
Computer Engineering
Curricula 2016

CE2016

Curriculum Guidelines for
Undergraduate Degree Programs

in Computer Engineering

2016 December 15

A Report in the Computing Curricula Series

Joint Task Force on Computer Engineering Curricula

Association for Computing Machinery (ACM)
IEEE Computer Society

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Computer Engineering

Curricula 2016

Curriculum Guidelines for

Undergraduate Degree Programs
in Computer Engineering

A Report in the Computing Curricula Series

Joint Task Group on Computer Engineering Curricula

Association for Computing Machinery (ACM)
IEEE Computer Society

2016 December 15

Copyright © 2016 by ACM and IEEE

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 2 of 149

ALL RIGHTS RESERVED

Copyright and Reprint Permissions: Permission is granted to use these curriculum guidelines for
the development of educational materials and programs. Other use requires specific
permission. Permission requests should be addressed to: ACM Permissions Dept. at
permissions@acm.org or to the IEEE Copyrights Manager at copyrights@ieee.org.

ISBN: 978-1-4503-4875-1
DOI: 10.1145/3025098

Web link: https://dx.doi.org/10.1145/3025098
ACM Order Number: 999163

When available, you may order additional copies from:

ACM Order Department
P.O. Box 30777

New York, NY 10087-0777

+1-800-342-6626
+1-212-626-0500 (outside U.S.)

orders@acm.org

IEEE Computer Society
Customer Service Center

10662 Los Vaqueros
P.O. Box 3014

Los Alamitos, CA 90720-1314

Tel: +1 800 272 6657
Fax: +1 714 821 4641

http://computer.org/cspress
csbook@computer.org

Sponsoring Societies

This report was made possible by
financial support from the following societies:

Association for Computing Machinery (ACM)

IEEE Computer Society

The CE2016 Final Report has been endorsed by
Association for Computing Machinery (ACM) and the IEEE Computer Society.

Cover art by Robert Vizzini
Printed in the United States of America

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 3 of 149

Computer Engineering

Curricula 2016

Final Report

2016 December 15

A Report in the Computing Curricula Series

Joint Task Group on Computer Engineering Curricula

Association for Computing Machinery (ACM)
IEEE Computer Society

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 4 of 149

CE2016 Steering Committee

ACM
Delegation

IEEE Computer Society
Delegation

John Impagliazzo (Chair)
Hofstra University, USA

Eric Durant
Milwaukee School of Engineering, USA

Susan Conry
Clarkson University, USA

Herman Lam
University of Florida, USA

Joseph L.A. Hughes
Georgia Institute of Technology, USA

Robert Reese
Mississippi State University, USA

Liu Weidong
Tsinghua University, China

Lorraine Herger
IBM Research, USA

Lu Junlin
Peking University, China

Andrew McGettrick
University of Strathclyde, Scotland

Victor Nelson
Auburn University, USA

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 5 of 149

Contents

CE2016 Steering Committee ... 4
Contents .. 5
Executive Summary ... 9
Chapter 1 Introduction .. 11

1.1 Overall Structure of the Computing Curricula Project ... 11
1.2 Overview of the CE2016 Process ... 12
1.3 Underlying Principles ... 12
1.4 Structure of the CE2016 Report ... 13

Chapter 2 Computer Engineering as a Discipline .. 15
2.1 Background .. 15
2.2 Evolution of the field .. 16
2.3 Characteristics of computer engineering graduates ... 17

2.3.1 Distinctions .. 17
2.3.2 Professionalism .. 18
2.3.3 Ability to design ... 18
2.3.4 Breadth of knowledge .. 19

2.4 Organizational considerations ... 19
2.5 Preparation for professional practice .. 20
2.6 Program evaluation and accreditation .. 20

Chapter 3 The Computing Engineering Body of Knowledge .. 22
3.1 Structure of the body of knowledge .. 22

3.1.1 Core and supplementary components .. 22
3.1.2 Assessing the time required to cover a unit .. 23
3.1.3 Tags for KAs and KUs .. 23
3.1.4 Common KUs .. 23

3.2 Learning Outcomes .. 24
3.3 Summary of the CE body of knowledge ... 24

3.3.1 Related mathematics ... 26
3.3.2 Related science .. 26
3.3.3 The role of software ... 27

3.4 CE2016 BoK compared with CE2004 BoK .. 27
3.5 Rationale for number of core hours in computer engineering 28
3.6 Curricular models ... 28

Chapter 4 Engineering Practice and the Computer Engineering Curriculum 30
4.1 The nature of computer engineering .. 30
4.2 Strategies for Emerging Technologies ... 31

4.2.1 Applied Emerging Technologies ... 31
4.2.2 Conceptual Emerging Technologies ... 31

4.3 Design in the curriculum .. 32
4.3.1 Design throughout the curriculum .. 32
4.3.2 The culminating design experience ... 32

4.4 Laboratory experiences ... 33

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 6 of 149

4.4.1 Computer engineering laboratories .. 33
4.4.2 Software considerations .. 35
4.4.3 Open-ended laboratories ... 35
4.4.4 Embedded laboratories ... 36
4.4.5 Technical support ... 36
4.4.6 Student purchases ... 36

4.5 The role of engineering tools ... 36
4.6 Applications of computer engineering principles .. 37
4.7 Complementary skills ... 37

4.7.1 Communication skills ... 38
4.7.2 Teamwork skills .. 39
4.7.3 Soft or personal skills ... 39
4.7.4 Experience .. 39
4.7.5 Lifelong learning ... 40
4.7.6 Business perspectives .. 40

4.8 Becoming professionals ... 41
4.9 Elements of an engineering education .. 41
4.10 Graduate and continuing professional education ... 42

Chapter 5 Professional Practice ... 43
5.1 Overview of professional practice ... 43

5.1.1 Professional practice and the CE curriculum ... 43
5.1.2 Professional needs ... 44

5.2 Decisions in a Societal Context .. 44
5.3 Professionalism and education .. 45

5.3.1 Special student experiences .. 45
5.3.2 Administration, faculty, and student roles .. 46
5.3.3 Incorporating Professional Practice into the Curriculum .. 46
5.3.4 Professionalism and student experiences ... 47

5.4 Professionalism and the workplace ... 48
5.4.1 Private and public sectors .. 48
5.4.2 Modelling local and international work environments ... 49
5.4.3 Certifications .. 49

5.5 Fostering Professionalism .. 49
5.5.1 Professional ethical codes ... 50
5.5.2 Education and professional practice ... 50

Chapter 6 Curriculum Implementation Issues ... 52
6.1 General Considerations.. 52
6.2 Principles for Curriculum Design .. 53
6.3 Basic Computer Engineering Curriculum Components ... 54

6.3.1 Coverage of the BoK Core .. 54
6.3.2 Course Arrangement .. 54
6.3.3 Laboratory Experiences ... 54
6.3.4 Culminating Project .. 54
6.3.5 Engineering Professional Practice .. 55
6.3.6 Communication Skills ... 55

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 7 of 149

6.4 Course Material Presented by Other Departments ... 55
6.4.1 Mathematics Requirements .. 55
6.4.2 Science Requirements .. 56
6.4.3 Other Requirements .. 57

6.5 Sample Curricula .. 57
Chapter 7 Institutional Adaptations .. 58

7.1 The need for local adaptation .. 58
7.2 Attracting and retaining faculty ... 59
7.3 The need for adequate laboratory resources .. 59
7.4 Transfer and educational pathways .. 59

7.4.1 Four-year transfers .. 60
7.4.2 Technical institute transfers .. 60
7.4.3 Community college transfers ... 60

Appendix A Computer Engineering Body of Knowledge ... 62
A.1 Introduction ... 62
A.2 Structure of the Body of Knowledge .. 62

A.2.1 Core and supplementary components .. 62
A.2.2 Assessing the time required to cover a unit .. 63
A.2.3 Tags for KAs and KUs .. 63
A.2.4 Common KUs .. 64

A.3 Learning Outcomes .. 64
A.4 Summary of the CE body of knowledge ... 64
A.5 Knowledge Areas and Knowledge Units .. 67
CE-CAE Circuits and Electronics .. 67
CE-CAL Computing Algorithms ... 71
CE-CAO Computer Architecture and Organization ... 73
CE-DIG Digital Design ... 77
CE-ESY Embedded Systems .. 80
CE-NWK Computer Networks ... 83
CE-PPP Preparation for Professional Practice .. 86
CE-SEC Information Security .. 89
CE-SGP Signal Processing .. 92
CE-SPE Systems and Project Engineering ... 95
CE-SRM System Resource Management ... 100
CE-SWD Software Design ... 102

Appendix B Computer Engineering Sample Curricula ... 105
B.1 Format and Conventions.. 105

B.1.1 Course Hour Conventions .. 105
B.1.2 Mapping of the computer engineering BoK to a sample curriculum 106
B.1.3 Course descriptions .. 106

B.2 Preparation to Enter the Profession .. 107
B.3 Curricula Commonalities .. 107
B.4 Curriculum A: Administered by Electrical and Computer Engineering 109

B.4.1 Program Goals and Features .. 109
B.4.2 Summary of Requirements .. 109

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 8 of 149

B.4.3 Four-Year Model for Curriculum A .. 110
B.4.4 Mapping of Computer Engineering BoK to Curriculum A 111

B.5 Curriculum B: Administered by Computer Science ... 115
B.5.1 Program Goals and Features .. 115
B.5.2 Summary of Requirements .. 115
B.5.3 Four-Year Model for Curriculum B ... 116
B.5.4 Mapping of Computer Engineering BoK to Curriculum B 117
B.5.5 Curriculum B – Course Summaries .. 118

B.6 Curriculum C: Administered jointly by CS and EE .. 120
B.6.1 Program Goals and Features .. 120
B.6.2 Summary of Requirements .. 120
B.6.3 Four-Year Model for Curriculum C ... 121
B.6.4 Mapping of Computer Engineering BoK to Curriculum C 122
B.6.5 Curriculum C – Course Summaries .. 123

B.7 Curriculum D: Administered in China .. 125
B.7.1 Program Goals and Features .. 125
B.7.2 Summary of Requirements .. 125
B.7.3 Four-Year Model for Curriculum D .. 126
B.7.4 Mapping of Computer Engineering BoK to Curriculum D 128
B.7.5 Curriculum D – Course Summaries .. 129

B.8 Curriculum E: Bologna-3 Model ... 134
B.8.1 Program Goals and Features .. 134
B.8.2 Summary of Requirements .. 135
B.8.3 Three-Year Model for Curriculum E ... 136
B.8.4 Mapping of Computer Engineering BoK to Curriculum E 137
B.8.5 Curriculum E – Course Summaries ... 138

Appendix C Computer Engineering Laboratories ... 143
C.1 Circuits and Electronics .. 143
C.2 Computer Architecture Design .. 143
C.3 Digital Logic Design .. 144
C.4 Digital Signal Processing .. 144
C.5 Digital Logic and System Design .. 144
C.6 Embedded Systems .. 145
C.7 Engineering Introduction ... 145
C.8 Networking... 145
C.9 Software Design ... 146

Appendix D Acknowledgements and Dissemination ... 147
References .. 149

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 9 of 149

Executive Summary

This report presents curriculum guidelines for undergraduate degree programs in computer engineering. It draws
upon the 2004 published curricular report in computer engineering titled, Computer Engineering 2004: Curriculum
Guidelines for Undergraduate Degree Programs in Computer Engineering, also known as CE2004. This report also
draws upon recent efforts in computing curricula developed by the Association for Computing Machinery (ACM),
the IEEE Computer Society, and the Association for Information Systems (AIS). These efforts resulted in published
curricula recommendations in computer science [ACM/IEEECS, 2013],1 information systems [ACM/AIS, 2010],
information technology [ACM/IEEECS, 2008], and software engineering [ACM/IEEECS, 2015]. New curricula
recommendations for information technology, as of this writing, are expected to be published in 2017.

Computer engineering as an academic field encompasses the broad areas of electrical or electronics engineering
and computer science. We define computer engineering in this report as follows.

Computer engineering is a discipline that embodies the science and technology of design,
construction, implementation, and maintenance of software and hardware components
of modern computing systems and computer-controlled equipment.

Therefore, this unique combination prepares students for careers that deal with computer systems from their
design through their implementation. Computing systems are components of a wide range of products for
example, as fuel injection systems in vehicles, medical devices such as x-ray machines, communication devices
such as smart phones, and household devices such as alarm systems and washing machines. Designing computing
systems and computing components for products, designing network computers and devices for the internet of
things, developing and testing their prototypes, and implementing them to market are examples of what computer
engineers typically do.

This report provides some background on the field of computer engineering and explains how the field evolved. It
describes the expectations of graduates of the discipline and shows how those graduates differ from other
computing disciplines. The report also describes the expected background, knowledge, and skills employers expect
to see from graduates of computer engineering programs. These expectations include the ability to design
computer systems, the realization of the importance of practicing as professionals, and the breadth and depth of
knowledge expected of a practicing engineer. The report also discusses ways in which programs in computer
engineering may have to stand up to the scrutiny of validation and accreditation by government or private
agencies.

The foundation for this report is a fundamental body of knowledge from which an institution can develop or
modify a curriculum to fit its needs. This body of knowledge, also known as BoK, contains broad knowledge areas
(KAs) that are applicable to all computer engineering programs worldwide. Each knowledge area comprises a
thematic scope and a set of knowledge units (KUs). A set of learning outcomes defines each knowledge unit. The
report further identifies some knowledge units as “core” that should appear in every implemented curriculum; the
remaining knowledge units are supplementary. Core units represent the minimal knowledge or depth a program
should cover in each knowledge area. A curriculum in computer engineering that contains only core units would be
very incomplete.

A computer engineering program should contain sufficient coursework at the introductory, intermediate, and
advanced levels based on the body of knowledge for computer engineering. Programs should augment this
coursework by a judicious selection of elective courses that build upon that foundation. Breadth and depth in
science and mathematics are necessary to this discipline. A design component is vital to the program and it
typically culminates with a capstone or senior project experience. The curriculum should also emphasize
professional practice, legal and ethical issues, and the social context in which graduates implement engineering
designs. Problem solving and critical thinking skills, personal (soft) skills, oral and written communication skills,

1 The full references for these bracketed citations are found immediately following Appendix D.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 10 of 149

teamwork, and a variety of laboratory experiences are fundamental to the study of computer engineering.
Additionally, the report includes sample curricula models that illustrate methodologies institutions might select to
develop curricula in computer engineering based on their locale, mission, and specific student goals.

These recommendations support the design of computer engineering curricula that will prepare graduates to
function at entry-level positions in industry for continued career growth or to enter graduate programs for
advanced study. The recommendations reflect input from industrial and educational institutions. This report is the
result of a cooperative global effort of the professionals involved. Its intent is to provide interested parties and
educational institutions worldwide a flexible way to implement a strong program in computer engineering. We
trust that we have achieved that goal.

— CE2016 Steering Committee

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 11 of 149

Chapter 1

Introduction

In the 1980s, the Association for Computing Machinery (ACM) and the Computer Society of the Institute for
Electrical and Electronics Engineers (IEEE-CS) established a joint committee to develop computing curricula (CC)
guidelines for undergraduate degree programs in computing. This effort resulted into Computing Curricula 1991,
also called CC1991 or CC’91 [CC91]. Over the years, this effort resulted in a series of documents whose
development remains ongoing. One of the documents that emerged for the efforts from CC’91 was Computing
Curricula Guidelines for Computer Engineering Programs, also known as CE2004 [ACM/IEEECS, 2004]. The report
presented here—referred to as CE2016—focuses specifically on computer engineering and is an update of the
CE2004 report.

One goal of the CE2016 effort is to revise CE2004 so that it incorporates the developments of the past decade and
the projected needs of the decade to come. Computing technologies have developed rapidly over that time in
ways that have had a profound effect on curriculum design and pedagogy. Another goal of this effort includes
supporting a group of professionals who are responsible for developing and teaching a range of degree programs
in computer engineering worldwide. Hence, this report must provide international perspectives and reflect a
global view of computing related developments in computer engineering.

1.1 Overall Structure of the Computing Curricula Project

Due to the broadening scope of computing—and the feedback received on prior publications—the CC initiative
contains several reports. These reports describe separately vital areas such as computer engineering, computer
science, information systems, information technology, and software engineering, each with its own identity and
pedagogical traditions. To encompass the different disciplines that are part of the overall scope of computing,
professional organizations have undertaken similar reports in five curricular areas. These areas include computer
engineering (2004), computer science (2001, 2008, 2013), information systems (1997, 2002, 2006, 2010),
information technology (2008), and software engineering (2004, 2015). The references for the most recent
examples of each of these are [ACM/IEEECS,2004], [ACM/IEEECS,2013], [ACM/IEEECS,2010], [ACM/IEEECS,2008],
[ACM/IEEECS,2015].

As the individual reports unfold to completion, representatives from the five computing disciplines produced an
overview report (2005) that links them together. That overview report contains descriptions of the various
computing disciplines along with an assessment of the commonalities and differences that exist among them. It
also suggests the possibility of future curricular areas in computing. The structure of the series is shown in Figure
1.1—derived from Figure 1.1 in the overview report [OVERVIEW].

Figure 1.1: Computing curricula reports

Overview
Report

Computer
Engineering
Curriculum

Report

Computer
Science

Curriculum
Report

Information
Systems

Curriculum
Report

Information
Technology
Curriculum

Report

Software
Engineering
Curriculum

Report

Future
Model

Curricula
Report

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 12 of 149

Future curricula reports are currently under discussion. Two of those under early discussion are cybersecurity and
data science.

ACM, IEEE-CS, and other professional societies and organizations have given individual groups the freedom to
produce reports that best reflect the needs and requirements of their specific disciplines. However, they did
request that groups address a certain minimal number of matters and, consequently, include certain components
in their individual reports. The minimal set includes:

x a body of knowledge (BoK) for the field
x a set of courses that cover the body of knowledge in one or more ways
x core requirements for the discipline that apply to all undergraduates, and
x the characteristics of graduates of degree programs

Professional organizations viewed the set of requirements as minimal in order to avoid being prescriptive. Experts
on curricular teams have had and still have the freedom to act independently, but reports must have this
commonality among them. The anticipation is that within each discipline, reports will exceed this minimal set in
various ways.

1.2 Overview of the CE2016 Process

In response to the challenges of the previously mentioned mandate for CE2016, ACM and IEEE-CS formed a
steering committee to address curricular interests in computer engineering. In discharging its duty, this committee
felt that it was vital to involve the wider community; hence, the committee consists of representatives from China,
Scotland, and the United States. Additionally, several consultative activities have occurred worldwide to confirm
the global view expressed in this volume.

The recommendations in this report are the primary responsibility of the CE2016 steering committee; the
membership appears at the beginning of this report. Given the scale of the CE2016 project and the scope over
which it extends, it was necessary to secure the involvement of many additional experts, representing a wide
range of constituencies and areas of expertise. The list of these contributing reviewers from throughout the world
who made significant contributions or commented on improving this report is found in Appendix D.

1.3 Underlying Principles

Computer engineering is a growing and important area of endeavor. The CE2016 steering committee established a
set of underlying principles to guide its work. The presentation here is not in order of priority.

1. The rapid evolution of computer engineering requires an ongoing review of the corresponding curriculum.
Given the pace of change in the discipline, the professional associations in this discipline must establish an
ongoing review process that allows the timely update of the individual components of the curriculum
recommendations.

2. The development of a computer engineering curriculum must be sensitive to changes in technology, new
developments in pedagogy, and the importance of lifelong learning. In a field that evolves as rapidly as
computer engineering, educational institutions must adopt explicit strategies for responding to change.
Computer engineering education must seek to prepare students for lifelong learning that will enable them
to move beyond today’s technology to meet the challenges of the future.

3. It is important to seek and identify the fundamental skills and knowledge that all computer engineering
graduates must possess. Computer engineering is a broad-based discipline. The final report must identify
the common concepts and skills of the discipline.

4. The required core of the body of knowledge should be as small as reasonably possible. It is important to
keep the size of the core to a minimum to allow flexibility, customization, and choice in other parts of the
curriculum to enable creation of individualized programs.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 13 of 149

5. Computer engineering must include appropriate and necessary design and laboratory experiences. A
computer engineering program should include “hands-on” experiences in designing, building, and testing
both hardware and software systems.

6. Computer engineering curricula are often subject to accreditation, licensure, or governmental constraints.
This report recognizes these existing external constraints and provides guidance for their evolution.

7. A computer engineering curriculum must include preparation for professional practice as an integral
component. These practices encompass a wide range of activities including management, ethics and
values, written and oral communication, working as part of a team, and remaining current in a rapidly
changing discipline.

8. This computer engineering report must include discussions of strategies and tactics for implementation
along with high-level recommendations. Although it is important for computing curricula to articulate a
broad vision of computing education, the success of any curriculum depends heavily on implementation
details. To accomplish this, the report should provide sample curricula models.

9. The development of the final report must encompass a broad base. To be successful, the process of
creating the computer engineering recommendations must include participation from many different
constituencies including industry, government, and the full range of higher educational institutions
involved in computer engineering education.

10. This computer engineering report must strive to be international in scope. Despite the fact that curricular
requirements differ from country to country, this report must be useful for computing educators
throughout the world. Although educational practice in the United States may influence curriculum, the
report should make every effort to ensure that the curriculum recommendations are sensitive to national
and cultural differences so that they will be widely applicable throughout the world.

11. Relevant tools, standards, and/or engineering constraints should appear throughout the body of
knowledge since this principle is fundamental to all practicing engineers.

12. Learning outcomes are a necessary component in undergraduate professional education. These learning
outcomes reflect inherent knowledge and concepts. Hence, ‘topics’ are redundant and should not be
included as part of this report.

13. Integration of hardware-software systems is critical to the work of computer engineering. Since computer
systems include integrated hardware and software components, this report should emphasize the
development of a “whole computer” or a “complete computer” in the laboratory experiences that include
exposure to hardware, operating systems, and software systems in the context of relevant applications.

14. The concept of design must be a recurring theme throughout the report.

1.4 Structure of the CE2016 Report

This CE2016 report addresses undergraduate programs in computer engineering. The main body of the report
consists of six chapters in addition to this one. Chapter 2 illustrates how computer engineering has evolved as a
discipline. It also highlights many of the characteristics expected of computer engineering graduates, especially
their service to the public, their design abilities, and their expected breadth of knowledge. It also suggests possible
organizational structures, the responsibility of professional practices, and program assessment. Chapters 3 and 4
present overviews of the computer engineering body of knowledge and describe curriculum recommendations.
These chapters also articulate learning outcomes, the differences between core and elective or supplementary
knowledge units, the number of core hours in the program, the importance of design and laboratory experiences,
and various skills individuals need to become effective computer engineers. Chapter 5 highlights the importance of
professionalism in the practice of computer engineering. Chapter 6 provides a discussion of issues affecting the
implementation of a computer engineering curriculum. These include the arrangement of the student’s program of
study, including courses within the major and those in other components of the educational experience as well as
other implementation considerations. Chapter 7 suggests some challenges that may arise when creating or
continuing computer engineering programs. This report also provides a list of cited references.

The bulk of the material in the report appears in two appendices. Appendix A addresses the body of knowledge in
detail for undergraduate computer engineering programs. It includes all the computing knowledge areas, their
associated knowledge units, and related student outcomes. Appendix B illustrates sample curricula and typical

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 14 of 149

catalog course descriptions as they might appear at different academic institutions. The steering committee is
hopeful that providing the body of knowledge, sample curricula, and course descriptions will help departments
create effective curricula or help them improve the curricula they already have. Appendix C provides guidance in
developing laboratories associated with a computer engineering program. Appendix D acknowledges external
reviewers from throughout the world who have made significant contributions or have commented on improving
this report.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 15 of 149

Chapter 2

Computer Engineering as a Discipline

This chapter presents some of the characteristics that distinguish computer engineering from other computing
disciplines. It provides some background of the field, showing how it evolved over time. It also highlights expected
preparation for entering the curriculum, some of the characteristics expected from its graduates, and student
outcomes and assessment. The chapter also highlights for graduates the importance of having a proper sense of
professionalism to ensure a proper perspective in the practice of computer engineering.

2.1 Background

Computer engineering is a discipline that embodies the science and technology of design, construction,
implementation, and maintenance of software and hardware components of modern computing systems,
computer-controlled equipment, and networks of intelligent devices. Traditionally, computer engineering is some
combination of both electrical engineering (EE) and computer science (CS). It has evolved over the past four
decades as a separate discipline, although intimately related to computer science and electrical engineering.
Computer engineering is solidly grounded in the theories and principles of computing, mathematics, science, and
engineering and it applies these theories and principles to solve technical problems through the design of
computing hardware, software, networks, and processes.

