not validating assumptions 

 
Skills 
T1: 

● Define and explain the scope and types of different testing paradigms/needs for all areas. 
● Design basic tests for: 

○ Unit/Execution 
○ Integration 

T2: 
● Use or extract representative data from Big Data datasets in order to test algorithms on a 

small scale before running at scale on a cluster, for example. 
● Develop test specifications for: 

○ Interface/User 
○ Regression Testing 
○ System 
○ Security 

● Execute tests (built by others) for: 
○ Interface/User 
○ Regression Testing 
○ System 
○ Security 

● Evaluate the results of a program using statistical significance testing 
● Describe possible types of risks for a software system 
● Describe secure coding and defensive coding practices 

Elective: 
● Design, develop, and execute tests for all areas 

 
Dispositions 
T1: 

● Astute about recognizing and value the benefits of using test-driven development.  
● Commitment to basic software and data project development from a test-driven 

perspective, particularly as it pertains to unit/execution and integration tests 
T2: 

● Commitment to software and data project development from a test-driven perspective, 
particularly as it pertains to Security, Interface/User, Regression/Continuous, and System 
tests 

Elective: 
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● Commitment to approaching software and data projects holistically from a test-driven 
development perspective 
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Appendix B: A Summary of Survey Responses  
 
 
Here we include a subset of responses to the Academic and Industry surveys. 
 
B.1 Academic Survey 
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B.2 Industry Survey 
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Appendix C: Example Courses  
 
 
Here we include a selected set of courses that provide examples of courses that contribute to the 
knowledge areas and competencies in this report.  An existing course that covers one of the 
Knowledge Areas, even if not specifically designed for a Data Science program, is a contribution 
to the program.  A summary and information on each of these courses is available online at: 
http://dstf.acm.org  
 

Course/File Name AP AI BDS CCF DG DM DPS ML PR PDA SDM 
Advanced_Methods_for_Data_Analytics_Denison 3 3 4   10 4 1 20 5 13   

Artificial_Intelligence_Harbin   40           8       

Artificial_Intelligence_Peking   48           24       

Big_Data_Analytics_Harbin     2   8 20     2     

Big_Data_Computation_Harbin     26           2 20   

Big_Data_Computing_Technology_Chengdu     14   18             

Big_Data_Governance_and_Policy_Tsinghua         22   8   18     

Big_Data_Technology_Principle_and_Citation_Xiamen 3       22   4         

Big_Data_Technology_Principles_Xaimen     32                 

Cloud_Computing_Technology_and_Application_Hohai     20                 

Computing_and_Data_Analysis_for_the_Sciences_Loyola 7             16   2.5   

CS_for_Insight_Harvey_Mudd 7 14   7       7   7   

Data_Mining_Harbin   6     8 26   8       

Data_Science_in_R_NWCTCC 3                 9   

Data_Systems_Denison 1     9 24         8   

Data_Visualization_Northern_Kentucky 38       6         4   

Database_System_Harbin       48               

Foundations_of_Data_Science_Southampton     12   14 14     4     

Fundamentals_and_Applications_of_Big_Data_BIT 5   4   13 7       3   

Introduction to_Data_Analytics_Denison 10     2 28 15 5   12 13 2 

Introduction_to_Data_Science_Creighton 3       12 6 3 6       

Introduction_to_Data_Science_Rutgers 6   6 6 10 8       8   

Introduction_to_Machine_Learning_NWCTCC               39   6   

Machine_Learning_for_Data_Analytics_Strathclyde     17     18     3 2   

Software_Structure_Harbin                   16 64 

 

http://dstf.acm.org/
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