Historically, the field of computer engineering has been widely viewed as “designing computers.” In fact, the
design of computers themselves has been the province of relatively few highly skilled engineers whose goal was to
push forward the limits of computer and microelectronics technology. The successful miniaturization of silicon
devices and their increased reliability as system building blocks and complete systems on chips have created an
environment in which computers have become pervasive and replaced more conventional electronic devices.
These applications manifest themselves in the proliferation of mobile smart phones, tablet computers, multimedia
and location-aware devices, wireless networks, and similar products. Computer engineering also reveals itself in
the myriad of applications involving embedded systems, namely those computing systems that appear in
applications such as automobiles, control systems, major appliances, and the internet of things.

Increasingly, computer engineers are involved in the design of computer-based systems to address highly
specialized and specific application needs. Computer engineers work in most industries, including the computer,
automobile, aerospace, telecommunications, power production, manufacturing, defense, and electronics
industries. They design high-tech devices ranging from tiny microelectronic integrated-circuit chips, to powerful
systems that utilize those chips and efficient telecommunication systems that interconnect those systems.
Computer engineers also work on distributed computing environments—local and wide area networks, wireless
networks, internets, intranets—and embedded computer systems—such as in aircraft, spacecraft, and automobile
control systems where they perform various functions. A wide array of complex technological systems, such as
power generation and distribution systems and modern processing and manufacturing plants, rely on computer
systems developed and designed by computer engineers.

Technological advances and innovation continue to drive computer engineering. There is now a convergence of
several established technologies (such as multimedia, computer, and networking technologies) resulting in
widespread and ready access to information on an enormous scale. This convergence of technologies and the
associated innovation lie at the heart of economic development and the future of many organizations, creating
many opportunities and challenges for computer engineers. The situation bodes well for a successful career in
computer engineering.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 16 of 149

2.2 Evolution of the field

As noted previously, computer engineering evolved from the disciplines of electrical engineering and computer
science. Initial curricular efforts in computer engineering commonly occurred as a specialization within electrical
engineering programs, extending digital logic design to the creation of small-scale digital systems and, eventually,
to the design of microprocessors and computer systems. Later, curricula in computer engineering increasingly
began to include and finally evolved to integrate relevant knowledge areas from computer science. Today, that
trend is diminishing and CE programs reflect their own knowledge areas. This CE2016 report reflects the new
approach.

In China, computing education in universities has developed over the last sixty years. The first fast developing
stage began at the end of 1950s. Fifteen universities set up disciplines concerning computers. Most of these
disciplines at that time went by the name ‘computing equipment’ to emphasize design of computers
from fundamental components. Their requirements were like the requirements of computer engineering. The
second fast developing stage was from the end of 1970s to the middle of 1980s. Seventy-four disciplines were set
up during this period; their names were ‘Computer and Application’ or ‘Computer Software.’ Some universities
placed more emphasis on computer hardware for the ‘Computer and Application’ discipline, reflecting the demand
on computer engineering. From the middle 1990s, Chinese computer education entered the third fast developing
stage, with over five hundred disciplines set up in the universities. In this stage, the Ministry of Education specified
‘computer science and technology’ as the first-level discipline that included ‘computer software and theory,’
‘computer systems organization,’ and ‘computer applied technology’ as the second-level disciplines. The
knowledge of computer engineering occurred in the first-level discipline, ‘computer science and technology.’ After
2010, the Ministry of Education added ‘software engineering’ and ‘cyberspace security’ as new first-level
disciplines, which were as important as computer science and technology.

Within the UK, the term computer engineering tended to be associated with work stemming from the universities
of Manchester and Cambridge where some of the early computers were developed. The University of Manchester
launched a degree in computer engineering in 1980, but subsequently they discontinued it. Prior to 1980, classes
or modules addressing subjects in computer engineering did exist at several universities. Nowadays degree courses
in “computer systems engineering” or “computing and electronic systems” are far more common and they reflect
an attention to wider engineering subjects that subsume computer engineering. Almost all universities within the
UK offer a degree program in the general area of computer systems engineering. Due largely to marketing forces,
there are many degree titles, some of which reflect a period in industry (e.g., computer systems engineering with
industrial placement) or the inclusion of a modern language (e.g., computer systems engineering with a modern
language).

The Engineering Council [EngC] has overall responsibility for the accreditation of engineering degrees in the UK and
maintains a list of accredited degree programs. Its search facility reveals that as of August 2015 the Engineering
Council has accredited some 44 computer systems engineering degree programs and 11 computer and electronic
systems engineering degree programs. Due to the great variety of degree titles in the UK, we should regard these
as underestimates of accredited programs.

In the United States, the first computer engineering program accredited by the Engineering Accreditation
Commission (EAC) of ABET (formerly the Accreditation Board for Engineering and Technology) was at Case
Western Reserve University in 1971. As of October 2015, the EAC of ABET has accredited over 279 computer
engineering or similarly named programs, including 31 programs outside of the United States. Table 2.1
summarizes the growth in programs by title and year of initial ABET accreditation (or change of program name). As
a point of comparison, there are approximately 370 accredited electrical or electronics engineering programs.

One expects that the growth trend in computer engineering will increase as computing and electronic technologies
become more complex. The evolution may take many forms, including but not limited to:

x an expanded content from and tighter integration with computer science

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 17 of 149

x collaboration with the software engineering discipline on application-focused projects and embedded
systems with a greater emphasis on design and analysis tools to manage complexity

x a re-integration with electrical engineering, as computer-based systems becomes dominant in areas such
as control systems and telecommunications

Table 2.1: Summary of currently ABET-accredited baccalaureate level computer engineering programs

(as of October 2016; number of international programs in parentheses)

Program Name
Year of Initial Accreditation

Totals Before
1980

1980 -
1989

1990 -
1999

2000 -
2009

2010 -
2016

Computer Engineering 10 39 56 96 (16) 40 (21) 241 (37)
Computer Systems Engineering 2 1 0 3 (1) 2 (1) 8 (2)
Electrical and Computer Engineering 8 5 3 12 (3) 4 (1) 32 (4)
Computer Science and Engineering 2 6 2 3 (1) 3 (1) 16 (2)
Other titles 0 0 0 1 (1) 3 (3) 4 (4)

Total 22 51 61 115 (22) 52 (27) 301 (49)

2.3 Characteristics of computer engineering graduates

With the ubiquity of computers, computer-based systems, and networks in the world today, computer engineers
must be versatile in the knowledge drawn from standard study areas in computer science and electrical
engineering as well as the foundations in mathematics and sciences. The rapid pace of change in the computing
field requires that computer engineers be lifelong learners to maintain their knowledge and skills within their
chosen discipline.

2.3.1 Distinctions

An important distinction should be made between computer engineers, electrical engineers, other computer
professionals, and engineering technologists. While such distinctions are sometimes ambiguous, computer
engineers generally should possess the following three characteristics:

x the ability to design computers, computer-based systems, and networks that include both hardware
and software as well as their integration to solve novel engineering problems, subject to trade-offs
involving a set of competing goals and constraints—in this context, “design” refers to a level of ability
beyond “assembling” or “configuring” systems

x a breadth of knowledge in mathematics and engineering sciences, associated with the broader scope of
engineering and beyond that narrowly required for the field

x acquisition and maintenance of a preparation for professional practice in engineering

Other related disciplines can be described as follows.

x Electrical engineering spans a wide range of areas, including bioengineering, power engineering,
electronics, telecommunications, and digital systems. Related to the field of computer engineering,
electrical engineers concern themselves primarily with the physical aspects of electronics including
circuits, signal analysis, and microelectronic devices.

x Computer scientists concern themselves primarily with the theoretical and algorithmic aspects of
computing with a focus on the theoretical underpinnings of computing.

x Software engineers have a focus on the principles underlying the development and maintenance of
correct (often large-scale) software throughout its lifecycle. Information systems specialists encompass
the acquisition, deployment, and management of information resources for use in organizational
processes.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 18 of 149

x Information technology specialists focus on meeting the needs of users within an organizational and
societal context through the selection, creation, application, integration, and administration of
computing technologies.

x Computer engineering technologists support engineers by installing and operating computer-based
products, and maintaining those products.

2.3.2 Professionalism

The public has entrusted a level of responsibility in computer engineers because the systems they design (such as
x-ray machines, air traffic control systems, or nuclear power plants) affect the public directly and indirectly.
Therefore, it is incumbent upon computer engineers to exercise the utmost conscientiousness in their designs and
implementations of computing systems. As such, graduates should understand the responsibilities associated with
engineering practice, including the professional, societal, and ethical context in which they do their work. Such
responsibilities often involve complicated trade-offs involving fiscal and social contexts. This social context
encompasses a range of legal and economic issues such as intellectual property rights, security and privacy issues,
liability, technological access, and global implications and uses of technologies.

Professionalism and ethics are critical elements, since the focus of engineering on design and development makes
social context paramount to studies in the field. Computer engineering students must learn to integrate theory,
professional practice, and social constructs in their engineering careers. It is incumbent upon all computer
engineers to uphold the tenets of their profession and to adhere to the codes of professional practice. The public
expects engineers to follow prescribed rules of professional practice and to refrain from activities that would
tarnish their image or that of their practicing colleagues. Because of the importance of professionalism, Chapter 5
is devoted to an expanded discussion of professional practice and responsibilities.

2.3.3 Ability to design

Engineering draws heavily on the ability to design. The International Technology and Engineering Educators
Association (ITEEA) defines engineering design as “The systematic and creative application of scientific and
mathematical principles to practical ends such as the design, manufacture, and operation of efficient and
economical structures, machines, processes, and systems.” [ITEEA] Other definitions are possible such as the
creative ability required for the development of better devices, systems, processes, and new products. Many
reasons prompt new designs such as seeking to exploit new developments in related technologies or to develop
improvements on existing products (e.g., making products less expensive, safer, more flexible, or lighter in weight).
Identifying deficiencies or weaknesses in existing products is another motivation for engineering design. Novel
ideas, of course, are especially important.

Design is fundamental to all engineering. For the computer engineer, design relates to the creation and integration
of software and hardware components of modern computing systems and computer-controlled equipment.
Computer engineers apply the theories and principles of science and mathematics to design and integrate
hardware, software, networks, and processes and to solve technical problems. Continuing advances in computers
and digital systems have created opportunities for professionals capable of applying these developments to a
broad range of applications in engineering. Fundamentally, it is about making well-considered choices or trade-
offs, subject to given constraints. These relate to such matters as structure and organization, techniques,
technologies, methodologies, interfaces, as well as the selection of components. The outcome needs to exhibit
desirable properties and these tend to relate to simplicity and elegance. Chapter 4 presents a more detailed
discussion of design and related laboratory experiences.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 19 of 149

2.3.4 Breadth of knowledge

Because of the breadth of the computer-engineering field, curricular content may vary widely among programs, or
even among students in the same program. Computer-related coursework typically comes from computer
organization and architecture, algorithms, programming, databases, networks, software engineering, and
communications. Electrical engineering related coursework typically comes from circuits, digital logic,
microelectronics, signal processing, electromagnetics, control systems, and integrated circuit design. Foundational
areas typically include basic sciences, mathematics for both discrete and continuous domains, and applications of
probability and statistics.

At one extreme, a degree program in computer engineering might provide opportunities for its students to study a
wide range of subjects spanning the entire field. At another extreme, there may be programs that focus on one
specific aspect of computer engineering and cover it in great depth. The graduates from such programs will
typically tend to seek opportunities in the specialist area they studied, whether it is multimedia systems
development, computer design, network design, safety-critical systems, pervasive computing, or whatever other
specialties emerge and become important. One common measure for differentiating among computer engineering
programs is the relative amount of emphasis placed on areas that are commonly associated with either electrical
engineering or computer science programs.

Despite differences in emphasis and content, there are certain common elements that one should expect of any
computer engineering program. The Body of Knowledge, described in Chapter 3, identifies topical areas that one
may reasonably expect in all programs, as opposed to those that are often included in some programs or those
that one might consider elective or specialized. From a higher-level perspective, however, one can reasonably
expect several characteristics of all computer engineering graduates. These include the following.

x System Level Perspective—Graduates should appreciate the concept of a computer system, the design of
the hardware and software for that system, and the processes involved in constructing, analyzing, and
maintaining it over the lifetime of the system. They should understand its operation to a greater depth
than a mere external appreciation of what the system does or the way(s) in which one uses it.

x Depth and Breadth—Graduates should have familiarity with subject areas across the breadth of the
discipline, with advanced knowledge in one or more areas.

x Design Experiences—Graduates should have completed a sequence of design experiences, encompassing
hardware and software elements and their integration, building on prior work, and including at least one
major project.

x Use of Tools—Graduates should be able to use a variety of computer-based and laboratory tools for the
analysis and design of computer systems, including both hardware and software elements.

x Professional Practice—Graduates should understand the societal context in which engineering is
practiced, as well as the effects of engineering projects on society.

x Communication Skills—Graduates should be able to communicate their work in appropriate formats
(written, oral, graphical) and to critically evaluate materials presented by others in those formats.

2.4 Organizational considerations

The administration of computer engineering programs falls within a variety of organizational structures. Currently,
computer engineering programs are rarely organized as separate academic departments. They often appear in
colleges or schools of engineering—within an electrical engineering department, within an electrical and computer
engineering department or within a combined engineering department. In such cases, the expectation is a strong
emphasis on circuits and electronic components. Computer engineering programs also appear in areas such as
computer science departments, colleges of arts and sciences, schools or divisions of information technology, or co-
sponsored by multiple entities. In these cases, the programs often relate more to the issues of theory, abstraction,
and organization rather than those of a more applied nature. Finally, computer engineering programs can be
jointly administered by two such departments (e.g., electrical engineering and computer science). In such cases,
the programs attempt to strike a balance to integrate the hardware and software components of the curriculum.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 20 of 149

As noted in Table 2-1, the most common degree title for these programs is “Computer Engineering.” Other titles
may reflect program specializations, organizational structures, historical constraints, or other factors. The
principles presented in this report apply to all computer engineering programs regardless of their organizational
structure or official degree title.

2.5 Preparation for professional practice

Unlike professions such as law and medicine, engineering generally does not require an advanced degree for
employment in the field. Thus, undergraduate programs in computer engineering must include not only basic
knowledge within the field, but the ability to apply it to the solution of realistic projects. This preparation
encompasses several areas.

Section 2.3.2 defined the professionalism and ethics that are fundamental characteristics of a computer
engineering graduate. Preparation for professional practice requires graduates to understand the responsibilities
associated with engineering practice, as well as an ability to apply these principles to specific situations.
Professionalism should be a constant theme that pervades the entire curriculum. Specifically, the social context of
engineering should be integrated into the teaching of engineering design, including the use of best practices and
trade-offs among technical, fiscal, and social requirements.

In addition to professionalism, appropriate preparation encompasses both technical (design ability, laboratory
experiences, use of engineering tools) and non-technical (teamwork, communication) elements. Chapter 5 of this
report provides a detailed discussion on the integration of these issues into the curriculum.

2.6 Program evaluation and accreditation

Processes for program evaluation must accommodate the variations among computer engineering programs. Such
evaluation is critical to ensure that graduates have the proper preparation and that programs are evolving to meet
the emerging requirements of the field. Often, professional societies and governments look toward an external
assessment of programs to ensure that graduates achieve minimally what professional organizations expect of
them.

In Australia, professional accreditation of entry to practice engineering programs is the responsibility of Engineers
Australia, and normally occurs on a five-yearly cycle. Accreditation ensures academic institutions consistently meet
national and international benchmarks, and engineering graduates of an accredited program receive membership
to Engineers Australia at the relevant career grade, and enjoy reciprocal privileges by equivalent professional
bodies overseas. Engineers Australia uses an Australian Qualifications Framework (AQF) that came into effect in
2015.

In the People’s Republic of China, the Ministry of Education organized three evaluations—in 2004, 2008 and 2012.
The evaluations provided services whereby universities could choose to join the evaluation. The evaluation held in
2012 had participation by 391 universities and institutions that covered 4235 disciplines. Almost all “211 Project”
universities and “985 Project” universities, with only two missing universities, participated in the evaluation. The
percent joining the state-level key disciplines reached 93%. Computer science and technology, which includes
computer engineering, is one of the first-level disciplines in the evaluation. The evaluation indexes include
teachers and resources, research quality, training quality, and discipline reputation. The evaluation lasts over one
year. The ministry published the evaluation reports in January of 2013. The Ministry of Education is now preparing
for the fourth evaluation cycle.

In the United Kingdom, benchmarking of degrees has occurred as part of governmental quality assurance efforts.
Each institution must demonstrate that their degrees meet the requisite benchmark standards for that discipline.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 21 of 149

One example of these benchmark standards is the subject benchmark statement [SBS]. Benchmarking statements
typically define both threshold (minimal) and modal (average) expectations with respect to demonstrated student
knowledge, skills, and judgment. The Engineering Council (EngC) has overall responsibility for the accreditation of
engineering degree programs within the United Kingdom and beyond. Its basic responsibilities include setting
standards (of competence and commitment) for the accreditation of engineering degrees and approving
nominating bodies that carry out detailed accreditation on its behalf [EngC]. In general, the British Computer
Society (BCS) carries out accreditation of computing degree programs. Either the BCS or the Institution of
Engineering and Technology (IET) can accredit degree programs in computer engineering. Joint accreditation by
both societies is common.

Within the United States, ABET accreditation is widely recognized and accepted. In addition, ABET currently
accredits programs in twenty-eight other countries. The ABET EAC Criteria for Accrediting Engineering Programs
[ABET, 2016] are intended to ensure that all ABET EAC-accredited programs satisfy a minimum set of criteria
common to all engineering disciplines and criteria specific to each discipline. A key element of this process is a
requirement that each program engage in an ongoing process of self-assessment and continuous improvement.
Programs must demonstrate that all graduates achieve a set of student outcomes based on the program’s
educational objectives. The ABET criteria are broadly defined. They leave the interpretation of what constitutes the
appropriate knowledge for a given discipline to the professional societies affiliated with that discipline. We
anticipate that this report will provide guidance to accrediting agencies on the appropriate technical content of
computer engineering programs.

Many countries have established their own processes for evaluation and/or accreditation through governmental or
professional societies. Mutual recognition of the evaluation and/or accreditation process exists through the
mechanisms of the Washington Accord [Washington], the Seoul Accord [Seoul], the Sydney Accord [Sydney], the
Dublin Accord [Dublin], European Federation of National Engineering Associations [FEANI], and the International
Register of Professional Engineers [IRPE].

In general, institutions tend to use accreditation as a vehicle to provide evidence of quality that they can use in
marketing activities; most institutions offering engineering degrees will have some form of recognition in
accreditation terms. Graduation from an accredited engineering program is typically a prerequisite step towards
professional registration or licensure. Currently, some jobs demand accredited degree status or professional
licensure, although this requirement is not as widespread in computing-related fields as in some other engineering
fields.

While accreditation and benchmarking standards typically refer to the minimum or average graduate, the
expectation is that programs in computer engineering will also provide opportunities for the best students to
achieve their full potential. Such students will be creative and innovative in their application of the principles
covered in the curriculum; they will be able to contribute significantly to the analysis, design, and development of
complex systems; and they will be able to exercise critical evaluation and review of both their own work and the
work of others.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 22 of 149

Chapter 3

The Computing Engineering Body of Knowledge

A curriculum for undergraduate study in computer engineering (CE) should reflect the current needs of computer
engineering students as well as prospects for graduate study and employment in the workplace. The curriculum
guidelines should also reflect current educational practice and suggest improvements where necessary. The
discussion that follows attempts to accomplish this in proposing a body of knowledge commensurate with
producing competent computer engineering graduates.

This report defines a collection of knowledge areas (KAs) comprising associated core and supplementary
knowledge units (KUs) with associated learning outcomes. Collectively, the set of knowledge areas forms the basis
of a curriculum but they are not sufficient by themselves. The knowledge areas presented in this report represent
approximately 50% of the discipline-specific content of a typical four-year curriculum. Additionally, CE programs
should ensure that the discipline-specific content comprises at least 1.5 years of engineering topics. The remaining
chapters of this report address other issues related to the design of a complete computer engineering curriculum
that meets the goals of a specific program and institution.

3.1 Structure of the body of knowledge

The CE body of knowledge has a three-level hierarchical structure. The highest level of the hierarchy is the
knowledge area that represents a specific disciplinary subfield, not a course. Knowledge areas contain an “area
scope” that describes the context of the specific knowledge area. The knowledge areas are broken down into
smaller divisions called knowledge units (KUs) that represent individual themes within an area. A set of learning
outcomes, representing the lowest level of the hierarchy, then describes each knowledge unit.

3.1.1 Core and supplementary components

One of the goals in updating the CE2004 report was to keep the required component of the body of knowledge as
small as possible. This was done to allow programs in computer engineering to be as flexible as possible since
program goals or objectives vary widely from program to program. To implement this principle, there is a
distinction among the KUs to differentiate the core or essential units to the curriculum from those that are
supplementary or extra units. Core components comprise knowledge and skills for which there is broad consensus
that anyone obtaining a four-year degree in the field should acquire. Supplementary components comprise
knowledge and skills that reflect expectations for additional work, conforming to the needs of a program.

In discussing the CE2016 recommendations, the steering committee found it helpful to emphasize the following
points.

x The core components refer to the knowledge and skills that every student in all computer engineering
degree programs should attain. Several learning outcomes that are important in the education of many
students are not included as core and appear as supplementary. Absence of some learning outcomes
among the core components does not imply a negative judgment about their value, importance, or
relevance. Rather, it simply means that the learning outcome is not a requirement of every student in all
CE degree programs.

x The knowledge areas are not courses and the core components do not constitute a complete curriculum.
Each program may choose to cover the core knowledge units in a variety of ways.

x Additional technical areas, as well as supporting mathematics, science, and general studies, are necessary

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 23 of 149

to produce a competent computer engineer.
x It is not the case that a program should achieve core knowledge units only within a set of introductory

courses early in the four-year curriculum. While some core knowledge units are introductory, a program
can address some core KUs only after students have developed significant background in their studies.

3.1.2 Assessing the time required to cover a unit

To give readers a sense of the time required to cover a specific unit, this report follows the same pattern used in
other curricula reports. The CE2016 steering committee has chosen to express time in hours, specifically in core
hours. This corresponds to the in-class time required to present the material within a knowledge unit in a
traditional lecture-oriented format. Hence, one “core hour” or one lecture hour is one 50-minute period.

To dispel any potential confusion, however, it is important to underscore the following observations about the use
of lecture hours as a measure.

x This report does not seek to endorse the lecture format. Even though we have used a metric with its roots
in a classical, lecture-oriented form, we believe that other styles can be at least as effective, particularly
given recent improvements in educational technology. These include forms such as flipped classrooms,
massive open online courses (MOOCs), blended learning, pre-recorded lectures, and seminars. For some
of these styles, the notion of hours may be difficult to apply. Even so, the time specifications serve as a
comparative metric, in the sense that five core hours will presumably take approximately five times as
much time or effort to address as one core-hour, independent of the teaching style.

x The hours specified for a laboratory component to a curriculum often have three contact laboratory hours
equivalent to one lecture hour. That is, 150 minutes (three 50-minute contact lab hours) is equivalent to
one lecture hour. This calculation varies from institution to institution. Notwithstanding, since
laboratories are necessary for a computer engineering program, it is important to include laboratory
hours in calculating the time needed to cover a knowledge unit.

x The hours specified do not include time spent outside of class. The time assigned to a knowledge unit
does not include the instructor's preparation time or the time students spend outside of class. As a
general guideline, the amount of out-of-class work is approximately three times the in-class time. Thus, a
unit listed as requiring three hours typically entails a total of twelve hours (three in class and nine outside
class).

x The hours listed for a knowledge unit represent a minimum level of coverage. Users should interpret the
time measurements we have assigned for each knowledge unit as a minimal amount of time necessary to
enable a student to achieve related learning outcomes for that unit. Many instructors will find that
delivery of material to the level of depth that they wish to incorporate will take much longer than this; it is
always appropriate to spend more time on a unit than the recommended minimum.

3.1.3 Tags for KAs and KUs

We identify a knowledge area with a tag such as CE-NWK, representing the “Computer Networks” knowledge area
for computer engineering. We identify each knowledge unit by adding a numeric suffix to the area identification—
as an example, CE-NWK-2 is the second knowledge unit within the computer network knowledge area.
Supplementary knowledge units have only elective learning outcomes and do not contain any recommended core
hours.

3.1.4 Common KUs

Within each knowledge area, the first KU is “History and overview” and the second is “Relevant tools, standards
and/or engineering constraints.” These KUs provide context for the rest of the KA. The brief history and overview
provides context for the learning outcomes, including important contributors to, and developments in the area.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 24 of 149

Engineering practice requires the use of modern tools and contemporary standards, which will change over time.
The extent of these KUs vary greatly by knowledge area and the goals of the program.

3.2 Learning Outcomes

To capture the sense of what students should learn from each knowledge unit, this report associates learning
outcomes with each knowledge unit. The emphasis on learning is important. Taxonomies of verbs such as “define”
or “evaluate” are useful to describe the expected depth of learning. Levels of learning range from basic abilities,
such as reciting definitions, to advanced abilities, such as engaging in synthesis and evaluation. The verbs used to
describe learning outcomes in KUs were influenced by Bloom’s taxonomy [Bloom 1956]. Hence, learning outcomes
provide a mechanism for describing not just knowledge and relevant practical skills, but also personal and
transferable skills. They describe what we expect a student will know or can do by the time of graduation. The
minimal desired depth of coverage associated with each knowledge unit can be inferred from the language used to
express the learning outcomes. Learning outcomes are not limited to knowledge units, and may be associated with
a class activity, a course, or even a degree program.

In this report, the steering committee has tried to limit the number of learning outcomes to emphasize essential
skills and knowledge. Programs may choose to structure the curriculum so that students demonstrate their
attainment of knowledge and skills in a wide variety of ways. Imaginative approaches to assessment of learning
outcomes can lead to unique expressions of a range of skills in well-conceived assignments.

3.3 Summary of the CE body of knowledge

Table 3.1 lists the twelve knowledge areas that form the CE body of knowledge. Table 3.2 shows the twelve CE
knowledge areas as presented in this report together with their associated knowledge units. This is the CE body of
knowledge. Table 3.2 also shows the core hours (core lecture hours) associated with each area and each unit. For
example, CE-ESY-5 Parallel input and output [3] in Table 3.2 indicates that “parallel input and output” should have
a relative emphasis measured by three core lecture hours and it belongs to the fifth knowledge unit of the
“embedded systems” knowledge area, which is core for a computer engineering degree program. The absence of a
number such as [2] means the KU is not core; therefore, it is supplementary. Note that the CE2016 steering
committee has chosen to approximate these KA hours to the nearest “fives” value to provide another dimension of
flexibility for evolving computer engineering programs. Appendix A shows the contents of the knowledge areas
and their associated knowledge units.

Table 3.1: CE2016 Knowledge Areas
CE-CAE Circuits and Electronics
CE-CAL Computing Algorithms
CE-CAO Computer Architecture and Organization
CE-DIG Digital Design
CE-ESY Embedded Systems
CE-NWK Computer Networks

CE-PPP Preparation for Professional Practice
CE-SEC Information Security
CE-SGP Signal Processing
CE-SPE Systems and Project Engineering
CE-SRM Systems Resource Management
CE-SWD Software Design

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 25 of 149

Table 3.2: CE2016 Body of Knowledge
(CE Core Hours: 420)

Knowledge Areas and Knowledge Units
CE-CAE Circuits and Electronics
 [50 core hours]
CE-CAE-1 History and overview [1]
CE-CAE-2 Relevant tools, standards, and/or engineering constraints [3]
CE-CAE-3 Electrical quantities and basic elements [4]
CE-CAE-4 Electrical circuits [11]
CE-CAE-5 Electronic materials, diodes, and bipolar transistors [7]
CE-CAE-6 MOS transistor circuits, timing, and power [12]
CE-CAE-7 Storage cell architecture [3]
CE-CAE-8 Interfacing logic families [3]
CE-CAE-9 Operational amplifiers [3]
CE-CAE-10 Mixed-signal circuit design [3]
CE-CAE-11 Design parameters and issues
CE-CAE-12 Circuit modeling and simulation methods

CE-CAL Computing Algorithms
 [30 core hours]
CE-CAL-1 History and overview [1]
CE-CAL-2 Relevant tools, standards and/or engineering constraints [1]
CE-CAL-3 Basic algorithmic analysis [4]
CE-CAL-4 Algorithmic strategies [6]
CE-CAL-5 Classic algorithms for common tasks [3]
CE-CAL-6 Analysis and design of application-specific algorithms [6]
CE-CAL-7 Parallel algorithms and multi-threading [6]
CE-CAL-8 Algorithmic complexity [3]
CE-CAL-9 Scheduling algorithms
CE-CAL-10 Basic computability theory

CE-CAO Computer Architecture and Organization
 [60 core hours]
CE-CAO-1 History and overview [1]
CE-CAO-2 Relevant tools, standards and/or engineering constraints [1]
CE-CAO-3 Instruction set architecture [10]
CE-CAO-4 Measuring performance [3]
CE-CAO-5 Computer arithmetic [3]
CE-CAO-6 Processor organization [10]
CE-CAO-7 Memory system organization and architectures [9]
CE-CAO-8 Input/Output interfacing and communication [7]
CE-CAO-9 Peripheral subsystems [7]
CE-CAO-10 Multi/Many-core architectures [5]
CE-CAO-11 Distributed system architectures [4]

CE-DIG Digital Design
 [50 core hours]
CE-DIG-1 History and overview [1]
CE-DIG-2 Relevant tools, standards, and/or engineering constraints [2]
CE-DIG-3 Number systems and data encoding [3]
CE-DIG-4 Boolean algebra applications [3]
CE-DIG-5 Basic logic circuits [6]
CE-DIG-6 Modular design of combinational circuits [8]
CE-DIG-7 Modular design of sequential circuits [9]
CE-DIG-8 Control and datapath design [9]
CE-DIG-9 Design with programmable logic [4]
CE-DIG-10 System design constraints [5]
CE-DIG-11 Fault models, testing, and design for testability

CE-ESY Embedded Systems
 [40 core hours]
CE-ESY-1 History and overview [1]
CE-ESY-2 Relevant tools, standards, and/or engineering constraints [2]
CE-ESY-3 Characteristics of embedded systems [2]
CE-ESY-4 Basic software techniques for embedded applications [3]
CE-ESY-5 Parallel input and output [3]
CE-ESY-6 Asynchronous and synchronous serial communication [6]
CE-ESY-7 Periodic interrupts, waveform generation, time measurement [3]
CE-ESY-8 Data acquisition, control, sensors, actuators [4]
CE-ESY-9 Implementation strategies for complex embedded systems [7]
CE-ESY-10 Techniques for low-power operation [3]
CE-ESY-11 Mobile and networked embedded systems [3]
CE-ESY-12 Advanced input/output issues [3]
CE-ESY-13 Computing platforms for embedded systems

CE-NWK Computer Networks
 [20 core hours]
CE-NWK-1 History and overview [1]
CE-NWK-2 Relevant tools, standards, and/or engineering constraints [1]
CE-NWK-3 Network architecture [4]
CE-NWK-4 Local and wide area networks [4]
CE-NWK-5 Wireless and mobile networks [2]
CE-NWK-6 Network protocols [3]
CE-NWK-7 Network applications [2]
CE-NWK-8 Network management [3]
CE-NWK-9 Data communications
CE-NWK-10 Performance evaluation
CE-NWK-11 Wireless sensor networks

CE-PPP Preparation for Professional Practice
 [20 core hours]
CE-PPP-1 History and overview [1]
CE-PPP-2 Relevant tools, standards, and/or engineering constraints [1]
CE-PPP-3 Effective communication strategies [2]
CE-PPP-4 Interdisciplinary team approaches [1]
CE-PPP-5 Philosophical frameworks and cultural issues [2]
CE-PPP-6 Engineering solutions and societal effects [2]
CE-PPP-7 Professional and ethical responsibilities [3]
CE-PPP-8 Intellectual property and legal issues [3]
CE-PPP-9 Contemporary issues [2]
CE-PPP-10 Business and management issues [3]
CE-PPP-11 Tradeoffs in professional practice

CE-SEC Information Security
 [20 core hours]
CE-SEC-1 History and overview [2]
CE-SEC-2 Relevant tools, standards, and/or engineering constraints [2]
CE-SEC-3 Data security and integrity [1]
CE-SEC-4 Vulnerabilities: technical and human factors [4]
CE-SEC-5 Resource protection models [1]
CE-SEC-6 Secret and public key cryptography [3]
CE-SEC-7 Message authentication codes [1]
CE-SEC-8 Network and web security [3]
CE-SEC-9 Authentication [1]
CE-SEC-10 Trusted computing [1]
CE-SEC-11 Side-channel attacks [1]

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 26 of 149

Knowledge Areas and Knowledge Units
CE-SGP Signal Processing
 [30 core hours]
CE-SGP-1 History and overview [1]
CE-SGP-2 Relevant tools, standards, and/or engineering constraints [3]
CE-SGP-3 Convolution [3]
CE-SGP-4 Transform analysis [5]
CE-SGP-5 Frequency response [5]
CE-SGP-6 Sampling and aliasing [3]
CE-SGP-7 Digital spectra and discrete transforms [6]
CE-SGP-8 Finite and infinite impulse response filter design [4]
CE-SGP-9 Window functions
CE-SGP-10 Multimedia processing
CE-SGP-11 Control system theory and applications

CE-SPE Systems and Project Engineering
 [35 core hours]
CE-SPE-1 History and overview [1]
CE-SPE-2 Relevant tools, standards and/or engineering constraints [3]
CE-SPE-3 Project management principles [3]
CE-SPE-4 User experience* [6]
CE-SPE-5 Risk, dependability, safety and fault tolerance [3]
CE-SPE-6 Hardware and software processes [3]
CE-SPE-7 Requirements analysis and elicitation [2]
CE-SPE-8 System specifications [2]
CE-SPE-9 System architectural design and evaluation [4]
CE-SPE-10 Concurrent hardware and software design [3]
CE-SPE-11 System integration, testing and validation [3]
CE-SPE-12 Maintainability, sustainability, manufacturability [2]

CE-SRM Systems Resource Management
 [20 core hours]
CE-SRM-1 History and overview [1]
CE-SRM-2 Relevant tools, standards, and/or engineering constraints [1]
CE-SRM-3 Managing system resources [8]
CE-SRM-4 Real-time operating system design [4]
CE-SRM-5 Operating systems for mobile devices [3]
CE-SRM-6 Support for concurrent processing [3]
CE-SRM-7 System performance evaluation
CE-SRM-8 Support for virtualization

CE-SWD Software Design
 [45 core hours]
CE-SWD-1 History and overview [1]
CE-SWD-2 Relevant tools, standards, and/or engineering constraints [3]
CE-SWD-3 Programming constructs and paradigms [12]
CE-SWD-4 Problem-solving strategies [5]
CE-SWD-5 Data structures [5]
CE-SWD-6 Recursion [3]
CE-SWD-7 Object-oriented design [4]
CE-SWD-8 Software testing and quality [5]
CE-SWD-9 Data modeling [2]
CE-SWD-10 Database systems [3]
CE-SWD-11 Event-driven and concurrent programming [2]
CE-SWD-12 Using application programming interfaces
CE-SWD-13 Data mining
CE-SWD-14 Data visualization

* User experience (UX) was formerly known as human-computer interaction (HCI)

3.3.1 Related mathematics

Table 3.3 describes the mathematical component of the CE body of knowledge. The CE2016 steering committee
recommends that a robust computer engineering program have at least four areas of capability that require at
least 120 hours in mathematics to produce a competent CE professional for the 2020s. Clearly, programs typically
include much more mathematics to achieve their goals. The four areas include analysis of continuous functions
(calculus), discrete structures, linear algebra, and probability and statistics; these four areas emphasize what the
steering committee considers essential to computer engineering.

3.3.2 Related science

The CE2016 steering committee has elected not to recommend specific science areas or the number of hours that
a program should devote to science. However, it does recommend that students undertaking computer
engineering as a program include as much natural science (e.g., biology or chemistry in addition to physics) as
appropriate so that they obtain a command of the scientific bases for engineering. The reason for a science
recommendation is that students in the engineering field should develop strong analytical thinking skills and learn
empirical and experimental ways of learning. See Chapter 6 for a more detailed discussion on science for computer
engineering.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 27 of 149

Table 3.3: Related CE Mathematics
(120 Core Hours)

Mathematics Knowledge Areas and Units
CE-ACF Analysis of Continuous Functions
 [30 core hours]
CE-ACF-1 History and overview [1]
CE-ACF-2 Relevant tools and engineering applications [1]
CE-ACF-3 Differentiation methods [4]
CE-ACF-4 Integration methods [6]
CE-ACF-5 Linear differential equations [8]
CE-ACF-6 Non-linear differential equations [3]
CE-ACF-7 Partial differential equations [5]
CE-ACF-8 Functional series [2]

CE-DSC Discrete Structures
 [30 core hours]
CE-DSC-1 History and overview [1]
CE-DSC-2 Relevant tools and engineering applications [1]
CE-DSC-3 Functions, relations, and sets [6]
CE-DSC-4 Boolean algebra principles [4]
CE-DSC-5 First-order logic [6]
CE-DSC-6 Proof techniques [6]
CE-DSC-7 Basics of counting [2]
CE-DSC-8 Graph and tree representations and properties [2]
CE-DSC-9 Iteration and recursion [2]

CE-LAL Linear Algebra
 [30 core hours]
CE-LAL-1 History and overview [1]
CE-LAL-2 Relevant tools and engineering applications [2]
CE-LAL-3 Bases, vector spaces, and orthogonality [4]
CE-LAL-4 Matrix representations of linear systems [4]
CE-LAL-5 Matrix inversion [2]
CE-LAL-6 Linear transformations [3]
CE-LAL-7 Solution of linear systems [3]
CE-LAL-8 Numerical solution of non-linear systems [4]
CE-LAL-9 System transformations [3]
CE-LAL-10 Eigensystems [4]

CE-PRS Probability and Statistics
 [30 core hours]
CE-PRS-1 History and overview [1]
CE-PRS-2 Relevant tools and engineering applications [2]
CE-PRS-3 Discrete probability [5]
CE-PRS-4 Continuous probability [4]
CE-PRS-5 Expectation and deviation [2]
CE-PRS-6 Stochastic Processes [4]
CE-PRS-7 Sampling distributions [4]
CE-PRS-8 Estimation [4]
CE-PRS-9 Hypothesis tests [2]
CE-PRS-10 Correlation and regression [2]

3.3.3 The role of software

While all computer engineers need some familiarity with software development and implementation, the BoK
does not specify specific programming languages or operating systems. The learning outcomes in the BoK
emphasize higher-level design concepts and interactions between hardware and software. Some computer
engineers may develop operating systems, compilers, and other software tools; however, the primary focus of the
discipline is on their use in designing systems to meet specified needs. Depending on its goals and the preparation
of its students, an academic program may include additional fundamental software knowledge and skills beyond
those listed in the CE BoK (e.g., operating system design) to prepare a competent computer engineer.

3.4 CE2016 BoK compared with CE2004 BoK

The CE2004 report recommended a body of knowledge that contained 420 core hours of computer engineering
plus 66 hours in mathematics totaling 486 core hours. This CE2016 report recommends a body of knowledge that
contains 420 core hours of computer engineering plus 120 hours in mathematics totaling 540 core hours. Table 3.4
illustrates a comparison between the CE2016 and the CE2004 knowledge areas with corresponding hours.

Table 3.4 shows that the body of knowledge for CE2016 has 12 knowledge areas while the body of knowledge for
CE2004 had 16 knowledge areas. The situation might give the impression that the BoK for CE2016 reflects a
reduction in content. This is not the case. The CE2016 steering committee has merged five of the KAs in CE2004
into the CE2016 KAs while it minimized some areas such as VLSI design in favor of expanded emphasis for system
on chip (SOC) technologies and embedded systems that are more reflective of directions in which the discipline
has grown. The knowledge units for CE2016 shown in Table 3.2 and in Appendix A show this contemporary
approach.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 28 of 149

Table 3.4: Body of Knowledge: CE2016 vs. CE2004 Knowledge Areas
CE2016

Knowledge Areas
Core

Hours
CE2004

Knowledge Areas
Core

Hours

CE-CAE Circuits and Electronics 50 CE-CSG Circuits and Signals 43
CE-CAL Computing Algorithms 30 CE-ALG Algorithms 30
CE-CAO Computer Architecture & Organization 60 CE-CAO Computer Architecture & Organization 63
CE-SPE Systems and Project Engineering 35 CE-CSE Computer Systems Engineering 18
CE-DIG Digital Design 50 CE-DIG Digital Logic 57
CE-ESY Embedded Systems 40 CE-ESY Embedded Systems 20
CE-NWK Computer Networks 20 CE-NWK Computer Networks 21
CE-PPP Preparation for Professional Practice 20 CE-SPR Social and Professional Issues 16
CE-SEC Information Security 20
CE-SGP Signal Processing 30 CE-DSP Digital Signal Processing 17
CE-SRM Systems Resource Management 20 CE-OPS Operating Systems 20
CE-SWD Software Design 45 CE-SWE Software Engineering 13

 CE-DBS Database Systems 5
 CE-ELE Electronics 40
 CE-HCI Human-Computer Interaction 8
 CE-PRF Programming Fundamentals 39
 CE-VLS VLSI Design and Fabrication 10

Total: 420 Total: 420

3.5 Rationale for number of core hours in computer engineering

As mentioned, the CE2016 body of knowledge contains 420 core hours. Additionally, the CE2016 mathematics
recommendation contains 120 core hours. As defined in section 3.1.2, one core hour represents the equivalent of
one, 50-minute lecture hour.

Within a typical semester system, a four-year undergraduate program typically has at least 120 semester credit
hours. One year of study consists of two semesters or 30 semester hours and one semester consists of 15 semester
hours (or credits). We define one credit (or one semester hour) as the equivalent of one lecture hour (one 50-
minute lecture) per week for 14 weeks plus a week for examinations. Hence, thirty semester hours (one year of
study) is equivalent to 30×14 = 420 lecture hours.

The CE2016 steering committee believes that 420 core hours reflects a minimal curricular component needed to
produce a competent computer engineer with the understanding that most programs will choose to include more
hours devoted to computer engineering content. Additionally, a student in computer engineering should
experience at least the equivalent of 120 lecture hours in mathematics. We acknowledge that 120 core hours of
mathematics is insufficient to produce a competent computer engineer, so the knowledge units in the
mathematics component focus only on the knowledge and skills that support essential components of the
computer engineering content areas. It is up to each program to decide the quantity and level of mathematics for
its graduates. See Chapter 6 for more discussion on this issue.

3.6 Curricular models

The discussion in the previous section provides a minimal framework for generating a body of knowledge for a
computer engineering program. Strong CE programs would ordinarily include much more mathematics, science,
and CE content to produce competent and competitive graduates for computing industries or for graduate studies.
While the 420 core hours within the body of knowledge encompass the learning outcomes that computer
engineering students should achieve, not all computer engineering programs will be able to include the entire set.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 29 of 149

This may be the result of institutional or programmatic goals and/or availability of resources. The expectation,
however, is that strong computer engineering programs would achieve all learning outcomes.

A three-year model includes one-half year of mathematics and science, one year of computer engineering core,
one year of computer engineering supplementary, one-half year of general and additional engineering studies. This
model is useful in those locations where general studies, mathematics, and science precede university studies. A
four-year model program includes one year of mathematics and science, one year of computer engineering core,
one year of computer engineering supplementary, one year of general and additional engineering studies. The
model is adaptable to many worldwide systems of study. Discussion and samples of curricular representations
appear in Chapter 6 and in Appendix B.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 30 of 149

Chapter 4

Engineering Practice and the Computer Engineering Curriculum

By its very nature, a computer engineering curriculum should reflect an engineering ethos that permeates all years
of the curriculum in a consistent manner. Such an approach has the effect of introducing students to engineering
(specifically, computer engineering), teaching them to think and function as engineers, and setting expectations for
the future. Preparation for practice is essential because many graduates from four-year programs directly begin
professional practice in much of the world.

The field of computer engineering (CE) has developed, matured, and expanded throughout industry. CE
professionals apply their skills in a broad range of diverse career sectors that include business, industry,
government, services, organizations, and other structured entities that use computers to automate or drive their
products or services efficiently.

People seeking CE careers have a great potential for success. A recent study by the Bureau of Labor Statistics (BLS)
shows that computer occupations are expected to increase 17.7% by 2022, with information security leading by
36.5% [BLS]. Unfortunately, although jobs are and will be available, finding qualified people to fill them is often
difficult. Students graduating from engineering programs such as computer engineering often do not have all the
attributes to fill the needs of industry. They may have technical skills acquired from their studies, but they lack
other skills needed “to fit” within an industry or government environment.

Students who graduate from a four-year university program assume that the baccalaureate degree is a sufficient
qualification to attain a position. This understanding may be true in some fields, but not in computer engineering.
Belief in this myth has stymied many a job hunter worldwide. The degree credential is likely to be necessary, but it
is not sufficient for a position. A general understanding exists in engineering and other fields that a successful
professional must be a good communicator, a strong team player, and a person with passion to succeed. Hence,
having a degree is not sufficient to secure employment.

Some people even believe that a graduate of a CE program who has a high grade-point-average (GPA) is more
likely to attain a position than one who has a lower GPA. This is another mythical belief. A graduate having a high
GPA is commendable. However, if s/he does not have the passion and drive, does not work well with others, does
not communicate effectively, and does not have the requisite personal skills, chances are that the person will not
pass the first interview.

The role of this chapter is to go beyond the body of knowledge introduced in Chapter 3 and examine the basic skills
necessary to enable the computer engineering graduate to apply this body of knowledge to real-world problems
and situations. Chapter 5 will then address the important matter of professionalism, and Chapter 6 will consider
overall curriculum design, along with introducing sample curricula implementations available in Appendix B.

4.1 The nature of computer engineering

An important initial aspect of the engineering ethos relates to acquiring the background necessary to understand
and reason about engineering concepts and artifacts. This background stems from fundamental ideas in areas such
as computing, electronics, mathematics, and physics. An important role of the body of knowledge for computer
engineering is to expose and develop these fundamental notions. In many ways, the core of the body of knowledge
reflects a careful set of decisions about selection of material that fulfills this role.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 31 of 149

This basic material then provides an underpinning for additional material whose ultimate expression is the building
of better or novel computer-based systems. A blend of theory and practice, with theory guiding practice, appears
to be the best approach to the discipline. The curriculum should accompany this blend with attention to a set of
professional, ethical, and legal concerns that guide the activities and attitudes of the well-educated computer
engineer. The curriculum should also foster familiarity with a considerable range of diverse applications.

4.2 Strategies for Emerging Technologies

The fields of computing and engineering have changed rapidly in recent times and there is an unwritten promise
that the change in these areas will accelerate drastically in the future. Hence, computer engineers must have the
background to adapt to new and emerging technologies in an agile manner. They should be able to identify
contributors to emerging technologies and identify companies that have failed because they did not adapt to a
changing field. The computer engineer, thus, should at least be aware of the positive and negative consequences
of developing emerging technologies.

So, how should computer engineers relate to an era of emerging technologies? One way is to identify stakeholders
associated with some of these technologies and to identify some strategic assumptions and social values related to
the development and application of these new areas. Often, industry breaks scientific barriers to formulate such
strategies; sometimes governments set strategic polices to expand or confine these strategies. Standards might
even emerge in dealing with emerging technologies. These strategies could involve applied technologies; others
could be conceptual in nature.

4.2.1 Applied Emerging Technologies

Computer engineers should be aware of applied emerging technologies. These technologies already exist in the
market place but they are sufficiently new that their influence on society is not completely known. Students should
be able to identify some applied emerging technologies and indicate their effects on computer engineering. The
identification and effects of applied emerging technologies on computer engineering is useful in producing a
competent engineer who can contribute to the profession in a changing world.

The computer engineering curriculum should allow the exploration of applied emerging technologies. For example,
teachers might encourage examination of ways in which 3D printers might produce artifacts that are harmful to
society or describe the challenges one would face in designing and producing integrated circuits. As another
example, students should be able to explain ways in which nanotechnology or the internet of things (IoT) can
transform the technological workplace. Computer engineers are already or will soon be interacting with optical,
biological, or quantum computers or they will be designing a new-age robotic system for manufacturing. These
newly emergent and modern technologies present challenges to computer engineering students and practitioners
that could involve financial and ethical tradeoffs affecting professional practice in a changing world.

4.2.2 Conceptual Emerging Technologies

Computer engineers should also be aware of conceptual emerging technologies. These technologies are those that
exist in some developing state with recent entrance or possible entrance in the market place. Students should be
able to identify some conceptual emerging technologies and indicate some of their effects on computer
engineering.

The computer engineering curriculum should allow exploration of new inventions that have yet to emerge as
viable technologies. For example, teachers might encourage exploration of ways in which a computer engineer
would design environments involving augmented reality and virtual worlds or ways in which big data and data
analytics might affect the work of a computer engineer. These activities would affect design constraints needed to

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 32 of 149

address emerging areas such as computational biology and bioinformatics. Additionally, it would be useful to have
students explore the role of a computer engineer in an era of machine learning and intelligent systems, or discuss
engineering strategies needed in developing a culture of green computing and sustainability. New technologies
might even expose safety issues affecting the field of computer engineering. Awareness of these and other issues
are important in developing a well-rounded and social conscious computer engineer.

4.3 Design in the curriculum

In Chapter 2, a brief discussion of the characteristics of a computer engineer included the ability of the engineer to
design and provide, as well, a definition of engineering design. The following sections provide guidance on how
design can be incorporated within the computer engineering curriculum.

4.3.1 Design throughout the curriculum

The principles of engineering design must pervade the entire computer engineering curriculum to produce
competent graduates. Throughout their education, computer engineering students should encounter different
approaches to design so that they become familiar with the strengths and weaknesses of these approaches.
Typically, the context in which design occurs provides a framework for deciding which choices one must make.
Depending on the specific application requirements, the design context might emphasize technical considerations,
reliability, security, cost, user interface, or other considerations. Development of the requisite design skills cannot
be achieved through a single course, but must be integrated throughout the curriculum, building on both the
accumulated technical knowledge and prior design experiences of the students.

One area of concern to the computer engineer is the software/hardware interface, where difficult trade-off
decisions often provide engineering challenges. Considerations on this interface or boundary lead to an
appreciation of and insights into computer architecture and the importance of a computer’s machine code. At this
boundary, difficult decisions regarding hardware/software trade-offs can occur, and they lead naturally to the
design of special-purpose computers and systems. For example, in the design of a safety-critical system, it is
important to ensure that the system not harm the user or the public. The computer engineer must thoroughly test,
even with unlikely parameters, the hardware and software, and ultimately the system itself, to ensure that the
system operates properly and reliably.

At a different level are the difficult issues of software design, including the human-computer interface. Addressing
this comprehensively can lead to considerations about multimedia, graphics, animation, and a host of other
technologies. Similarly, one can make the same argument for issues in hardware design. In short, design is central
to computer engineering.

4.3.2 The culminating design experience

The concept of a culminating design project is widely valued as an important experience occurring toward the end
of a curriculum. Students consider a significant problem associated with a discipline and, in solving the problem,
demonstrate their ability to apply methodically engineering principles to generate a solution. For computer
engineering, the solution typically involves the design and implementation of a system or subsystem containing
both hardware and software components and considering a variety of interactions and tradeoffs. The design
experience is often team-based, which best reflects industry practice. Ideally, the design experience should
incorporate engineering standards and realistic constraints to represent what might occur in a real environment.

The culminating design experience should provide students with a wealth of learning benefits. The benefits
stemming from this experience include the following:

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 33 of 149

x engagement at the level of the structure and function of the overall system, including consideration of
relevant ethical and social implications

x demonstration of the ability to integrate concepts from several different subjects into a complete system
that provides a solution

x demonstration of the application of tools and principles associated with computer engineering
x production of a well-written document (and other materials) detailing the design and the design

experience
x demonstration of creativity and innovation
x development of time management and planning skills
x self-awareness opportunities provided by a measurement of achievement

A program could find evidence that students have attained specific knowledge and skills in many ways. These
might include a demonstration, a presentation, an oral examination, production of a web site, or industry review.
Although not listed in the core body of knowledge, the culminating design experience must be an integral part of
the undergraduate experience. While many core learning outcomes will occur before the culminating design
experience, some may best be introduced during it, thereby emphasizing the need for lifelong learning

4.4 Laboratory experiences

Laboratory experiences are an essential part of the computer engineering curriculum and they serve multiple
functions. As in any engineering curriculum, it is important that computer engineering students have many
opportunities to observe, explore, and manipulate characteristics and behaviors of actual devices, systems, and
processes. This includes designing, implementing, testing, and documenting hardware and software, designing
experiments to acquire data, analyzing and interpreting that data, and using that data to correct or improve the
design and to verify that it meets specifications.

Introductory laboratories (e.g., programming laboratories) are typically somewhat directed and designed to
reinforce concepts presented in lecture classes and homework. Such activities demonstrate specific phenomena or
behaviors and they provide experiences such as varying parameters to attain desired characteristics. Intermediate
and advanced laboratories should include problems that are more open-ended, requiring students to design and
implement solutions or requiring them to design experiments to acquire data needed to complete the design or to
measure various characteristics.

It is not the purpose of this report to recommend which is the best method of engaging students in laboratory
experiences. Individual programs should seek out options that best suit their needs based on available space, the
course objectives, and the resources available.

4.4.1 Computer engineering laboratories

Many courses in computer engineering should contain laboratory experiences. Typically, a laboratory experience
lasts two or three hours and it occurs in a location configured with specialized equipment. The depth and breadth
of these experiences will vary among institutions. The variation often depends on the time allocated within the
curriculum, physical space, and resources. Table 4.1 illustrates the steering committee recommendation on the
types of laboratories students studying computer engineering should experience. Some laboratories involve
practices that all computer engineering students must or should do. Those laboratories indicated by “●●●●” refer
to distinguishing experiences every computer engineer must have while those indicated by “●●” refer to
experiences every computer engineer should have. Availability of supplemental laboratories will depend on local
program needs, objectives, and resources; Table 4.1 illustrates some common types of laboratories. Appendix C
suggests typical descriptions, configurations, and offerings for laboratories other than Senior Project Design
Laboratory, which should reflect the specific needs for individual projects and the mission of each program.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 34 of 149

Table 4.1: Types of computer engineering laboratories

Laboratory Type Must Should Supplemental
Circuits and Electronics ●●●●
Computer Architecture Design ●
Digital Signal Processing ●
Digital Logic and System Design ●●●●
Embedded Systems ●●●●
Introduction to Engineering ●
Networking ●●
Software Design ●●
Senior Project Design ●●●●

Table 4.2 shows additional laboratory options that programs could consider.

Table 4.2: Suggested Additional Computer Engineering Laboratories
Audio Engineering
Computers in Manufacturing
Electrical Energy Systems
Graphics
Mechatronics

Microwave Measurements
Operating Systems
Robotics
Specialized Electronics Lab
Teaching Enhancement
Telecommunications

Laboratories should include some physical implementation of designs such as electronic and digital circuits, bread-
boarding, FPGAs/CPLDs, microcontroller-based systems, prototyping, and implementation of firmware.
Laboratories should also include application and simulation software to design computer systems including digital
systems. Simulation tools present intrinsic value as part of professional computer engineering practice. They are
useful in modeling real systems and they are often desirable and necessary to allow students to study systems that
are impractical to design and implement given available time and resources. In addition, configuration
management and version control software should be used for both hardware and software.

Students should learn to record laboratory activity to document and keep track of all design activities, conducted
experiments, and measured/observed results whether good or bad. This also offers opportunities to record
tradeoffs and to explore the effects of design tradeoffs. The laboratory experience should also assist students in
learning practical issues such as:

x safety in all laboratories, especially where electronic equipment and electricity pose dangers
x proper use of computers and test equipment
x building electrical and electronic circuits and systems
x building and testing software
x understanding processes and issues associated with product development and manufacturing
x recognizing opportunities for trade-offs (such as hardware, software, off-the-shelf IP, time/space, power,

modularity, modifiability, security, and efficiency) and being able to make informed decisions in this area

At the formative stages of their education, students often are motivated by the hands-on nature of engineering.
Laboratory experiences capitalize on this interest to provide a foundation for other important elements of practical
activity. Fundamentally, carefully planned practical assignments in a laboratory setting should help students
develop confidence in their technical ability. Laboratory experiences should help students develop the expertise
needed to build new products and to appreciate the important role of technical staff, workshop teams, and
professionals from other disciplines.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 35 of 149

4.4.2 Software considerations

Software tools and packages related to computer engineering will vary based on the philosophy and needs of each
program. Table 4.3 suggests some software that could appear on all machines within specific laboratory settings.
Products mentioned in this table are included for illustrative purposes only and represent options available at the
time of writing of this report; no endorsement of a specific product is implied. Additionally, it is not envisioned that
any program will incorporate every one of these software applications. Each program should determine its own
needs and consider including the most current version of appropriate applications.

Table 4.3: Suggestions for possible software applications
Design modeling and simulation
x Circuit-level (e.g., SPICE)
x Gate-level (schematic entry)
x Digital systems (e.g., VHDL, Verilog)
x Analog/mixed-signal circuits

(e.g., VHDL-AMS, Verilog-AMS)
x System-level design (e.g., System

Verilog, System C)

Digital hardware prototyping
x FPGA/CPLD development suite
x Design file entry and management
x Component/IP library support
x Device programming
x Interactive debugging

Microcontroller system design
x Integrated development

environment (IDE)
� Design entry/management
� Library support

x Compilers, assemblers, linkers
x Processor simulators/emulators
x Device programming
x In-circuit test/debug

Mathematics packages
x Problem solving
x Data analysis
x Modeling and simulation

Software development
x Integrated development environment

(IDE)
� Design entry and management
� Library support

x Compilers (e.g., C, C++, C#, Java,
Python)

x Operating system support
x Source-level debugging
x Platform support (e.g., smartphone,

tablet)

Integrated circuit/ASIC design
x Design capture and simulation
x Synthesis
x Physical layout

� graphical layout editor
� automated layout

x Design verification (design rules, layout
vs. schematic, parameter extraction)

x Design for testability, automatic test
pattern generation

Printed circuit board (PCB) design

Computer-aided design and modeling
(CAD tools)

Laboratory automation and
instrumentation (e.g., IntuiLink or
LabVIEW software)

General computing/productivity
x Web browser
x Email
x Office suite
x PDF reader/editor
x Illustration/photo viewer/editor
x Multimedia players/editors
x File compression/

decompression
x File transfer (FTP, SCP, SFTP)
x Terminal emulator, remote

login, secure shell, X Window
client

System engineering tools
x Project management (e.g.,

GANTT or PERT charts)
x Requirements and specifications

management (e.g., UML tools)

Other tools
x Robotics software development
x Semiconductor device and

process modeling (e.g., TCAD)
x Microwave, RF and other high-

speed/high-frequency design
x Electromagnetic field simulation
x MEMS design

4.4.3 Open-ended laboratories

The computer engineering curriculum often contains open-ended experiences where true research and
development takes place. One might view this as the “ultimate lab experience.” A culminating or capstone design
experience usually embodies this open-ended flavor. In such situations, an instructor and a team of students
decide on an exploration area and, once decided, the student team begins the research and design process.
Programs usually provide a dedicated space where teams can meet and work. These spaces generally contain
modern facilities and provide sufficient space for electronic devices (e.g., robots) and other equipment required by
the project at hand.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 36 of 149

4.4.4 Embedded laboratories

The traditional laboratory experience normally takes place in a room separate from the lecture and at a different
time. For example, a graphics course might have lectures on Tuesday and Thursday, with a three-hour laboratory
on Wednesday. It is increasingly common in modern educational settings to have laboratories embedded within
ordinary courses. One such practice is to have lectures take place within the laboratory itself. Another is to
partition a room in some manner and have the lecture take place in one part of the room with the laboratory and
its associated equipment in another part of the same room. There is also an emerging trend to have “flipped
classrooms” in which lectures are recorded for students to view in advance. Then class time is used to engage the
students in active learning, which could include students bringing their own breadboards and instrumentation, and
engaging in laboratory exercise.

4.4.5 Technical support

A program needs to have ready access to technical support to develop a “working lab” environment. For example,
to create a new antenna design for experimentation, it might be necessary to use existing facilities available at a
technical workspace that contains a lathe and welding tools. The center might contain 3-D printers, a wide variety
of standard circuit components and chips, and special tools and equipment such as modern microcontroller and/or
FPGA development boards for general use.

4.4.6 Student purchases

Another trend is to have students purchase their own laboratory equipment or obtain special free or low-cost
versions of software tools. With the cost of some equipment at remarkably low prices and the size of special
packages reduced to a simple toolkit, students can now purchase their own software and equipment and bring it
to their laboratory classes. (Departments usually have a limited number of spares available for student checkout if
needed.) This has the advantage of allowing students to conduct laboratory experiments outside the formal
laboratory environment. Examples of student purchases include:

x personal instrumentation (e.g., oscilloscope, multimeter, logic analyzer, waveform generator) connected
to a laptop computer that hosts soft instrument front panels

x breadboard, with integrated power supply, for circuit construction
x low-cost microcontroller and FPGA development boards
x student versions of modeling, simulation, and software development tools

4.5 The role of engineering tools

The use of tools is fundamental to engineering to effectively organize information and manage design complexity.
Familiarity with commonly used tools, the ability to deploy them in appropriate situations, and the ability to use
them effectively are important skills. In the rapidly changing world of computer engineering, there are also
opportunities for identifying roles for new tools and their applications. The development and exploitation of high-
quality tools is part of the role of the computer engineer.

For the computer engineer, the relevant range of tools spans the whole hardware and software spectrum.
Hardware design and analysis tools include instruments for measuring and analyzing hardware behavior; tools for
modeling and simulating circuits and systems; hardware description languages; tools to automate various design
steps, including synthesis, test pattern generation, and physical implementation (e.g., FPGA map-place-route);
emulators; and debugging tools. Other hardware design tools include those to support circuit design, printed

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 37 of 149

circuit design layout, circuit behavior analysis, block diagram creation and editing, communications systems
modeling, mixed analog and digital simulation modeling, design rule checking, and virtual instruments.

Software design and analysis tools include operating systems, version control systems, IDEs, GUI designers,
language processors, interactive debuggers, and computer-aided software engineering (CASE) tools. General
support tools include algorithm development and mathematical analysis environments (such as MATLAB and
Mathcad), office software (word processors, spreadsheets, browsers, and search engines), databases,
communications software, and project management tools.

Not every computer engineering program will incorporate every one of these tools. The program should
incorporate appropriate tools throughout the program of study, consistent with the program’s goals and
objectives. Understanding the limitation of tools and identifying the scope for the development of tools and
components generally is yet another role for the computer engineer. A natural subsequent activity is engaging in
the design and development of these items. Such activities need to be guided by concerns for quality in its many
guises—safety, usability, reliability, security, and so on.

4.6 Applications of computer engineering principles

Given the nature of computer engineering and the expectations of students entering such courses, applications
play a fundamental role. Instructors can use applications as a means for:

x motivating students in their studies
x guiding students’ thinking and ambition
x providing justification for the inclusion and prominence of certain material
x demonstrating the application of theoretical ideas

A program can achieve these attributes through a range of possible routes. These include the use of up-to-date
and topical case studies, guided reading, plant visits, speakers from industry, and other diverse paths. This
experience can occur at a range of levels, including chip design, development of software tools, and development
of entire systems. Suitable applications can also provide a forum for group work, perhaps of an interdisciplinary
nature. To this end, all computer engineering students should engage in an in-depth study of some significant
application that uses computing engineering in a substantive way.

Computer engineering students will have a wide range of interests and professional goals. For many students, in-
depth study of some aspect of computer engineering will be extremely useful. Students can accomplish such work
in several ways. Some approaches might include an extended internship experience or the equivalent of a full
semester's work that would count toward a major in the discipline. Some institutions offer cooperative education
programs during which students alternate terms of study and engineering work in industry. Activities of this kind
can be interdisciplinary in nature and provide opportunities for particularly beneficial kinds of group activity. Thus,
the computer engineer might work with professionals from other disciplines, such as computer scientists, electrical
engineers, mechanical engineers, entrepreneurs, financial experts, marketers, and product designers.

4.7 Complementary skills

In today’s world, there are pressures on institutions to ensure that graduates have the capacity to meet the needs
of employers. A more positive view is that institutions can be agents of change, producing graduates who are
prepared to move into employment with skills and expectations that benefit their employers.

One aspect of this is ensuring that students possess a set of transferable or personal skills such as communication,
teamwork, and presentation skills. Transferable skills are those skills a person can use in any occupation and can
convey from one type of work to another without retraining. Additionally, one could include library and research
skills as well as professional skills such as time management, project management, information literacy,

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 38 of 149

information management, career development, self-awareness, and keeping up-to-date with innovations in the
field. From a motivational perspective, students should receive formative feedback on these skills in the context of
computer engineering and in a way that highlights their relevance and importance to the discipline.

There is always a danger that time spent on complementary skills can absorb excessive amounts of time and effort
and swamp or displace the more traditional material, thereby reducing knowledge. There are delicate issues of
balance here, and, typically, a subtle approach to both teaching and testing is required to ensure that there is not
imbalance in the curriculum.

4.7.1 Communication skills

Computer engineers must be able to communicate effectively with diverse audiences. Because of the importance
of good communication skills in nearly all careers, students must sharpen their oral and writing skills in a variety of
contexts—both inside and outside of computer engineering courses.

One specific aspect of the activity of a computer engineer is to convey and negotiate project requirements and
implementation details to a workshop or technical support staff, which in an industrial setting might be local or
remote. Providing clear and succinct documentation and having a proper regard for the role and purpose of
support staff affects the efficiency and the nature of the working environment. This trait is a fundamental
communication skill. Considering these issues, students should learn to:

x communicate ideas effectively in written form, including technical writing experiences (e.g.,
specifications, requirements, safety cases, documentation) as well as report writing, including the use of
figures, diagrams, and appropriate references;

x develop persuasive presentation materials and make effective oral presentations, both formally and
informally;

x understand and offer constructive critiques of the writings and presentations of others;
x argue (politely yet effectively) in defense of a position;
x extract requirements from a customer by careful and penetrating questions using a disciplined and

structured approach;
x demonstrate the capabilities of a product.

Although institutions might adopt different strategies to accomplish these goals, each computer engineering
student’s program must include numerous occasions for improving these skills in a way that emphasizes writing,
speaking, and active listening skills.

To enhance or emphasize the requisite communication skills needed by all students, a computer engineering
curriculum at a minimum should require:

x course work that emphasizes the mechanics and process of writing
x course work that emphasizes the mechanics and process of speaking
x one or more formal written reports
x opportunities to critique a written report
x one or more formal oral presentations to a group
x opportunities to critique an oral presentation

Furthermore, the computer engineering curriculum should integrate writing and verbal discussion consistently in
substantive ways. Institutions should not view communication skills as separate entities; instead, teachers should
incorporate fully such skills into the computer engineering curriculum and its requirements.

A complementary and important set of communication skills arises in the context of electronic media. These have
a central role to play in the life of the engineer. Apart from the obvious need to address areas such as email,

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 39 of 149

electronic calendars, and code and document repositories, students should engage, at some level, with effective
cooperative working and group learning.

4.7.2 Teamwork skills

Few computer engineering professionals can expect to work in isolation for very much of the time. Groups of
people working together as a team implement major computer engineering projects. And often, the teams are
interdisciplinary in nature. Computer engineering students therefore need to learn about the formation of
effective teams and the mechanics and dynamics of effective team participation as part of their undergraduate
education. Moreover, because the value of working in teams (as well as the difficulties that arise) does not become
evident in small-scale projects, students need to engage in team-oriented projects that may extend over a full
semester or more.

Many of the problems of teamwork relate to communication skills. Where interdisciplinary teams are involved,
individuals tend to receive roles, at least in part, based on their technical expertise. In team activity, however,
there are important additional issues related to such matters as the nature and composition of teams, roles within
teams, organizing team meetings, developing methods for reaching consensus and recording decisions, the
importance of interfaces, the nature of deadlines and planning, and the importance of quality-control mechanisms.
Computer engineering programs should include activities that ensure that students acquire these skills as
undergraduates, such as with

x opportunities to work in teams beginning relatively early in the curriculum and/or
x a significant project involving the complex design and implementation of some product or prototype,

undertaken by a small student team

4.7.3 Soft or personal skills

Industry managers almost unanimously agree that soft skills (or personal skills) are a primary criterion for hiring a
graduate in a computing-related position. Conventional wisdom among industry managers dictates that soft skills
and technical skills have equal or similar value.

So, what exactly are soft skills? One definition states that soft skills are “desirable qualities for certain forms of
employment that do not depend on acquired knowledge: they include common sense, the ability to deal with
people, and a positive flexible attitude.” [DICT] Another definition indicates that soft skills are “the character traits
and interpersonal skills that characterize a person's relationships with other people.” [INVEST] This definition
continues, “soft skills have more to do with who we are than what we know. As such, soft skills encompass the
character traits that decide how well one interacts with others, and are usually a definite part of one's
personality.” [INVEST]

In the field of computer engineering and in other fields, soft skills often complement hard skills, which are specific
learned abilities. Often, we refer to these soft skills as part of social intelligence or “the ability to connect to others
in a deep and direct way, to sense and stimulate reactions and desired interactions.” [CHIN] This ability to connect
with co-workers in a convincing manner will be extremely important in the future. In fact, it is likely to become the
distinguishing factor between those who are successful in their careers and those who are not.

4.7.4 Experience

Even with the requisite personal, communication, and teamwork skills, technical knowledge may not be sufficient
in certain industry environments without prior industry experience. This chicken-and-egg scenario has haunted
university graduates for decades and centuries.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 40 of 149

In recent years, the engineering industry has been fortunate to have many opportunities for part-time or even full-
time employment on a temporary basis. Such opportunities can take many forms for students. Engaging in an
internship, cooperative-education, or work-study program will not only allow students to gain practical experience,
but it might also allow them to gain academic credit and, in many cases, to receive pay for their work. Often, this
experience does not allow students to take courses, so the focus is on the practicum and not on passing exams.
Any constructive industry experience a student acquires is a definite plus for those seeking permanent
employment upon graduation.

Often students work part-time while studying at a university. This blending of real world experience and academic
endeavors provides a necessary component to help them decide on future career goals. Academia needs to
embrace this experience since this is what helps differentiate one candidate from another. Experience often
becomes a key component for success in achieving a position after graduation. Even though the shortage of
qualified computing professionals is expected to continue into the 2020s, a complex interviewing scenario with
much competition continues to remain for desirable positions [CHIN].

Undergraduate CE programs should explore all possibilities in bridging the experience gap between academia and
industry. Developing a robust industry connection should always be a priority. For example, developing a strong
professional advisory board is one way to open doors with industry because members of that board will develop a
bond with the program. Therefore, academic CE programs should seek all avenues with industry so their graduates
have a greater chance of employment and engagement.

4.7.5 Lifelong learning

Rapid technological change has been a characteristic of computer engineering and is likely to remain so for some
time to come. Graduates must be able to keep abreast with changes, and a key requirement of undergraduate
education is equipping students with the mechanisms for achieving this.

There are a number of appropriate basic strategies. The curriculum itself must be current, the equipment must be
up-to-date, and faculty members must be engaged in relevant scholarship. Reference material such as textbooks,
software, web sites, MOOCs, case studies, and illustrations can be part of the learning experience with the aim of
identifying sources of current and interesting information. Additionally, students should be familiar with the wide
variety of related resources provided by their professional societies, such as the ACM Learning Center and the IEEE
Speakers Bureau.

Lifelong learning is essentially an attitude of mind, including recognition of the need for new knowledge, the ability
to search for and identify relevant information, and the ability to evaluate and apply that knowledge. Institutions
can foster such attitudes with novel approaches to teaching and learning that continually question and challenge
situations and by highlighting opportunities for advances. Instructors can challenge students by exercises that seek
to explore new avenues. It is also essential to see learning as an aspect that merits attention throughout the
curriculum. It is possible to have a planned learning experience that challenges student thought processes.

4.7.6 Business perspectives

To complement the technical side of their experiences, computer engineers need an understanding of the various
nontechnical processes associated with the development of new products. Fundamentally, the computer engineer
needs to develop an appreciation of creativity and innovation and have an eye to new opportunities for profitable
business ventures, both within established companies and in entrepreneurial endeavors. Students can benefit
from such knowledge in multiple ways, including:

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 41 of 149

x understanding the importance of the financial and economic imperatives associated with new products
and organizations

x appreciating the relevance of the marketing perspective
x knowing what is involved in product design and product acceptability
x understanding various approaches to the protection of intellectual property
x appreciating the benefits of teamwork, often interdisciplinary in nature

In addition, students need to understand and appreciate their fiscal responsibilities to their employers. Time
translates to money and the importance of completing jobs on schedule is important. The business world can also
present tensions between corporate systems and ethics. Students should be aware of the professional challenges
that might await them in government or corporate service. Within the computer engineering curriculum, such
areas can be covered in separate courses (for example, economics, engineering economics, marketing, or
accounting), included as part of the culminating design project, or integrated into other courses throughout the
program.

4.8 Becoming professionals

As students prepare for their future career, an important consideration is their ability to transition from an
academic environment to a career within a corporation, organization, academic institution, or even an
entrepreneurial environment. This transition could be difficult if an individual has not received the proper
exposure to both technical and complementary skills during his or her academic career.

Adaptability is a personality trait that is especially important within the computing industry, and will be very
important for career success in the future. The Gartner Group is predicting a new “digital industrial revolution”
that will force major changes on us—from 3D printing to the use of non-overridable smart systems to wearable
computing [ALIBAB].

In addition to focusing on the industry and gaining valuable work experience while attending a college or
university, it is important that students nearing graduation are prepared for important interviews. This preparation
includes structuring their resumes into a format that highlights their technology background. What distinguishes a
technical resume from a standard one is the emphasis on attributes such as specific technical and personal skill
sets as well as industry certifications. Being able to handle a successful interview is a career skill that is essential for
students to practice and master during their academic studies. If students are unable to handle the rigors of a
career interview, their academic GPA and various scholastic achievements will likely fail them in achieving the
desire goal of a useful education in computer engineering.

4.9 Elements of an engineering education

In summary, proper preparation for professional practice should result in graduates who are capable of the
following:

x seeing their discipline as based on sound principles and sound underpinnings, to recognize what these
are, and to be able to apply them

x understanding the important relationship between theory and practice
x placing importance on design and being able to select appropriate approaches in various contexts
x recognizing the importance of developing effective oral and written communication skills
x recognizing the importance of understanding relevant professional, ethical, and legal issues
x recognizing the importance of tools, being able to respond to the challenges of building them, and

recognizing the need to use them properly and effectively
x recognizing the range of applications for their work

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 42 of 149

x seeing innovation and creativity as important and understanding relevant business perspectives and
opportunities

x recognizing the importance of team activity and the strengths that can be derived from it
x understanding principles of product design including health and safety as well as marketing issues
x seeing disciplined approaches as being important
x understanding the social context within which engineers need to operate
x being able to address a significant problem in computer engineering, and demonstrating the ability to

deploy an appropriate selection of tools and techniques as well as a disciplined approach in arriving at a
solution of the problem

Beyond these characteristics, this chapter has sought to address the range of basic ingredients that institutions
must assemble and carefully integrate into a computer engineering program to ensure that graduates are aware of
the best traditions of engineering practice.

4.10 Graduate and continuing professional education

Because of the rapidly changing field of computing, the steering committee strongly encourages graduates from
computer engineering programs to pursue advanced studies in graduate school. Since this report focuses on
baccalaureate (undergraduate) programs, interested parties should explore what best meets their interests and
needs. Depending on the structure of their undergraduate education, many possibilities exist for graduate work. At
that level, depth is necessary as well as an element of specialization.

Students embarking on graduate studies have opportunities to obtain a deeper understanding of hardware issues,
software issues, models, the interactions between these issues, and related applications. A combination of theory,
practice, application, and attitudes (and, at this level, even innovation) will continue to guide the construction of
each module or course. As befits a master’s degree, the emphasis on (normally individual) project work especially
in the final year is often considerable. For students at that level the projects will typically be addressing innovative
concepts that are close to the frontiers of new developments or research.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 43 of 149

Chapter 5

Professional Practice

As noted in Chapter 2, people generally understand that computer engineering (along with other engineering
disciplines) is a profession, not simply a career field, which imposes certain obligations on its practitioners with
respect to the social context of professional practice. Hence, professionalism and professional practice are central
in the lives of computer engineers and all engineers for that matter.

Computer engineers differ from other computing specialists in their concentration on the design and
implementation of computer systems (including both hardware and software) that affect the public. Hence,
computer engineers must consider the professional, societal, and ethical context in which they do their work. This
context includes issues such as intellectual property rights embodied by copyrights and patents, legal issues
including business contracts and employment agreements, security, and privacy issues as they apply to networks
and databases, liability issues as applied to hardware and software, and economic issues as they apply to tradeoffs
between product quality and profits.

Professionalism also includes ethical issues related to design decisions and it requires attention to equity issues as
they apply to technological access for all individuals. Computer engineers must be aware of the social context of
their actions and be sensitive to the global implications of their activities. This requires an ability to interact with
people (soft skills), understanding cultures and mores, working on and with teams, and communicating effectively
using a variety of media for a wide range of audiences, business skills to function within enterprise organizations,
and individual skills such as creativity, innovation, and leadership. Therefore, as the field of computing continues to
change and as professional interaction becomes more global, an unprecedented opportunity exists to make
professional practice a seamless part of the curriculum in computer engineering.

We now show ways in which professional practice can be an integral part of computer engineering and we explore
various strategies for incorporating professional practice into the CE curriculum. The individual sections review the
underlying rationale, current practice in education, support for professional practice from both the private and
public sector, techniques for incorporating professional practice into a curriculum, and strategies for assessing the
effectiveness of those techniques.

5.1 Overview of professional practice

Social context should be an integral component of engineering design and development. The public would not
expect that the design and construction of a building, bridge, or tunnel would be void of social context. Likewise, it
would not expect that the design and construction of a computer system used in an x-ray machine would be void
of social context. Computer engineers should apply best practices to their work. They should also follow prescribed
rules of professional practice and not engage in activities that would tarnish their image, their employer’s image,
or their practicing colleagues.

5.1.1 Professional practice and the CE curriculum

Professionalism and ethics should be the cornerstone of any curriculum in computer engineering. The focus on
design and development makes social context paramount to one’s studies in the field. Professionalism should be a
constant theme that pervades the entire curriculum. Computer engineering students must learn to integrate

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 44 of 149

theory, professional practice, and social constructs in their engineering careers. Computing professionalism should
be a major emphasis of the curriculum.

It is important to incorporate professional practice into the curriculum because graduates of computer engineering
programs will face real-world issues in the workplace, issues such as the needs of the public and private sector, the
public's demand for higher quality products, the increasing number of computing liability cases, and the need to
promote lifelong learning. In most cases, students enter school without a complete knowledge or appreciation for
these issues, and this lack of knowledge is a source of frustration both for those who teach these students and for
those who hire them. Indeed, as students learn more about professional practice and its underlying issues, they
become more interested in their studies and how they can work well with others. Therefore, incorporating
professional practice into the curriculum can serve as a catalyst to stimulate and broaden a student's interest in
computing.

5.1.2 Professional needs

Both the private and public sectors have a stake in students learning professional practice. They find that students
who have experience with the realities of professional work understand the value of interpersonal skills in
collaborating with team members and clients, maintain their focus on producing high-quality work, adhere to
strong ethical convictions, contribute their time and talents to worthy outside causes, engage in lifelong learning,
and participate in improvements in their organizations.

The connections between employers, graduates, and students are becoming ever more important. The growing
demand for better, less defect-ridden products has also increased the pressure to incorporate professional
practice into the curriculum. Haphazard web-system design techniques are widely recognized as a significant factor
in producing web systems with a high number of defects. Thus, clients are demanding “proof” of reliable system
processes before they will sign a contract with provider. Students need to understand the value of establishing
face-to-face relationships with clients, agreeing to implementable requirements, and producing the highest quality
computer systems possible.

5.2 Decisions in a Societal Context

Computer engineers will face many decisions in their careers. While most of these decisions will be technical ones,
others will involve a significant societal context. Computer engineers should understand the legal ramifications of
contract law, business organization and management, and corporate law.

Of importance are issues related to intellectual property. There is considerable interest in free open-source
hardware and software that may have legal and ethical implications. An understanding of patent law is important,
particularly when the companies for whom they work may have an active patent program or when entrepreneurs
develop their own products. It is also necessary to understand copyright law since many entrepreneurs and
employers copyright the software they produce. Another method of protecting intellectual property is the use of
trade secrets. Different governments have different laws regarding patents, copyrights, and trade secrets. Since
the computer engineer will be working in a global context, an understanding of patents, copyrights, and trade
secrets and their application is important.

Privacy and secrecy are fundamental to computing. Computers can store vast amounts of information about
individuals, businesses, industries, and governments. People can use this information to create profiles of these
entities. Computer engineers who are involved in the design of information storage systems must be cognizant of
the multiple uses of the systems they develop. Computer engineering students should study cases that foster an
awareness of the social context in which the computing systems might be used.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 45 of 149

Computer engineers will most certainly have to deal with tradeoffs. Sometimes these are technical decisions such
as time versus space tradeoffs in a computer system. Sometimes, however, they involve social, economic, or
ethical tradeoffs. Such decisions can be about levels of risk, product reliability, and professional accountability.
Computer engineers must be aware of the ramifications of taking risks and of the social consequences of taking
risks, be accountable for the designs they develop, and be aware of the actions they take and the potential
consequences of them. These decisions may even involve safety critical systems or life/death situations. Good
engineers should not only be cognizant of the societal effects of such decisions, but they should take measures to
act professionally to protect the public and to nurture the public trust.

Best practices begin in the instructional laboratory and educational institutions should encourage behavioral
patterns in laboratories that reflect best practices. Such patterns set a level or norm of behavior and elevate the
professional expectations of students. They also create a learning environment that is supportive of the
professional tenets to which computer engineers aspire. For example, educational institutions should establish
safety guidelines for the proper use of machines and equipment. They should also provide guidelines on
interpersonal skills between students, students working in groups, and students interacting with technicians in a
laboratory setting. And educational institutions should instill a sense of professionalism and best practices in all
computer engineering students.

Morality is another aspect of making decisions in a societal context. A computer engineer should be aware that
many systems of morality exist. Case studies can be helpful to students so they understand the environments in
which they will function.

5.3 Professionalism and education

Many strategies currently exist for incorporating professional practice into the curriculum. Among the most
common characteristics of these strategies are courses that help students strengthen their communication,
problem-solving, and technical skills. Computer engineering programs can foster these skills in computing courses.
Alternatively, programs may provide experiences outside computer engineering departments such as in a speech
class from a communication department or a technical writing class in an English department. Accreditation
bodies, however, usually require not only that students acquire these skills through either general education
requirements or courses required specifically for computer engineering, but that they apply these skills in their
later academic experiences.

The level of coverage assigned to professional practice varies depending on institutional commitment,
departmental resources, and faculty interest. With the growing emphasis on professionalism in accreditation
settings, it is likely that institutions will strengthen their commitment to teaching professional practice.

5.3.1 Special student experiences

The following list outlines several potential mechanisms for incorporating additional material on professional
practice.

x Culminating Design Courses: These courses typically form a one- or two-semester sequence during a
student's final year. Usually, students must work in teams to design and implement projects. Often, those
projects involve consideration of real-world issues including cost, safety, efficiency, and suitability for the
intended user. Students could develop projects that may be solely for the class, or the project may also
involve other on- or off-campus clients. Although the emphasis of the course is on project work and
student presentations, some material on intellectual property rights, copyrights, patents, law, and ethics
may be included.

x Professionalism, Ethics, and Law Courses: These courses are one semester long and expose students to
issues of professional practice, ethical behavior, and computer law, geographical limits of the authority of
different country courts. Study areas included may be history of computing, effect of computers on

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 46 of 149

society, computing careers, legal and ethical responsibilities, international computer law, and the
computing profession.

x Practicum/Internship/Co-op Programs: These programs are sponsored by the institution (preferably) or
department to allow students the opportunity to work in industry full- or part-time before graduation.
Having adequate administrative support for such programs is essential to their success. Students typically
work during the summers and/or from one to three semesters while they are engaged in their four-year
degree. The students who do a co-op or an internship generally do so off campus and so may interrupt
their education for a summer or a semester. Students usually receive payment for their work, but may
also receive course credit.

x Team-based Implementation Courses: These courses emphasize the process of CE system development
and typically include a team project. The course could include development processes, project
management, economics, risk management, requirements engineering, design, implementation,
maintenance, software and hardware retirement, system quality assurance, ethics, and teamwork. The
coverage is usually broad rather than in-depth.

x Entrepreneurial Innovation Courses: The computing industry needs disruptive innovation and major
companies to provide new technologies and more job opportunities. This course discusses the basics
every manager needs to organize successful technology-driven innovation in entrepreneurial settings or
established firms—innovation that will integrate creativity and design thinking in the business functions of
engineering, management, communication, and commerce. The students will evaluate, research, write,
and present business plans using their knowledge of the entrepreneurial process.

Many courses outside computer engineering departments can also help students to develop stronger professional
skills. Such courses include, but are not limited to, philosophical ethics, psychology, business management,
economics, technical communications, and engineering design.

5.3.2 Administration, faculty, and student roles

At the highest institutional level, the administration must support faculty professional and departmental
development activities. Such activities may include consulting work, professional society and community service,
summer fellowships, obtaining certifications and professional licensure, achieving accreditation, forming industrial
advisory boards with appropriate charters, establishing co-op/internship/practicum programs for course credit,
and creating more liaisons with the private and public sectors. Such activities can be extremely time-consuming.
They are, however, enormously valuable to both the individual and the institution, which must consider these
activities in decisions of promotion and tenure.

Faculty and students can work together by jointly adopting, promoting, and enforcing ethical and professional
behavior guidelines set by professional societies. Faculty should join professional societies and help to establish
student chapters of those societies at their institutions. Through student chapters, faculty can give awards for
significant achievement in course work, service to the community, or related professional activities. In addition,
student chapters may provide a forum for working with potential employers and be instrumental in obtaining
donations, speakers, and mentors from outside the institution.

5.3.3 Incorporating Professional Practice into the Curriculum

The incorporation of professional practice must be a conscious and proactive effort because much of the material
blends into the fabric of existing curricula. For example, the introductory courses in the major can include
discussion and assignments on the impact of computing and the internet on society and the importance of
professional practice. When students undertake their second-year courses, they should start to keep records of
their work, just as a professional engineer does in the form of requirements, design, and test documents.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 47 of 149

Additional material such as computer history, digital libraries, search techniques, techniques for tackling ill-defined
problems, teamwork with individual accountability, real-life ethical issues, standards and guidelines, legal
constraints and requirements, and the philosophical basis for ethical arguments may also appear either in a
dedicated course or distributed throughout the curriculum. The distributed approach has the advantage of
presenting this material in the context of a real application area. On the other hand, the distributed approach can
be problematic in that teachers often minimize professional practice in the scramble to find adequate time for the
technical material. Projects, however, may provide a natural outlet for much of this material particularly if faculty
members can recruit external clients needing non-critical systems. When they engage in service-learning projects
in the community or work with external clients, students begin to see the necessity for ethical behavior in very
different terms. Thus, those students learn much more about ways to meet the needs of a client's ill-defined
problem. However, no matter how teachers integrate professional practice into the curriculum, it is critical that
they reinforce this material with exercises, projects, and exams.

For departments with sufficient flexibility in credit hours or with adequate numbers of faculty members and
resources, courses dedicated to teaching professional practice may be appropriate. These courses include those in
professional practice, ethics, and computer law, as well as senior capstone and other appropriate courses.
Additionally, more advanced courses on web system economics, quality, safety, and security may be part of the
experience. These courses could come from disciplines outside of computer engineering and they would still have
a profound effect on the professional development of students.

The inclusion of professional ethics in a computing engineering curriculum is fundamental to the discipline. A
listing of learning outcomes appears under the professional practice (CE-PPP) area as part of the body of
knowledge for computer engineering (see Appendix A).

5.3.4 Professionalism and student experiences

Faculty members can promote professionalism by establishing an infrastructure in which student work falls under
common standards that encourage its professional completion. The infrastructure may include the following
elements:

x reviewing assignments, projects, and exams for appropriate inclusion of professional practice material
x critically reviewing and establishing sound measurements (e.g., outcomes based) on student work to

show student progress and improvement
x getting students involved in the review and evaluation process so that they obtain a better sense of the

process
x employing professionals in the private and public sectors to help assess student project work
x using standardized tests to measure overall student progress
x conducting post-graduation surveys of alumni to see how they thought their education prepared them for

their careers
x obtaining program accreditation to demonstrate compliance with certain education standards for

professional practice
x synchronizing course labs with employer needs to ensure students learn job skills required by employers

The review and evaluation process should encourage students to employ good technical practice and high
standards of integrity. It should discourage students from attempting to complete work without giving themselves
enough time or in a haphazard manner such as starting and barely completing work the night before an
assignment is due. The assessment process should hold students accountable on an individual basis even if they
work collectively in a team. It should have a consistent set of measurements so students become accustomed to
using them and they learn how to associate them with their progress.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 48 of 149

5.4 Professionalism and the workplace

Most students graduating from universities go on to employment in the private or public sector. Industry and
governments, in their role as the primary consumer of graduating students, play an important role in helping
educational institutions promote professional practice. As an example, students who take advantage of industrial
co-ops or government internships may mature faster in their problem-solving skills and become more serious
about their education. Such internships may also help the industries that offer them, since a student who has an
internship with a company may choose to work there after graduation. With private/public sector support,
professional practice coverage provides a necessary augmentation both inside and outside the classroom.

5.4.1 Private and public sectors

One of the most important ways that the private and public sectors can support the education process is to
encourage their employees to play a greater role in helping to train students. These employees can offer support
in several ways. They can

x function in the role of mentors to students working on projects;
x give special presentations to classes telling students and faculty about their firm, their work, and their

development processes;
x take part-time positions as adjunct instructors to strengthen a university's course offerings;
x provide in-house training materials and/or classes to faculty and students in specialized research, process,

or software tool areas; and
x serve on industrial advisory boards, which service allows them to provide valuable feedback to the

department and institution about the strengths and weaknesses of the students.
In each of these ways, institutions in the private and public sectors can establish important lines of communication
with the educational institutions that provide them with their future employees.

In addition to the various opportunities that take place on campus, industry and government also contribute to the
development of strong professional practice by bringing students and faculty into environments outside of
academia. Students and faculty may take field trips to local firms and begin to establish better relationships. Over a
longer term, co-op, practicum, and internship opportunities give students a better understanding of what life on
the job will be like. In addition, students may become more interested in their studies and use that renewed
interest to increase their marketable potential. Students may also form a bond with specific employers and be
more likely to return to that firm after graduation. For faculty, consulting opportunities establish a higher level of
trust between the faculty member and the company. Because of these initiatives, employers, students, and faculty
know more about each other and are more willing to promote each other's welfare.

In what remains one of the most important forms of support, private and public sectors may also make donations
or grants to educational institutions and professional societies in the form of hardware, software, product
discounts, money, time, and the like. Often, these donations and grants are critical in providing updated resources,
such as lab hardware and software, and in funding student scholarships and awards as well as faculty teaching or
research awards. They serve to sponsor student programming, design, and educational contests. Grants can enable
more research and projects to occur. At this level, private and public sectors help to ensure the viability and
progress of future education and advances in the computing field.

Through patience, long-term commitment, understanding of each other's constraints, and learning each other's
value systems, institutions in the private or public sector and in education can work together to produce students
skilled in professional practice and behaviors. Their cooperative agreement is essential for producing students who
value a high ethical standard and the safety of the people who use the products the students will develop as
professionals.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 49 of 149

5.4.2 Modelling local and international work environments

Just as industry representatives increasingly seek graduates who are "job ready," most students expect to practice
computing in the workplace upon graduation without significant additional training. Although the educational
experience differs from that of the workplace, educators can ease the transition from academia to the business
world by:

x mimicking the computing and networking resources of the work environment
x teaching students how to work in teams
x providing significant project experiences

Introducing these points into the curriculum makes it possible to model significant issues in the local and
international work environment. Faculty can discuss and have students apply international, intercultural, and
workplace issues within the context of computing resources, teamwork, and projects.

Because computing and networking environments change rapidly and several different ones exist, it is not possible
to predict the exact environment that students will use upon graduation. And so, it is not advisable to focus
attention in the curriculum on a specific set of tools. Exposure to a wide variety of computing platforms and web
system tools provides sound preparation for professional work, resulting in flexible learners rather than students
who immaturely cling to their one familiar environment. Naturally, it is also useful to devote considerable
attention to a few tools and platforms to develop depth and capability.

As will be discussed in Chapter 6, learning how to work in teams is not a natural process for many students, but it is
extremely important. Students should learn to work in both small and large teams so that they acquire planning,
budgeting, organizational, and interpersonal skills. Ample course material should support the students in their
teamwork. The lecture material may include project scheduling, communication skills, the characteristics of well-
functioning and malfunctioning teams, and sources of stress for team environments. Assessment can include the
result of a team's work, the individual work of the members, or some combination thereof. Team member
behavior may also play a factor in the assessment.

Significant project experiences can enhance the problem-solving skills of students by exposing them to problems
that are not well defined or that do not have straightforward solutions. Such projects may be a controlled, in-class
experience or have a certain amount of unpredictability that occurs with an outside client. The projects should
serve to stretch the student beyond the typical one-person assignments that exercise basic skills in a knowledge
area. Beyond that, projects can also cut across several knowledge areas, thereby helping students to bring all their
basic skills together.

5.4.3 Certifications

We acknowledge the value of vendor and industry certifications, and we encourage students to pursue them as
they see necessary. However, we do not believe that programs should offer academic credit for completion of such
certifications or for training exclusively designed to prepare for these certifications unless it also covers relevant
learning outcomes defined in this document. We take this position because many institutions offer certification
training without having credentials to operate as an institution of higher learning. Most certifications are practice-
oriented and they do not focus on underlying theories and concepts. Additionally, many certifications are specific
to a given vendor and they have a narrow focus. Therefore, they usually do not meet the learning outcomes
necessary for degree in computer engineering.

5.5 Fostering Professionalism

The issues highlighted in the previous sections have led many professional societies to develop committees,
professional programs, codes of ethics and professional practice, and other related benefits for their

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 50 of 149

constituencies. These programs help practitioners understand expected standards of professional conduct and the
expectation among member practitioners.

5.5.1 Professional ethical codes

Professional ethics codes provide public information concerning the precepts considered central to the profession.
These codes also provide a level playing field for professionals with the prospects of avoiding ethical dilemmas
whenever possible. They also help professionals “do the right thing” when faced with ethical decision making
during their course of professional practice. In computing, these codes are often binding upon the members of a
society and they provide guidance in helping professionals make decisions affecting their practice.

ACM, IEEE, AITP, and other organizations promote the development of professional responsibility in several ways.

x They develop and promote codes of ethics to which members must adhere. These codes, in general,
promote honesty, integrity, maintenance of high standards of quality, leadership, support of the public
interest, and lifelong learning [ACM, IEEE, AITP, SEEPP].

x They sponsor established subgroups such as the Special Interest Group on Computers and Society
(SIGCAS) and the Society on Social Implications of Technology (SSIT) that focus directly on ethical and
professional issues [SIGCAS, SSIT].

x They develop and refine curricular guidelines such as the ones in this report and its predecessors.
x They participate in the development of accreditation guidelines that ensure the inclusion of professional

practice in the curriculum.
x They support the formation of student chapters that encourage students to develop a mature attitude

toward professional practice.
x They provide opportunities for lifelong professional development through technical publications,

conferences, and tutorials.

Some of these professional codes include the following.

x National Society of Professional Engineers - NSPE Code of Ethics for Engineers [NSPE, 2003]
x Institute of Electrical and Electronic Engineers (IEEE): IEEE Code of Ethics [IEEE, 1990]
x Association for Computing Machinery (ACM): ACM Code of Ethics and Professional Conduct [ACM, 1992]
x ACM/IEEE-Computer Society: Software Engineering Code of Ethics and Professional Practice [ACM/IEEECS,

1999]
x International Federation for Information Processing (IFIP): Harmonization of Professional Standards and

Ethics of Computing [IFIP, 1998]
x Association of Information Technology Professionals (AITP): AITP Code of Ethics and the AITP Standards of

Conduct [AITP, 2002]

Computer engineers can use the codes of these societies to guide them in making decisions in their careers.

5.5.2 Education and professional practice

Computer engineering programs should inform both students and society about what they can and should expect
from people professionally trained in the computing disciplines. Students, for example, need to understand the
importance of professional conduct on the job and the ramifications of negligence. They also need to recognize
that the professional societies, through their established subgroups emphasizing professional practice and their
codes of ethics, can provide a support network that enables them to stand up for what is ethically and
professionally right. By laying the groundwork for this support network as part of a four-year program, students
can avoid the sense of isolation that young professionals often feel and be well equipped to practice their
profession in a mature and ethical way.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 51 of 149

Although tenets of professional practice focus on the specific purposes of a society, common themes pervade all of
them. Fundamental to all professional practice are the responsibilities of the computing and engineering
professional to the public and to the public good. Additionally, professional practice and related ethical codes
address conflicts of interest, scope of competence, objectiveness and truthfulness, deception, and professional
conduct.

The precepts delineated within professional practice should be the hallmark of all practicing computer engineers.
Computer engineers should adopt the tenets of professional practices in all the work they do. It is incumbent upon
educational programs to educate computer engineers to embrace these tenets for the benefit of their own careers
and for the benefit of the computing, the engineering professions, and humanity.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 52 of 149

Chapter 6

Curriculum Implementation Issues

The creation of a complete degree program, that is, an entire program of study, is far from straightforward. The
body of knowledge (BoK) introduced in Chapter 4, and presented in Appendix A, provides a starting point, but
many other influences contribute to the creation of the curriculum. The purpose of this chapter is to explore issues
in the design and creation of a complete computer engineering degree program. These issues include specifics
such as packaging material from the body of knowledge plus elective material into required and optional courses,
determining required mathematics and science courses, and more general considerations such as creating an
overall style or ethos for a specific computer engineering degree program.

6.1 General Considerations

A computer engineering program requires a great variety of knowledge, practical skills, transferable skills, and
attitudes that need consideration within the one single framework. A program should exhibit an obvious and
consistent ethos that permeates a complete program of study. Students who enjoy and respond to the specific
character of the program at the beginning can be confident that they will continue to enjoy and be successful at
the more advanced levels.

One key issue is how to distribute, among the years of study, relatively settled material (e.g., circuits or supporting
mathematics courses) compared to more recent material. Currently, computer engineering is a discipline in which
the rate of change is very swift and this is likely to continue. Traditional approaches to course design suggest that
fundamental and core material should appear at the start of a program. By its very nature, the logic is that this
material should exhibit a level of permanence and durability and should be unlikely to change over the lifetime of
the program. Then students can build on these foundations as they move forward to the later parts of the program
and continue as lifelong learners.

This view requires tempering by consideration of the students’ point of view. Students who choose to study
computer engineering are often motivated by the hands-on nature of engineering, as well as their prior experience
with computers. During their initial academic terms, if students only take courses on mathematics and science,
without obvious computer engineering applications, they may become frustrated and disillusioned with the
program.

New engineering areas are often at the forefront of research and development and after studying them, students
can genuinely claim to be up-to-date in their subject area. That is important since they enter industry or
employment as the agents of technology change and transfer. Other considerations will also influence the
characteristics of an individual degree program. These considerations include:

x local needs (institutional or regional)
x needs of an increasingly diverse student population
x interests and background of the faculty

This report promotes flexibility in the design of computer engineering programs by not prescribing how to package
core material into courses and leaving room for elective and innovative courses. The core of the body of
knowledge provides breadth across the discipline with more in-depth knowledge in key areas. This provides
opportunities for students to specialize, while ensuring that graduates are prepared for professional practice in a
dynamic and rapidly-evolving field.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 53 of 149

In some cases, an institution may want to design a computer engineering degree program that focuses on one
specific area of computer engineering or perhaps gives students a choice among a few such areas. A variety of
specialized degree programs is perfectly achievable within the general framework. Included, for example, would be
degrees with specializations in areas such as computer communications, embedded computer systems, system
level integration, mobile computing systems, computer systems design, computer devices, digital signal
processing, multimedia systems, computing and broadcasting, pervasive computing, high integrity computing
systems, and real-time systems. It is also possible to develop specializations in such related fields as robotics,
biomedical engineering, bioinformatics, digital and analog control systems, and cybersecurity.

Another consideration is how many modules can be designed specifically for computer engineering students and
how many will be shared with either (or both) computer science or electrical engineering curricula. For instance,
institutions may construct a computer engineering curriculum with one of the following alternative options.

x There may be enough students in computer engineering to justify the provision of specialist courses
devised solely for computer engineering students.

x Alternatively, computer engineers might attend classes offered from the computer science and electrical
engineering curricula with additional selected classes being mounted specifically to address areas for
computer engineering students.

x Additional possibilities also exist depending on local arrangements and circumstances.

6.2 Principles for Curriculum Design

Although curriculum design requires significant local adaptation, curriculum designers can draw on several key
principles to help in the decision-making process. These principles include the following.

x The curriculum must reflect the integrity and character of computer engineering as an independent
discipline. Computer engineering is a discipline. A combination of theory, practice, knowledge, and skills
characterize the discipline. Any computer engineering curriculum should therefore ensure that both
theory and a spirit of professionalism guide the practice.

x The curriculum must respond to rapid technical change and encourage students to do the same. Computer
engineering is a vibrant and fast-changing discipline. The enormous pace of change means that computer
engineering programs must update their curricula on a regular basis. Equally importantly, a curriculum
must teach students to respond to change as well. Computer engineering graduates must keep up to date
with modern developments with the expectation of stimulating their engineering curiosity. One of the
most important goals of a computer engineering program is to produce students who become lifelong
learners.

x The outcomes expected from a program must guide curriculum design. Throughout the process of defining
a computer engineering curriculum, it is essential to consider the goals of the program and the specific
capabilities students must have at its conclusion. These goals—and the associated techniques for
determining whether a program is meeting these goals—provide the foundation for the entire curriculum.
Throughout the world, accreditation bodies focus increasing attention on the definition of goals and
assessment strategies. Educators who seek to defend the effectiveness of their programs must be able to
demonstrate that their curricula in fact accomplish what was intended.

x Across the board, the curriculum should maintain a consistent ethos that promotes innovation, creativity,
and professionalism. Students respond best when they understand what is expected of them. It is unfair
to students to encourage certain modes of behavior in early courses, only to discourage that same
behavior in later courses. Throughout the entire curriculum, students should be encouraged to use their
initiative and imagination to go beyond the minimal requirements. At the same time, students must be
encouraged from the very beginning to maintain a professional and responsible attitude toward their
work and give credence to the ethical and legal issues affecting their professional practice.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 54 of 149

6.3 Basic Computer Engineering Curriculum Components

In assembling the curriculum, institutions must package material into modules, typically into classes or courses.
Even though there are many ways for arranging these courses into a complete curriculum, there are some
commonalities that can be discussed here as general guidelines.

6.3.1 Coverage of the BoK Core

It is tempting (and easy) to view the BoK itself as a list of courses, and check off coverage of a BoK area by
assigning a course or a course sequence to it. In fact, most curriculums will have courses and course sequences
that map well to BoK areas. However, coverage of a BoK area can also be done by spreading the knowledge units
among several courses. The Computer Science Curricula 2013 in fact recommends that information security be
integrated throughout the curriculum. Knowledge units from the Preparation for Professional Practice knowledge
areas could similarly be integrated into several courses across a curriculum although it is clear that spreading
knowledge unit coverage among several courses takes more coordination and planning for the faculty responsible
for those courses.

6.3.2 Course Arrangement

Course sequences are typically used for subject coverage, with the sequence following introductory, intermediate,
and advanced areas of study as the student progresses along the curriculum. Examples of introductory computer
engineering courses are basic programming courses, digital logic, basic computer organization, and electrical
circuits that provide the foundation required for further study. Intermediate courses generally add depth and
expose students to state of the art techniques in these areas. Intermediate courses also reinforce knowledge from
introductory courses, for example, by requiring a programming language taught in an introductory course to be
used to complete work in the intermediate course. Advanced courses are those that require a broad range of
knowledge from several courses, such as a computer networks course or an operating systems course. Computer
engineering curriculums should also have at least one or two technical elective courses that allow students some
choice in shaping their educational experience. To emphasize individual choice, options for technical elective
courses should not be overly restrictive, for example, by allowing any upper level course from computer science or
electrical and computer engineering to serve as a technical elective.

6.3.3 Laboratory Experiences

Laboratory experiences are crucial to developing skills required to practice the art of computer engineering. Good
laboratory experiences force students to demonstrate their understanding of basic knowledge by successfully
creating a program or hardware system to meet a set of criteria. Good laboratory experiences also expose
students to state-of-the-art tools and methodologies that will prepare them for real engineering work after
graduation. The CE2016 steering committee recognizes that lab experience development requires significant
faculty time and departmental financial support, but emphasizes that these investments are needed to produce
quality computer engineering graduates. Sometimes innovative approaches are needed for adding lab experiences,
perhaps by taking a traditional three-hour semester lecture course and transforming it into a two lecture + one-
hour lab experience.

6.3.4 Culminating Project

The culmination of the study of computer engineering should include a final year project that requires students to
demonstrate the use of a range of knowledge, practices, and techniques in solving a substantial problem. This

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 55 of 149

culminating experience can synthesize a broad range of undergraduate learning and can foster teamwork and
professional practice among peers. The culminating project is essential to every computer engineering program.

6.3.5 Engineering Professional Practice

Professional practice is important for developing well-rounded computer engineering graduates and
Chapter 5 offers several methods for incorporating elements of it into a computer engineering curriculum.

6.3.6 Communication Skills

Students in computer engineering must be able to communicate ideas effectively in writing and in both formal and
informal oral presentations, as described in Chapter 5. Therefore, computer engineering programs must develop in
their students the ability to present both technical and non-technical material to a range of audiences using
rational and reasoned arguments. The manner of presentation includes oral, electronic, and written methods that
are necessary for all engineering programs. While courses taught outside of computer engineering may contribute
to developing these skills, it is essential that appropriate communication requirements be included within
computer engineering courses. Inclusion of communication requirements within computer engineering courses
ensures that students can communicate discipline-specific content and contributes to the students’ learning of
technical material.

6.4 Course Material Presented by Other Departments

In addition to the technical courses specifically on computer engineering, other courses offer material required
within the curriculum. For example, computer engineering students must study mathematics and science that
form the basis for engineering. In this subsection, we discuss various materials that students must learn, but that
typically appear in courses outside of the department in which computer engineering resides. In some cases,
students may have learned this material prior to entering the computer engineering program.

6.4.1 Mathematics Requirements

Mathematical techniques and formal mathematical reasoning are integral to most areas of computer engineering
and the discipline depends on mathematics for many of its fundamental underpinnings. In addition, mathematics
provides a language for working with ideas relevant to computer engineering, specific tools for analysis and
verification, and a theoretical framework for understanding important ideas.

Given the pervasive role of mathematics within computer engineering, the curriculum must include mathematical
concepts early and often. Basic mathematical concepts should appear early within a student's course work and
later courses should use these concepts regularly. While different colleges and universities will need to adjust their
prerequisite structures to reflect local needs and opportunities, it is important for upper-level computer
engineering courses to make use of the mathematical content developed in earlier courses. A formal prerequisite
structure should reflect this dependency.

Some material that is mathematical in nature lies in a boundary region between computer science and engineering
and may be taught by computer engineering faculty. Other material such as basic differential and integral calculus
will likely be under the purview of faculty members outside the department where computer engineering resides.
For example, one or more courses in discrete structures are important for all students in computer engineering—
the steering committee considers it as an essential component of computer engineering. Regardless of the
implementation, computer engineering programs must take responsibility for ensuring that students obtain the

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 56 of 149

appropriate mathematics they need.

The CE2004 report contains the two mathematics knowledge areas of discrete structures and probability and
statistics. To this, the CE2016 BoK adds two additional mathematics knowledge areas—analysis of continuous
functions and linear algebra. Most computer engineering programs already include coverage of these knowledge
areas, and the inclusion now is simply an acknowledgement of that fact. The reasoning for including these four
mathematics knowledge areas is offered here.

x Discrete structures: All students need knowledge of the mathematical principles of discrete structures and
their related tools. All programs should include enough exposure to this area to cover the core learning
outcomes specified in the computer engineering body of knowledge.

x Analysis of continuous functions: The calculus and differential equations are required to support such
computer engineering material as communications theory, signals and systems, and analog electronics—
the analysis of continuous functions is fundamental to all engineering programs.

x Probability and statistics: This mathematical area underpins considerations of reliability, safety,
performance, dependence, and various other concepts of concern to the computer engineer. Many
programs will have students take an existing course in probability and statistics; some programs may
allow some students to study less than a full semester course in the subject. Regardless of the
implementation, all students should get at least some brief exposure to discrete and continuous
probability, stochastic processes, sampling distributions, estimation, hypothesis testing, and correlation
and regression, as specified in the computer engineering body of knowledge.

x Linear algebra: Linear algebra is required for solving networks of equations describing voltage/current
relationships in basic circuits, and is used in computer engineering application areas such as computer
graphics and robotics.

Students may need to take additional mathematics courses to develop their sophistication in this area and to
support additional studies such as communications theory, security, signals and systems, analog electronics, and
artificial intelligence. The additional mathematics might consist of courses in any number of areas, including
further calculus, transform theory, numerical methods, complex variables, geometry, number theory, optimization
methods, or symbolic logic. The choice should depend on program objectives, institutional requirements, and the
needs of the individual student.

6.4.2 Science Requirements

The process of abstraction represents a vital component of logical thought within the field of computer
engineering. The scientific method (hypothesis formation, experimentation and data collection, analysis)
represents a basis methodology for much of the discipline of computer engineering, and students should have a
solid exposure to this methodology.

Computer engineering students need knowledge of natural sciences, such as physics and chemistry. Basic physics
concepts in electricity and magnetism form the basis for much of the underlying electrical engineering content in
the body of knowledge. Other science courses, such as biology, are relevant to specific application areas in which
computer engineers may specialize. The precise nature of the natural science requirement will vary, based on
institutional and programs needs and resources.

To develop a firm understanding of the scientific method, students must have direct hands-on experience with
hypothesis formulation, experimental design, hypothesis testing, and data analysis. While a curriculum may
provide this experience as part of the natural science coursework, another way of addressing this is through
appropriate courses in computer engineering itself. For example, considerations of the user interface provide a
rich vein of experimental situations.

It is vital that computer engineering students “do science” and not just “read about science” in their education.
The overall objectives of this element of the curriculum include the following.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 57 of 149

x Students should acquire knowledge of the natural sciences underlying computer engineering and relevant
application areas.

x Students must develop an understanding of the scientific method and gain experience in this mode of
inquiry through courses that provide some exposure to laboratory work, including data collection and
analysis.

x Students may acquire their scientific perspective in any of a variety of domains, depending on program
objectives and their area of interest.

6.4.3 Other Requirements

Many institutions have additional requirements that apply to all students, such as general education requirements.
The size and content of these requirements vary widely, depending on the home country, the institutional mission,
legal requirements, and other factors. Courses to satisfy these requirements often include subjects drawn from the
humanities, social sciences, languages, and the liberal arts. In designing a computer engineering program,
attention should be given to utilizing these course requirements to contribute to the students’ understanding of
the social context of engineering and the potential impact of engineering solutions in a global environment.

6.5 Sample Curricula

Appendix B provides sample curricula implementations of complete computer engineering programs. To provide a
framework for the curriculum that illustrates the ideas presented in this report, the first three examples assume
the following.

x Each year consists of two semesters with a student studying four to five modules (courses) per semester.
Each module is approximately 42 hours for instruction.

x Students should experience at least two computer engineering modules in the first year of study, at least
four in the second year of study, and at least five in each of the third and fourth years of study.

Institutions in the United States use the above pattern; the same is true for many other parts of the world. The
fourth example of a curriculum implementation represents a typical four-year program in China. The fifth example
reflects curricula from the Bologna Declaration in Europe.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 58 of 149

Chapter 7

Institutional Adaptations

This report provides a significant resource for colleges and universities seeking to develop or improve
undergraduate programs in computer engineering. The appendices to this report offer an extensive analysis of the
structure and scope of computer engineering knowledge along with viable approaches to the undergraduate
curriculum. Implementing a curriculum successfully, however, requires each institution to consider broad strategic
and tactical issues that transcend such details. The purpose of this chapter is to enumerate some of these issues
and illustrate ways to address these issues. For schools with existing engineering programs, much of what follows
may already be in place or understood.

7.1 The need for local adaptation

The task of designing a computer engineering curriculum is a difficult one, in part because so much depends on the
characteristics of an individual institution and the interests and expertise of its faculty members. Even if every
institution could agree on a common set of knowledge and skills for undergraduate education, many additional
factors would influence curriculum design. These factors include the following.

x Type of institution and the expectations for its degree programs: Institutions vary enormously in mission,
structure, and scope of undergraduate degree requirements. A curriculum that works well at a small
college in the United States may be completely inappropriate for a research university elsewhere in the
world.

x Spectrum of computer engineering: Each institution needs to select a focus for its program, ensuring the
ethos of computer engineering with proper balance between breadth and depth.

x Range of postgraduate options that students pursue: An institution whose primary purpose is to prepare a
skilled workforce for the computer engineering profession is likely to have different curricular goals than
one seeking to prepare students for research and graduate study. Each individual school must ensure that
the curriculum it offers allows students the necessary preparation for their eventual academic and career
paths including those outside computer engineering.

x Preparation and background of entering students: Students at different institutions—and often within a
single institution—vary substantially in their level of preparation. because of this, computer engineering
departments often need to tailor their introductory offerings so that they meet the needs of their
students.

x Position of the program within the institution: Computer engineering programs may reside in schools
(colleges) of computing, schools of engineering, and/or schools of arts and sciences, for example. In any
case, these programs require a supportive environment that will ensure the ongoing health and vitality of
the program.

x Faculty resources: The number of faculty members supporting a computer engineering program may vary
from fewer than five at a small college to a hundred or more at a large research university. Program size
heavily influences the flexibility and options available to a program. Independent of the program size,
faculty members need to set priorities for ways in which they will use their limited resources.

x Interests and expertise of the faculty: Individual curricula often vary due to the specific interests and
knowledge base of the department, particularly at smaller institutions where expertise is concentrated in
specific areas.

Creating a workable curriculum requires finding an appropriate balance among these factors, a balance which will
require different choices at every institution. No single curriculum can work for everyone. Every college and
university will need to consider the various models proposed in this document and design an implementation that
meets the need of their environment.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 59 of 149

7.2 Attracting and retaining faculty

One of the most daunting problems that computer engineering departments face is the problem of attracting, and
then retaining, qualified faculty. In computer engineering, there are often more advertised positions than the
number of highly qualified candidates. The shortage of faculty applicants, coupled with the fact that computer
engineers command high salaries outside academia, make it difficult to attract and retain faculty. Institutions will
need to have an aggressive plan to both recruit and retain faculty; incentives such as hiring packages and modified
teaching responsibilities may prove advantageous for this endeavor. Active participation in professional
organizations provides networking opportunities with leaders of peer programs, which in turn may result in
greater visibility and access to potential faculty candidates. Other possible strategies include collaborative and/or
interdisciplinary efforts with other programs and/or institutions.

While the computer engineering program may draw on faculty from related disciplines, as a professional field
there must be a core faculty with appropriate professional training and experience. Additionally, faculty members
must maintain currency with developments in the field. Institutions must make appropriate accommodations for
the professional development of faculty, whether achieved through research, conference participation, sabbaticals
(perhaps in industry), consulting, or other activities.

7.3 The need for adequate laboratory resources

It is essential for institutions to recognize that the financial resources required to support a computer engineering
program are significant. Software acquisition and maintenance can represent a substantial fraction of the overall
cost of computing, particularly if one includes the development costs of courseware. Acquisition and maintenance
of the hardware and instrumentation infrastructure required for experimentation and hands-on system
development by students is costly. Providing adequate support staff to maintain the laboratory facilities represents
another expense. To be successful, computer engineering programs must receive adequate funding to support the
laboratory needs of both faculty and students and to provide an atmosphere conducive to learning.

Because of rapid changes in technology, computer hardware generally becomes obsolete long before it ceases to
function. The useful lifetime of computer systems, particularly those used to support advanced laboratories and
state-of-the-art software tools, may be as little as two or three years. Planning and budgeting for regular updating
and replacement of computer systems is essential.

Computer engineering curricula typically include many required laboratories. The laboratory component leads to
an increased need for staff to assist in both the development of materials and the teaching of laboratory sections.
This development will add to the academic support costs of a high-quality computer engineering program. Close
contacts with relevant industries can lead to the ready availability of interesting and up-to-date case study
material, and also can offer opportunities for students to engage in internships. Refreshing laboratory material on
a regular basis serves to continually motivate and excite new students.

Finally, with the availability of up-to-date reference materials on the internet, institutions should provide access to
such resources as the IEEE Xplore Digital Library and the ACM Digital Library. Webinars, e-books, online tutorials,
MOOCs, and other resources are all increasingly available and relevant; these are available through, for instance,
the ACM Learning Center.

7.4 Transfer and educational pathways

Multiple factors such as admission criteria, student academic preparedness, the diversity of student population,
life experiences, and different configurations of educational pathways shape access, retention, and degree

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 60 of 149

attainment across undergraduate computer engineering programs. The transition points from K-12 through college
education vary for successful employment or for further education with advanced degrees throughout the world.
This section examines pathways into and through undergraduate CE degree programs from a global perspective.

7.4.1 Four-year transfers

Understanding the entry points into, and the pathways through, undergraduate CE programs will help structure
these pathways to serve students, companies, and the computing industry. Specifically, appreciating variations and
compatibilities in these pathways across the regions of the world will help enable and support a global computing
workforce.

The steering committee considered pathways toward an undergraduate program in computer engineering and
considered the rigor of some CE programs. The group defined a “demanding” program as one that requires a
significant number of science courses beyond general education, at least five courses in mathematics, and one in
which more than 50% of the program relates technically to computer engineering. It hypothesized that fewer
students transfer into demanding programs as compared with transfers into non-demanding programs. If a
program is too demanding students may be less likely to complete the program successfully. Transfers would likely
take place only between universities of equal caliber. There are many exceptions, of course. Notwithstanding, one
would expect that successful transfers between two demanding CE programs and transfers between two non-
demanding CE programs would be highly more likely than a transfer from a non-demanding CE program to a
demanding CE program.

7.4.2 Technical institute transfers

It would be unlikely that a person enrolled in a program at a technical institute could successfully transfer to four-
year computer engineering program at a university. The contexts of the two programs would be very different.
Students attending technical institutes would likely not have studied mathematics and science at university levels.
Additionally, those students would likely not have the requisite general education courses expected from this
experience. Hence, course transfer would likely not occur.

In many parts of the world, transfer from technical institutes to university CE programs is almost non-existent.
Although exceptions could occur, it is almost impossible for a student to transfer any course experiences at a
technical institute to a university.

7.4.3 Community college transfers

In countries where community colleges or two-year college programs thrive, transfer to a university CE program
from a community college is common. In fact, such a mode of transfer is even encouraged, especially in the United
States and Canada. In the United States, for example, students in some states have a legal right to transfer credit
for the same course from a community college to a university program. In fact, the two courses might even have
the same code and title such as CHEM 101: Chemistry 1. Indeed, many states distinguish community college
transfer programs by sponsoring the Associate in Science (A.S.) degree as opposed to the Associate in Applied
Science (A.A.S.) degree, which is a career-oriented degree.

Going a step further, it is very common in the United States to have articulation agreements between community
colleges and universities. These agreements have a certain legal status in that a student who successfully passes
courses at a community college has a right to transfer that course to a university that is a signatory to the
articulation agreement. Since student enrollment at community colleges is approximately equal to the
undergraduate student enrollment at universities, this vehicle of study is very popular around the country. It is

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 61 of 149

common for a community college to have articulation agreements with several universities to which student
transfer is likely.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 62 of 149

Appendix A

Computer Engineering Body of Knowledge

This appendix to the Computing Curricula - Computer Engineering (CE2016) report defines the knowledge domain
that is likely to appear in an undergraduate curriculum in computer engineering. The underlying rationale for this
categorization scheme and additional details about its history, structure, and application are included in Chapter 3
of the report. Included with this appendix is a summary of the fundamental concepts that are necessary to
understand the recommendations. For the benefit of the reader, we repeat some of the material that already
appears in the body of the report. Consult Chapter 3 for more details.

A.1 Introduction

The CE2016 steering committee developed this model curriculum by first defining the primary disciplines that
make up the body of knowledge for computer engineering. The areas that contain material that should be
included in all computer engineering curricula are as follows.

CE-CAE Circuits and Electronics
CE-CAL Computing Algorithms
CE-CAO Computer Architecture and Organization
CE-DIG Digital Design
CE-ESY Embedded Systems
CE-NWK Computer Networks
CE-PPP Preparation for Professional Practice
CE-SEC Information Security
CE-SGP Signal Processing
CE-SPE Systems and Project Engineering
CE-SRM System Resource Management
CE-SWD Software Design

A.2 Structure of the Body of Knowledge

The computer engineering body of knowledge has a three-level hierarchical structure. The highest level of the
hierarchy is the knowledge area (KA), which represents a specific disciplinary subfield, not a course. Knowledge
areas contain an “area scope” that describes the context of the specific knowledge area. The knowledge areas are
broken down into smaller divisions called knowledge units (KUs), which represent individual themes within an
area. We then describe each knowledge unit by a set of learning outcomes, which represent the lowest level of the
hierarchy.

A.2.1 Core and supplementary components

For this CE2016 document, the goal is to keep the required component of the body of knowledge as small as
possible. We do this to allow programs in computer engineering to be as flexible as possible. To implement this
principle, we made a distinction among the KUs by identifying those that are core or essential units in the
curriculum compared to those that are supplementary or extra units. Core components comprise knowledge and

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 63 of 149

skills for which there is broad consensus that anyone obtaining a four-year degree in the field should acquire.
Supplementary components comprise knowledge and skills that reflect expectations for advanced work per the
needs of a program.

The steering committee thinks it helpful to emphasize the following points.

x The core components refer to the knowledge and skills all students in all computer engineering degree
programs should attain. Several learning outcomes that are important in the education of many students
are not included as core and appear as supplementary. Absence of some learning outcomes among the
core components does not imply a negative judgment about their value, importance, or relevance.
Rather, it simply means that the learning outcome is not a requirement of every student in all CE degree
programs.

x The core components do not constitute a complete curriculum. Additional technical areas, as well as
supporting mathematics, science, and general studies, are necessary to produce a competent computer
engineer.

x It is not the case that a program should achieve core knowledge units only within a set of introductory
courses early in the four-year curriculum. Many core knowledge units are indeed introductory. However,
a program can address some core KUs only after students have developed significant background in their
studies.

A.2.2 Assessing the time required to cover a unit

To give readers a sense of the time required to cover a specific unit, this report follows the same pattern used in
other curricula reports. The CE2016 steering committee has chosen to express time in hours, specifically in core
hours. This corresponds to the in-class time required to present material in a traditional lecture-oriented format.
Hence, we define one “core hour” or one lecture hour as one 50-minute period.

To dispel any potential confusion, however, it is important to underscore the following observations about the use
of lecture hours as a measure.

x This report does not seek to endorse the lecture format. Even though we have used a metric with its roots
in a classical, lecture-oriented form, we believe that other styles can be at least as effective, particularly
given recent improvements in educational technology. These include forms such as flipped classrooms,
massive open online courses (MOOCs), blended learning, pre-recorded lectures, and seminars. For some
of these styles, the notion of hours may be difficult to apply. Even so, the time specifications should at
least serve as a comparative metric, in the sense that five core hours will presumably take approximately
five times as much time or effort to address as one core hour, independent of the teaching style.

x The hours specified do not include time spent outside of class. The time assigned to a knowledge unit
does not include the instructor's preparation time or the time students spend outside of class. As a
general guideline, the amount of out-of-class work is approximately three times the in-class time. Thus, a
unit listed as requiring three hours typically entails a total of twelve hours (three in class and nine outside
class).

x The hours listed for a knowledge unit represent a minimum level of coverage. Users should interpret the
time measurements we have assigned for each knowledge unit as a minimal amount of time necessary to
enable a student to achieve related learning outcomes for that unit. Many instructors will find that
delivery of material to the level of depth that they wish to incorporate will take much longer than this; it is
always appropriate to spend more time on a unit than the recommended minimum.

A.2.3 Tags for KAs and KUs

We identify a knowledge area with a tag such as CE-NWK representing the “Computer Networks” knowledge area
for computer engineering. We identify each knowledge unit by adding a numeric suffix to the area identification;
as an example, CE-NWK-2 is the second knowledge unit for the knowledge area of computer networks.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 64 of 149

Supplementary knowledge units have only elective learning outcomes and they do not contain any recommended
core hours.

A.2.4 Common KUs

Within each knowledge area, the first KU is “History and overview” and the second is “Relevant tools, standards
and/or engineering constraints.” These two KUs provide context for the rest of the KA. And the first KU—history
and overview—also provides context for the learning outcomes, including important contributors to, and
developments in, the area. Engineering practice requires the use of modern tools and contemporary standards,
which will change over time. The extent of these KUs vary greatly by knowledge area and the goals of the program.

A.3 Learning Outcomes

To capture the sense of what students should learn in each knowledge unit, this report uses learning outcomes to
describe each knowledge unit. The emphasis on learning is important. Taxonomies of verbs such as “define” or
“evaluate” are useful to describe the expected depth of learning. Levels of learning range from basic abilities, such
as reciting definitions, to advanced abilities, such as engaging in synthesis and evaluation. Hence, learning
outcomes provide a mechanism for describing not just knowledge and relevant practical skills, but also personal
and transferable skills. They describe what we expect a student can do or know by the time of graduation. We can
infer the minimal desired depth of coverage associated with each knowledge unit from the language used to
express the learning outcomes. Learning outcomes can be associated with a knowledge unit, a class activity, a
course, or even a degree program.

In this report, the steering committee has tried to limit the number of learning outcomes to emphasize essential
knowledge and skills. Programs may choose to structure the curriculum so that students demonstrate their
attainment of knowledge and skills in a wide variety of ways. Imaginative approaches to assessing learning
outcome attainment can lead to a unique expression of a range of skills in well-conceived assignments.

A.4 Summary of the CE body of knowledge

Table A.1 lists the twelve knowledge areas that form the CE body of knowledge areas as presented in this report,
together with their associated knowledge units. This is the CE body of knowledge. The table also shows the core
hours (core lecture hours) associated with each area and each unit. For example,

CE-ESY-5 Parallel input and output [3]
indicates that “parallel input and output” should have a relative emphasis measured by three core lecture hours
and it is the fifth knowledge unit of the “embedded systems” knowledge area, which is core for a computer
engineering degree program, with a relative emphasis measured by three core lecture hours. The absence of a
number such as [3] means the KU is not core; therefore, it is supplementary.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 65 of 149

Table A-1: CE2016 Body of Knowledge
(CE Core Hours: 420)

Computer Engineering Knowledge Areas and Units

CE-CAE Circuits and Electronics
 [50 core hours]
CE-CAE-1 History and overview [1]
CE-CAE-2 Relevant tools, standards, and/or engineering constraints [3]
CE-CAE-3 Electrical quantities and basic elements [4]
CE-CAE-4 Electrical circuits [11]
CE-CAE-5 Electronic materials, diodes, and bipolar transistors [7]
CE-CAE-6 MOS transistor circuits, timing, and power [12]
CE-CAE-7 Storage cell architecture [3]
CE-CAE-8 Interfacing logic families [3]
CE-CAE-9 Operational amplifiers [3]
CE-CAE-10 Mixed-signal circuit design [3]
CE-CAE-11 Design parameters and issues
CE-CAE-12 Circuit modeling and simulation methods

CE-CAL Computing Algorithms
 [30 core hours]
CE-CAL-1 History and overview [1]
CE-CAL-2 Relevant tools, standards and/or engineering constraints [1]
CE-CAL-3 Basic algorithmic analysis [4]
CE-CAL-4 Algorithmic strategies [6]
CE-CAL-5 Classic algorithms for common tasks [3]
CE-CAL-6 Analysis and design of application-specific algorithms [6]
CE-CAL-7 Parallel algorithms and multi-threading [6]
CE-CAL-8 Algorithmic complexity [3]
CE-CAL-9 Scheduling algorithms
CE-CAL-10 Basic computability theory

CE-CAO Computer Architecture and Organization
 [60 core hours]
CE-CAO-1 History and overview [1]
CE-CAO-2 Relevant tools, standards and/or engineering constraints [1]
CE-CAO-3 Instruction set architecture [10]
CE-CAO-4 Measuring performance [3]
CE-CAO-5 Computer arithmetic [3]
CE-CAO-6 Processor organization [10]
CE-CAO-7 Memory system organization and architectures [9]
CE-CAO-8 Input/Output interfacing and communication [7]
CE-CAO-9 Peripheral subsystems [7]
CE-CAO-10 Multi/Many-core architectures [5]
CE-CAO-11 Distributed system architectures [4]

CE-DIG Digital Design
 [50 core hours]
CE-DIG-1 History and overview [1]
CE-DIG-2 Relevant tools, standards, and/or engineering constraints [2]
CE-DIG-3 Number systems and data encoding [3]
CE-DIG-4 Boolean algebra applications [3]
CE-DIG-5 Basic logic circuits [6]
CE-DIG-6 Modular design of combinational circuits [8]
CE-DIG-7 Modular design of sequential circuits [9]
CE-DIG-8 Control and datapath design [9]
CE-DIG-9 Design with programmable logic [4]
CE-DIG-10 System design constraints [5]
CE-DIG-11 Fault models, testing, and design for testability

CE-ESY Embedded Systems
 [40 core hours]
CE-ESY-1 History and overview [1]
CE-ESY-2 Relevant tools, standards, and/or engineering constraints [2]
CE-ESY-3 Characteristics of embedded systems [2]
CE-ESY-4 Basic software techniques for embedded applications [3]
CE-ESY-5 Parallel input and output [3]
CE-ESY-6 Asynchronous and synchronous serial communication [6]
CE-ESY-7 Periodic interrupts, waveform generation, time measurement [3]
CE-ESY-8 Data acquisition, control, sensors, actuators [4]
CE-ESY-9 Implementation strategies for complex embedded systems [7]
CE-ESY-10 Techniques for low-power operation [3]
CE-ESY-11 Mobile and networked embedded systems [3]
CE-ESY-12 Advanced input/output issues [3]
CE-ESY-13 Computing platforms for embedded systems

CE-NWK Computer Networks
 [20 core hours]
CE-NWK-1 History and overview [1]
CE-NWK-2 Relevant tools, standards, and/or engineering constraints [1]
CE-NWK-3 Network architecture [4]
CE-NWK-4 Local and wide area networks [4]
CE-NWK-5 Wireless and mobile networks [2]
CE-NWK-6 Network protocols [3]
CE-NWK-7 Network applications [2]
CE-NWK-8 Network management [3]
CE-NWK-9 Data communications
CE-NWK-10 Performance evaluation
CE-NWK-11 Wireless sensor networks

CE-PPP Preparation for Professional Practice
 [20 core hours]
CE-PPP-1 History and overview [1]
CE-PPP-2 Relevant tools, standards, and/or engineering constraints [1]
CE-PPP-3 Effective communication strategies [2]
CE-PPP-4 Interdisciplinary team approaches [1]
CE-PPP-5 Philosophical frameworks and cultural issues [2]
CE-PPP-6 Engineering solutions and societal effects [2]
CE-PPP-7 Professional and ethical responsibilities [3]
CE-PPP-8 Intellectual property and legal issues [3]
CE-PPP-9 Contemporary issues [2]
CE-PPP-10 Business and management issues [3]
CE-PPP-11 Tradeoffs in professional practice

CE-SEC Information Security
 [20 core hours]
CE-SEC-1 History and overview [2]
CE-SEC-2 Relevant tools, standards, and/or engineering constraints [2]
CE-SEC-3 Data security and integrity [1]
CE-SEC-4 Vulnerabilities: technical and human factors [4]
CE-SEC-5 Resource protection models [1]
CE-SEC-6 Secret and public key cryptography [3]
CE-SEC-7 Message authentication codes [1]
CE-SEC-8 Network and web security [3]
CE-SEC-9 Authentication [1]
CE-SEC-10 Trusted computing [1]
CE-SEC-11 Side-channel attacks [1]

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 66 of 149

Computer Engineering Knowledge Areas and Units

CE-SGP Signal Processing
 [30 core hours]
CE-SGP-1 History and overview [1]
CE-SGP-2 Relevant tools, standards, and/or engineering constraints [3]
CE-SGP-3 Convolution [3]
CE-SGP-4 Transform analysis [5]
CE-SGP-5 Frequency response [5]
CE-SGP-6 Sampling and aliasing [3]
CE-SGP-7 Digital spectra and discrete transforms [6]
CE-SGP-8 Finite and infinite impulse response filter design [4]
CE-SGP-9 Window functions
CE-SGP-10 Multimedia processing
CE-SGP-11 Control system theory and applications

CE-SPE Systems and Project Engineering
 [35 core hours]
CE-SPE-1 History and overview [1]
CE-SPE-2 Relevant tools, standards and/or engineering constraints [3]
CE-SPE-3 Project management principles [3]
CE-SPE-4 User experience* [6]
CE-SPE-5 Risk, dependability, safety and fault tolerance [3]
CE-SPE-6 Hardware and software processes [3]
CE-SPE-7 Requirements analysis and elicitation [2]
CE-SPE-8 System specifications [2]
CE-SPE-9 System architectural design and evaluation [4]
CE-SPE-10 Concurrent hardware and software design [3]
CE-SPE-11 System integration, testing and validation [3]
CE-SPE-12 Maintainability, sustainability, manufacturability [2]

CE-SRM Systems Resource Management
 [20 core hours]
CE-SRM-1 History and overview [1]
CE-SRM-2 Relevant tools, standards, and/or engineering constraints [1]
CE-SRM-3 Managing system resources [8]
CE-SRM-4 Real-time operating system design [4]
CE-SRM-5 Operating systems for mobile devices [3]
CE-SRM-6 Support for concurrent processing [3]
CE-SRM-7 System performance evaluation
CE-SRM-8 Support for virtualization

CE-SWD Software Design
 [45 core hours]
CE-SWD-1 History and overview [1]
CE-SWD-2 Relevant tools, standards, and/or engineering constraints [3]
CE-SWD-3 Programming constructs and paradigms [12]
CE-SWD-4 Problem-solving strategies [5]
CE-SWD-5 Data structures [5]
CE-SWD-6 Recursion [3]
CE-SWD-7 Object-oriented design [4]
CE-SWD-8 Software testing and quality [5]
CE-SWD-9 Data modeling [2]
CE-SWD-10 Database systems [3]
CE-SWD-11 Event-driven and concurrent programming [2]
CE-SWD-12 Using application programming interfaces
CE-SWD-13 Data mining
CE-SWD-14 Data visualization

* User experience (UX) was formerly known as human-computer interaction (HCI)

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 67 of 149

A.5 Knowledge Areas and Knowledge Units

CE-CAE Circuits and Electronics
[50 core hours]

Area Scope
The knowledge units in this area collectively encompass the following:

1. Purpose and role of circuits and electronics in computer engineering, including key differences between analog and digital circuits, their
implementations, and methods of approximating digital behavior with analog systems

2. Definitions and representations of basic electrical quantities and elements, as well as the relationships among them
3. Analysis and design of simple electronic circuits using appropriate techniques, including software tools, and incorporating appropriate

constraints and tradeoffs
4. Properties of materials that make them useful for constructing electronic devices
5. Properties of semiconductor devices, their use as amplifiers and switches, and their use in the construction of a range of basic analog

and logic circuits
6. Effects of device parameters and various design styles on circuit characteristics, such as timing, power, and performance
7. Practical considerations and tradeoffs associated with distributing signals within large circuits and of interfacing between different logic

families or with external environments

CE-CAE Core Knowledge Units

CE-CAE-1 History and overview
Minimum core coverage time: 1 hour

Core Learning Outcomes:

� Describe ways in which computer engineering uses or benefits from electronic devices and circuits.
� Identify some contributors to circuits and electronics and relate their achievements to this knowledge area.
� Explain the key differences between analog and digital systems, their implementations, and methods for approximating digital behavior

with analog systems.
� Summarize basic electrical quantities and elements that show the relationship between current and voltage.
� Describe the use of the transistor as an amplifier and as a switch.
� Explain the historical progression from discrete devices to integrated circuits to current state-of-the-art electronics.

CE-CAE-2 Relevant tools, standards, and/or engineering constraints
Minimum core coverage time: 3 hours

Core Learning Outcomes:

� Describe at least two common types of circuit simulators and contrast the advantages and applications of each.
� Interpret issues associated with interfacing digital computer systems with an analog world, including the use of standard data

conversion circuits.
� Summarize the role of standards in compatibility, interconnection, and safety of systems.
� Articulate the purpose of buses and other interconnection and communication networks.
� Illustrate the role of constraints, parameters, and tradeoffs in electronic circuit design.

CE-CAE-3 Electrical quantities and basic elements
Minimum core coverage time: 4 hours

Core Learning Outcomes:

� State the definitions and representations of basic electrical quantities (charge, current, voltage, energy, power), as well as the
relationships among them.

� Define and represent basic circuit elements (resistors, inductors, capacitors).
� Solve problems using Ohm’s law, including its power representations.
� Analyze basic electrical circuits using Ohm’s law.
� Explain the difference between resistance and reactance, the meaning of phase, and the effect of frequency on capacitance and

inductance.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 68 of 149

Elective Learning Outcomes:
� Interpret the role of capacitors and inductors as basic storage elements.
� Contrast related electrical quantities and concepts including frequency response, sinusoids, convolution, diodes and transistors, and

other storage elements.
� Provide examples of using circuit simulators to model and analyze simple circuits.

CE-CAE-4 Electrical circuits
Minimum core coverage time: 11 hours

Core Learning Outcomes:

� Contrast various elements of circuit models including independent and dependent sources as well as series and parallel elements.
� Analyze basic electrical circuits using mesh and nodal analysis, Kirchoff’s laws, superposition, Thevenin’s theorem, and Norton’s

theorem.
� Apply properties of circuits containing various combinations of resistance (R), inductance (L), and capacitance (C) elements including

time constants, transient and steady-state responses, and damping.
� Analyze and design simple circuits containing R, L, and C elements.
� Illustrate the frequency domain characteristics of electrical circuits.
� Contrast power for resistive and reactive circuits.
� Define and use the phasor representations of voltage and current in analyzing circuits.
� Calculate the response of electrical circuits from sinusoidal signal excitation.
� Define and use impedance and admittance as well as source transformations.
� Model and analyze simple resistive and RLC circuits using a circuit simulator.

Elective Learning Outcomes:

� Identify the characteristics and uses of transformers.
� Explain the relation between electrical quantities and concepts such as transfer functions, two-port circuits, parallel and series

resonance, maximum power transfer, and mutual inductance.
� Describe the characteristics of electronic voltage sources such as ideal voltage source, voltage references, emitter followers, and

voltage sources utilizing operational amplifiers.
� Express the characteristics of electronic current sources for the following: ideal current source; transistor current sources; common-

emitter, cascode, and regulated cascode circuits; current sources utilizing operational amplifiers.

CE-CAE-5 Electronic materials, diodes, and bipolar transistors
Minimum core coverage time: 7 hours

Core Learning Outcomes:

� Explain characteristics and properties of electronic materials including electrons and holes; doping, acceptors, and donors;
p-type and n-type materials; conductivity and resistivity; drift and diffusion currents, mobility, and diffusivity.

� Illustrate the operation and properties of diodes, including I-V characteristics, regions of operation, equivalent circuit models and their
limitations.

� Illustrate the operation and properties of NPN and PNP transistors, including I-V characteristics, regions of operation, equivalent circuit
models and their limitations, and transfer characteristic with a load resistor.

� Contrast NPN and PNP transistor biasing for logic and amplifier applications.
� Explain the properties of bipolar transistors when used as amplifiers and as switches.
� Produce mathematical models to represent material properties of electronic devices.
� Provide examples of using mathematical models in circuit simulators.

Elective Learning Outcomes:

� Contrast the Schottky, Zener, and variable capacitance diodes.
� Design a single diode circuit and describe the significance of a load line.
� Illustrate multidiode circuits such as rectifiers and direct current (DC) involving DC-DC voltage level converters.
� Design a multidiode circuit including rectifiers.
� Design a multidiode circuit including DC-DC voltage level converters.
� Implement diode logic using only AND and OR functions.
� Provide examples of bipolar transistors used in the construction of a range of common circuits.

CE-CAE-6 MOS transistor circuits, timing, and power
Minimum core coverage time: 12 hours

Core Learning Outcomes:

� Illustrate the operation and properties of nMOS (n-type metal-oxide semiconductor) and pMOS field-effect transistors, including I-V
characteristics, regions of operation, equivalent circuit models and their limitations, enhancement-mode and depletion-mode devices,
and transfer characteristic with a load resistor.

� Apply nMOS and pMOS transistor biasing for logic and amplifier applications.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 69 of 149

� Contrast the properties of nMOS and pMOS transistors used as switches.
� Implement basic logic functions using nMOS, pMOS, and complementary metal-oxide semiconductor (CMOS) logic.
� Implement logic functions using pass transistors and transmission gates.
� Analyze the implications of implementing logic functions with switch networks versus logic gates.
� Define propagation delay, rise time, and fall time.
� Illustrate simplified Unit-Delay and Tau models for circuit timing.
� Analyze the effects of logic gate fan-in and fan-out on circuit timing and power and their associated tradeoffs.
� Contrast the effects of transistor sizing on timing and power, including nMOS and CMOS power/delay scaling.
� Compute the effects on circuit characteristics of various design styles, e.g., static logic, dynamic logic, multiple clocking schemes.

CE-CAE-7 Storage cell architecture
Minimum core coverage time: 3 hours

Core Learning Outcomes:

� Contrast the circuit properties of implementations of various storage elements (e.g., latches, flip-flops, clocked registers).
� Contrast the circuit properties of implementations of various memory cells (e.g., static RAM, dynamic RAM, ROM) and related circuitry

(e.g., sense amplifiers).
� Contrast storage elements and memory cells, emphasizing the tradeoffs that make each appropriate for specific uses.

Elective Learning Outcomes:

� Contrast the circuit properties of different kinds of non-volatile storage elements (e.g., flash memory, ROM).
� Derive timing diagrams showing the relationships among input, output, and clock signals for different storage devices.

CE-CAE-8 Interfacing logic families
Minimum core coverage time: 3 hours

Core Learning Outcomes:

� Explain the practical difficulties resulting from interfacing signals within a system and to the external world.
� Employ terminal characteristics of various logic families and of standard interfaces.
� Write the requirements for common signal translations between different logic families, such as between transistor-transistor logic

(TTL) and CMOS.
� Illustrate common methods to overcome difficulties when interfacing different logic families.
� Explain the practical difficulties resulting from single-ended to differential and differential to single-ended conversions.
� Contrast transmission line characteristics, reflections, and options for bus termination including passive, active, DC, and alternating

current (AC) features.

CE-CAE-9 Operational amplifiers
Minimum core coverage time: 3 hours

Core Learning Outcomes:

� Interpret the properties of an ideal operational amplifier (op-amp).
� Analyze and design circuits containing ideal op-amp circuits to include inverting and non-inverting amplifiers, summing and difference

amplifiers, integrators, and low-pass filters.

Elective Learning Outcomes:

� Contrast the properties of non-ideal op-amps to include DC errors, common-mode rejection ratio (CMRR), input and output
resistances, frequency response, output voltage, and current limitations.

� Analyze and design simple circuits containing non-ideal op-amps.
� Contrast and design multistage op-amp circuits.

CE-CAE-10 Mixed-signal circuit design
Minimum core coverage time: 3 hours

Core Learning Outcomes:

� Discuss common types of mixed-signal circuits and applications, including digital-to-analog (D/A) and analog-to-digital (A/D) converters
and sample-and-hold circuits.

� Describe key characteristics of D/A and A/D converters, such as least-significant bit (LSB), linearity, offset, and gain errors.
� Contrast the properties that distinguish between specific D/A and A/D converters for meeting system design requirements.
� Analyze issues associated with the integration of digital and analog circuits in a single IC or package, including both benefits and

challenges.
� Provide examples of commercial mixed-signal devices.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 70 of 149

Elective Learning Outcomes:
� Describe how D/A converter characteristics depend upon implementation; examples include weighted resistor, R/2R resistor ladders,

weighted current source converters, and delta-sigma converters.
� Describe how A/D converter characteristics depend upon implementation; examples include successive approximation converters,

single and dual slope converters, flash converters, and delta-sigma converters.
� Design A/D and D/A converters to meet given criteria using specified implementations.

CE-CAE Supplementary Knowledge Units

CE-CAE-11 Design parameters and issues
Supplementary

Elective Learning Outcomes:

� Calculate the effects of design parameters on switching energy, power-delay product, power dissipation, and noise margin.
� Indicate issues associated with power supply distribution.
� Describe sources of signal coupling and degradation, and their effects on circuit behavior.
� Contrast transmission line effects, particularly for passive, active, DC, and AC terminations.
� Use appropriate design strategies and software tools for power distributions and transmission lines, incorporating element tolerances

and tradeoffs.
� Use appropriate design strategies and software tools to minimize noise and other signal degradations in designs.
� Develop methods for worst-case analysis of circuits.
� Explain Monte Carlo analysis and describe tools for using Monte Carlo analysis in circuit design.
� Examine the use of six-sigma design methods for electronic circuits.

CE-CAE-12 Circuit modeling and simulation methods
Supplementary

Elective Learning Outcomes:

� Predict the benefits and drawbacks associated with simulation as a method of circuit analysis.
� Apply simulation methods for DC analysis, AC analysis, transient analysis, and steady-state analysis.
� Identify aspects of circuits that are not readily amenable to simulation.
� Contrast methods and parameters for controlling simulation to include built-in device models, device parameter controls, and device

and circuit libraries.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 71 of 149

CE-CAL Computing Algorithms
[30 core hours]

Area Scope
The knowledge units in this area collectively encompass the following:

1. Fundamental algorithmic design principles
2. Analysis of algorithmic behavior, including tradeoffs between algorithms
3. Classic algorithms for such common tasks as searching and sorting
4. Design and analysis of application-specific algorithms
5. Characteristics of parallel algorithms

CE-CAL Core Knowledge Units

CE-CAL-1 History and overview
Minimum core coverage time: 1 hour

Core Learning Outcomes:

� Explain the role of algorithms in a hardware/software system.
� Give examples of applications in which choice of algorithm is a significant design decision.
� Discuss the contributions of pioneers in the field.
� Explain why theory is important.

CE-CAL-2 Relevant tools, standards and/or engineering constraints
Minimum core coverage time: 1 hour

Core Learning Outcomes:

� Use library classes and the algorithms available in application code.
� Explain how to find libraries to support applications of interest.

CE-CAL-3 Basic algorithmic analysis
Minimum core coverage time: 4 hours

Core Learning Outcomes:

� Use big O, omega, and theta notation to characterize asymptotic upper, lower, and tighter bounds on time and space complexity of
algorithms.

� Determine the time complexity and the space complexity of simple algorithms.
� Measure the performance of an algorithm empirically.
� Explain why time/space tradeoffs are important in computing systems.

CE-CAL-4 Algorithmic strategies
Minimum core coverage time: 6 hours

Core Learning Outcomes:

� Design and implement brute force algorithms.
� Design and implement greedy algorithms.
� Design and implement an algorithm using a divide and conquer strategy.
� Explain how recursive algorithms work.
� Explain why heuristics are useful and give examples of their use.

CE-CAL-5 Classic algorithms for common tasks
Minimum core coverage time: 3 hours

Core Learning Outcomes:

� Describe algorithms historically used for searching and sorting.
� Solve problems using efficient sorting algorithms.
� Explain tradeoffs in choice of appropriate algorithm for common tasks.
� Use abstract data types (such as hash tables and binary search trees) in applications involving search.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 72 of 149

CE-CAL-6 Analysis and design of application-specific algorithms
Minimum core coverage time: 6 hours

Core Learning Outcomes:

� Identify characteristics of an application that influence algorithm choice.
� Explain features of algorithms used in application domains such as control applications, mobile or location-aware applications, discrete

event simulation applications or encryption/decryption algorithms.
� Identify factors having impact on the performance of application-specific algorithms.

CE-CAL-7 Parallel algorithms and multi-threading
Minimum core coverage time: 6 hours

Core Learning Outcomes:

� Analyze the parallelism inherent in a simple sequential algorithm.
� Explain why communication and coordination are critical to ensure correctness.
� Calculate the speedup attainable in theory and explain factors limiting attainable speedup.
� Explain limitations to scalability.
� Discuss parallel algorithm structure and give examples.
� Illustrate ways to manage algorithmic execution in multiple threads.
� Select appropriate methods for measuring the performance of multithreaded algorithms.

CE-CAL-8 Algorithmic complexity
Minimum core coverage time: 3 hours

Core Learning Outcomes:

� Explain what it means for a problem to be NP-complete.
� Give examples of NP-complete problems and explain why this is important.
� Apply appropriate heuristics in the context of addressing intractable problems.

CE-CAL Supplementary Knowledge Units

CE-CAL-9 Scheduling algorithms
Supplementary

Elective Learning Outcomes:

� Explain the underlying strategies in scheduling based on priority of the job, the length of the job, arrival time, and the impact of real
time constraints.

� Explain factors influencing the choice of a scheduling algorithm in an application.
� Analyze the impact of the scheduling algorithm on system performance.
� Illustrate the performance of a scheduling algorithm given a job set.

CE-CAL-10 Basic computability theory
Supplementary

Elective Learning Outcomes:

� Illustrate and analyze system behavior using finite state machines.
� Explain how regular expressions are related to finite state machines and why this is important.
� Design a deterministic finite state machine to accept a simple language.
� Generate a regular expression to represent a specified language.
� Explain what a context free grammar is and why finite state machines do not recognize all context free languages.
� Explain what an undecidable problem is.
� Discuss what the halting problem is and why it is significant.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 73 of 149

CE-CAO Computer Architecture and Organization
[60 core hours]

Area Scope
The knowledge units in this area collectively encompass the following:

1. History of computer architecture, organization, and its role in computer engineering
2. Standards and design tools used in computer architecture and organization
3. Instruction set architectures, including machine and assembly level representations and assembly language programming
4. Computer performance measurement, including performance metrics and benchmarks and their strengths and weaknesses
5. Arithmetic algorithms for manipulating numbers in various number systems
6. Computer processor organization and tradeoffs, including data path, control unit, and performance enhancements
7. Memory technologies and memory systems design, including main memory, cache memory, and virtual memory
8. Input/output system technologies, system interfaces, programming methods, and performance issues
9. Multi/many-core architectures, including interconnection and control strategies, programming techniques, and performance
10. Distributed system architectures, levels of parallelism, and distributed algorithms for various architectures

CE-CAO Core Knowledge Units

CE-CAO-1 History and overview
Minimum core coverage time: 1 hour

Core Learning Outcomes:

� Identify some contributors to computer architecture and organization and relate their achievements to the knowledge area.
� Articulate differences between computer organization and computer architecture.
� Sketch a block diagram showing the main components of a simple computer.
� Explain the reasons and strategies for different computer architectures and indicate some strengths and weaknesses inherent in each.
� Identify some modern techniques for high-performance computing, such as multi/many-core and distributed architectures.

CE-CAO-2 Relevant tools, standards and/or engineering constraints
Minimum core coverage time: 1 hour

Core Learning Outcomes:

� Identify tools to simulate computer systems at different levels of design abstraction: system, instruction set processor (ISP), register-
transfer language (RTL), and gate level.

� Discuss the type of information contained in one or more component interconnect standards.
� Discuss how architecture design choices and tradeoffs influence important consequences such as performance and power.

Elective Learning Outcome:

� Contrast two hardware description languages, such as VHDL and Verilog.

CE-CAO-3 Instruction set architecture
Minimum core coverage time: 10 hours

Core Learning Outcomes:

� Explain the organization of a von Neumann machine and its major functional units.
� Illustrate how a computer fetches from memory, decodes, and executes an instruction.
� Articulate the strengths and weaknesses of the von Neumann architecture, compared to a Harvard or other architecture.
� Describe the primary types of computer instructions, operands, and addressing modes.
� Explain the relationship between the encoding of machine-level operations at the binary level and their representation in a symbolic

assembly language.
� Explain different instruction format options, such as the number of addresses per instruction and variable-length versus fixed-length

formats.
� Describe reduced (RISC) vs complex (CISC) instruction set computer architectures.
� Write small assembly language programs to demonstrate an understanding of machine-level operations.
� Implement some fundamental high-level programming constructs at the assembly-language level, including control flow structures

such as subroutines and procedure calls.
� Write small assembly language programs to access simple input/output devices using program-controlled and interrupt-driven

methods.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 74 of 149

Elective Learning Outcome:
� Describe features and applications of short-vector instruction sets: Streaming extensions, AltiVec, relationship between computer

architecture and multimedia applications.

CE-CAO-4 Measuring performance
Minimum core coverage time: 3 hours

Core Learning Outcomes:

� List the factors that contribute to computer performance.
� Articulate the rationale for and limitations of commonly used computer performance metrics, such as clock rate, MIPS, cycles per

instruction, throughput, and bandwidth.
� Describe the rationale for and limitations of benchmark programs.
� Name and describe two commonly used benchmarks for measuring computer performance, and contrast two different computer

systems using published benchmark results.
� Select the most appropriate performance metrics and/or benchmarks for evaluating a given computer system, for a target application.
� Explain the role of Amdahl’s law in computer performance and the ways control and data path design can affect performance.

CE-CAO-5 Computer arithmetic
Minimum core coverage time: 3 hours

Core Learning Outcomes:

� Determine the characteristics of commonly used number systems such as range, precision, accuracy, and conditions that lead to
arithmetic overflow and underflow, and tradeoffs between characteristics of different number systems.

� Describe the limitations of computer arithmetic and the effects of errors on calculations.
� Describe basic arithmetic algorithms for addition, subtraction, multiplication, and division of integer binary numbers.
� Convert numbers to and from the formats specified by the IEEE 754 standard for floating-point arithmetic.
� Describe algorithms for addition, subtraction, multiplication, and division of floating-point numbers.
� Describe how multi-precision arithmetic is performed in a computer system.
� Discuss the effect of a processor’s arithmetic unit on its overall performance.

Elective Learning Outcomes:

� Describe algorithms for higher-complexity functions, such as square roots and transcendental functions.
� Describe saturating arithmetic operations and discuss some applications in which saturating arithmetic would be useful.

CE-CAO-6 Processor organization
Minimum core coverage time: 10 hours

Core Learning Outcomes:

� Discuss the relationship between instruction set architecture and processor organization.
� Contrast tradeoffs between alternative implementations of datapaths for a Von Neumann machine.
� Design a datapath and a hard-wired control unit for a simple instruction set architecture.
� Design arithmetic units for multiplication, division, and floating-point arithmetic.
� Explain basic instruction-level parallelism (ILP) using pipelining, the effect of pipelining on performance, and the major hazards that

may occur, including performance penalties resulting from hazards.
� Explain the steps needed to mitigate the effect of pipeline hazards caused by branches.
� Describe common exception and interrupt handling mechanisms used in computer systems.
� Describe the characteristics of superscalar architectures, including multi-issue operation, and in-order and out-of-order execution.
� Describe how each of the functional parts of a computer system affects its overall performance.

Elective Learning Outcomes:

� Discuss the way in which instruction sets have evolved to improve performance—for example, predicated/speculative execution and
SIMD support.

� Discuss frequency and power scaling issues and their tradeoffs for processor design.
� Discuss how accelerators (e.g., GPUs, DSPs, FPGAs) can be used to improve performance.
� Discuss how to apply parallel processing approaches to design scalar and superscalar processors.
� Discuss how to apply vector processing techniques to enhance instruction sets for multimedia and signal processing.

CE-CAO-7 Memory system organization and architecture
Minimum core coverage time: 9 hours

Core Learning Outcomes:

� Identify the main types of memory technologies presently in use.
� Design a main memory with specified parameters using given memory devices.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 75 of 149

� Discuss how memory performance metrics, such as latency, cycle time, bandwidth, and interleaving, are used to measure the effects of
memory on overall system performance.

� Explain the use of memory hierarchy to reduce the effective memory latency in a system.
� Describe common cache memory organizations, explain the use of cache memory to improve performance, and discuss cost-

performance tradeoffs of different cache organizations.
� Illustrate mechanisms used to provide cache coherence, invalidation/snooping, and shared/exclusive access control.
� Describe the principles of memory management and virtual memory systems.
� Describe characteristics of current secondary storage technologies, such as magnetic, optical, and solid-state drives.

Elective Learning Outcome:

� Understand how errors in memory systems arise, and illustrate several mechanisms used to resolve them, such as error detecting and
error correcting systems, and RAID structures.

CE-CAO-8 Input/output interfacing and communication
Minimum core coverage time: 7 hours

Core Learning Outcomes:

� Draw a block diagram showing how a processor interacts with input/output (I/O) devices, including peripheral addressing (isolated vs
memory-mapped) handshaking, and buffering.

� Explain the use of interrupts to implement I/O control and data transfers, including vectored and prioritized interrupts, and discuss
factors that contribute to interrupt overhead and latency.

� Write small interrupt service routines and I/O drivers using assembly language.
� Illustrate the use of direct memory access (DMA) to interact with IO devices.
� Determine tradeoffs between program-controlled IO, interrupt-driven IO, and DMA for a given application.
� Describe the characteristics of a parallel bus, including data transfer protocols.
� Describe characteristics of asynchronous and synchronous serial communication protocols.
� Discuss tradeoffs between parallel and serial data transmission between devices.

CE-CAO-9 Peripheral subsystems
Minimum core coverage time: 7 hours

Core Learning Outcomes:

� Contrast the characteristics of one or more computer system expansion buses.
� Select an appropriate bus for connecting given components/subsystems to a computer system.
� Describe data access from a secondary storage device such as a magnetic or solid-state disk drive.
� Explain how storage subsystem interface / controllers function.
� Explain how display subsystems and controllers function.
� Describe other input and output device subsystems (e.g., keyboard, mouse, audio).
� Describe communication subsystems: network controllers, and serial and parallel communication functions.

CE-CAO-10 Multi/Many-core architectures
Minimum core coverage time: 5 hours

Core Learning Outcomes:

� Discuss the performance limitations of single-core processors due to clock-frequency and power walls.
� Describe the basic organization of a multi/many-core, shared memory processor.
� Discuss the benefits of homogeneous vs heterogeneous multi/many-core architectures, and tradeoffs between different architectures.
� Discuss on-chip interconnect networks and memory controller issues.
� Describe how programs are partitioned for execution on multi/many-core processors.
� Articulate current programming techniques, models, frameworks, and languages for multi/many-core processors.

CE-CAO-11 Distributed system architectures
Minimum core coverage time: 4 hours

Core Learning Outcomes:

� Explain the differences and tradeoffs between various distributed system paradigms.
� Explain the impact of granularity and levels of parallelism in distributed systems, including threads, thread-level parallelism and

multithreading.
� Describe the topology, degrees of coupling, and other characteristics of several current multiprocessor/multicomputer architectures.
� Describe how the client-server model works in a decentralized fashion.
� Explain how agents work and how they solve simple tasks.
� Articulate current programming techniques, models, frameworks, and languages for distributed, parallel processing.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 76 of 149

Elective Learning Outcomes:
� Describe modern implementations of the client-server model, such as cloud-based computing.
� Describe the concept of logical clocks versus physical clocks and show how they affect implementation of distributed systems.
� Contrast simple election and mutual exclusion algorithms and their applicability.
� Describe approaches to design for parallelism, synchronization, thread safety, concurrent data structures.
� Discuss distributed transaction models, classification, and concurrency control.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 77 of 149

CE-DIG Digital Design
[50 core hours]

Area Scope
The knowledge units in this area collectively encompass the following:

1. Digital design basics: number representation, arithmetic operations, Boolean algebra, and their realization as basic logic circuits
2. Building blocks: combinational, sequential, memories, and elements for arithmetic operations
3. Hardware Description Languages (HDLs), digital circuit modeling, design tools, and tool flow
4. Programmable logic platforms (e.g., FPGAs) for implementing digital systems
5. Datapaths and control units composed of combinational and sequential building blocks
6. Analysis and design of digital systems including design space exploration, and tradeoffs based on constraints such as performance,

power, and cost

CE-DIG Core Knowledge Units

CE-DIG-1 History and overview
Minimum core coverage time: 1 hour

Core Learning Outcomes:

� Identify some early contributors to digital design and relate their achievements to the knowledge area.
� Discuss applications in computer engineering that benefit from the area of digital design.
� Describe how Boolean logic relates to digital design.
� Enumerate key components of digital design such as combinational gates, memory elements, and arithmetic blocks.

CE-DIG-2 Relevant tools, standards, and/or engineering constraints
Minimum core coverage time: 2 hours

Core Learning Outcomes:

� Describe design tools and tool flow (e.g., design entry, compilation, simulation, and analysis) that are useful for the creation and
simulation of digital circuits and systems.

� Discuss the need for standards and enumerate standards important to the area of digital design such as floating-point numbers (IEEE
754) and character encoding (ASCII, Unicode)

� Use one of the standard HDLs (e.g., IEEE 1364/Verilog, IEEE 1076/VHDL) for modeling simple digital circuits.
� Define important engineering constraints such as timing, performance, power, size, weight, cost, and their tradeoffs in the context of

digital systems design.

CE-DIG-3 Number systems and data encoding
Minimum core coverage time: 3 hours

Core Learning Outcomes:

� Convert signed/unsigned, integer/fixed-point decimal numbers to/from binary/hex representations.
� Perform integer/fixed-point addition/subtraction using binary/hex number representations.
� Define precision and overflow for integer/fixed-point, signed/unsigned, addition/subtraction operations.
� Encode/decode character strings using ASCII and Unicode standards.

CE-DIG-4 Boolean algebra applications
Minimum core coverage time: 3 hours

Core Learning Outcomes:

� Define basic (AND, OR, NOT) and derived (e.g., NAND, NOR, XOR) Boolean operations.
� Enumerate Boolean algebra laws and theorems.
� Use basic and derived Boolean operations to evaluate Boolean expressions.
� Write and simplify Boolean expressions by applying appropriate laws and theorems and other techniques (e.g., Karnaugh maps).

CE-DIG-5 Basic logic circuits
Minimum core coverage time: 6 hours

Core Learning Outcomes:

� Describe electrical representations of TRUE/FALSE.
� Describe physical logic gate implementations of basic (AND, OR, NOT) and derived (e.g., NAND, NOR, XOR) Boolean operations.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 78 of 149

� Describe the high-impedance condition and logic gate implementation such as a tri-state buffer.
� Implement Boolean expressions using the two-level gate forms of AND-OR, OR-AND, NAND-NAND, NOR-NOR and

positive/negative/mixed-logic conventions.
� Implement Boolean expressions using multiple gating levels and positive/negative/mixed-logic conventions.
� Discuss the physical properties of logic gates such as fan-in, fan-out, propagation delay, power consumption, logic voltage levels, and

noise margin and their impact on the constraints and tradeoffs of a design.
� Explain the need for a hardware description language (HDL) in digital system design.
� Describe the logic synthesis process that transforms an HDL description into a physical implementation.
� Implement combinational networks using an HDL and generate/verify using appropriate design tools.

CE-DIG-6 Modular design of combinational circuits
Minimum core coverage time: 8 hours

Core Learning Outcomes:

� Describe and design single-bit/multi-bit structure/operation of combinational building blocks such as multiplexers, demultiplexers,
decoders, and encoders.

� Describe and design the structure/operation of arithmetic building blocks such adders (ripple-carry), subtractor, shifters, and
comparators.

� Describe and design structures for improving adder performance such as carry lookahead and carry select.
� Analyze and design combinational circuits (e.g., arithmetic logic unit, ALU) in a hierarchical, modular manner, using standard and

custom combinational building blocks.
� Implement combinational building blocks and modular circuits using an HDL and generate/verify using appropriate design tools.

CE-DIG-7 Modular design of sequential circuits
Minimum core coverage time: 9 hours

Core Learning Outcomes:

� Define a clock signal using period, frequency, and duty-cycle parameters.
� Explain the structure/operation of basic latches (D, SR) and flip-flops (D, JK, T).
� Describe propagation delay, setup time, and hold time for basic latches and flip-flops.
� Describe and design the structure/operation of sequential building blocks such as registers, counters, and shift registers.
� Analyze and create timing diagrams for sequential block operation.
� Enumerate design tradeoffs in using different types of basic storage elements for sequential building block implementation.
� Implement sequential building blocks using an HDL and generate/verify using appropriate design tools.
� Describe the characteristics of static memory types such static SRAM, ROM, and EEPROM.
� Describe the characteristics of dynamic memories.

Elective Learning Outcomes:

� Describe techniques (e.g., handshaking) of asynchronous design, and discuss their advantages (e.g., performance/power in some cases)
and design issues (e.g., hazards such as race conditions, lack of tool support).

� Describe the characteristics of advanced memory technologies such as multi-port memories, double data rate (DDR) memories, and
hybrid memories (e.g., hybrid memory cube, HMC).

CE-DIG-8 Control and datapath design
Minimum core coverage time: 9 hours

Core Learning Outcomes:

� Describe a digital system that is partitioned into control+datapath and explain the need for control to sequence operations on a
datapath.

� Contrast the different types of Finite State Machines (FSMs): e.g., Mealy State Machine, Moore State Machine, and Algorithmic State
Machine (ASM).

� Represent FSM operation graphically using a state diagram (e.g., Mealy state diagram, Moore state diagram, or ASM chart).
� Analyze state diagrams and create timing diagrams for FSM operation.
� Compute timing parameters such as maximum operating frequency, setup/hold time of synchronous inputs, clock-to-out propagation

delays, pin-to-pin propagate delay for a control+datapath design.
� Design an RTL model of a control+datapath using a HDL and synthesize/verify using appropriate design tools.

Elective Learning Outcomes:

� Discuss clock generation, clock distribution, clock skew in relationship to a control+datapath design.
� Use pipelining to improve the performance of a control+datapath design.
� Discuss applications that require serialization/de-serialization of bit streams, and implement a design that performs serialization/de-

serialization.

http://www.hybridmemorycube.org/

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 79 of 149

CE-DIG-9 Design with programmable logic
Minimum core coverage time: 4 hours

Core Learning Outcomes:

� Describe basic elements of programmable logic such as lookup tables (LUTs), AND/OR plane programmable logic, programmable mux
logic, and programmable routing.

� Discuss programmable logic architectures such as Field Programmable Gate Arrays (FPGAs) and Complex Programmable Logic Devices
(CPLDs).

� Describe common features of programmable logic architectures such as hard macros (e.g., adders, multipliers, SRAMs), clock
generation support (e.g., PLLs, multiple clock networks), and support for different logic standards.

� Implement a digital system in an FPGA or CPLD and describe and evaluate tradeoffs for implementation characteristics such as
programmable logic resources that are used, maximum clock frequency, setup/hold times for external inputs, and clock-to-out delay.

Elective Learning Outcomes:

� Describe advanced features of programmable logic architectures in the form of hard macros such as CPUs, high-speed serial
transceivers, and support for other transceiver standards (e.g., PCI Express, Ethernet PCS).

CE-DIG-10 System design and constraints
Minimum core coverage time: 5 hours

Core Learning Outcomes:

� Contrast top-down versus bottom-up design methodologies for system design.
� Describe how to use logic synthesis timing constraints with an appropriate design tool for affecting logic generated for a

control+datapath implementation.
� Use constraints of clock-cycle latency and clock-cycle throughput to create alternate designs for a digital system.
� Use other appropriate design tools (e.g., power estimator) for design space exploration and tradeoffs based on constraints such as

performance, power, and cost.
� Describe the role of testability as a system design constraint and different approaches and tools for improving testability.
� Describe features/architecture of the JTAG standard and its role in digital systems testing.
� Create an HDL-based self-checking behavioral test bench for a digital system design.

CE-DIG Supplementary Knowledge Units

CE-DIG-11 Fault models, testing, and design for testability
Supplementary

Elective Learning Outcomes:

� Explain the need for systematic testing methods in digital design.
� Define fault models such as stuck-at, bridging, and delay.
� Define the terms controllability, observability, test coverage, and test generation when designing a method for testing a digital system.
� Describe design for testability methods such as ad-hoc, full-scan/partial scan and built-in-self-test (BIST).
� Describe the role of computer-aided testing tools for digital systems testing.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 80 of 149

CE-ESY Embedded Systems
[40 core hours]

Area Scope
The knowledge units in this area collectively encompass the following:

1. Purpose and role of embedded systems in computer engineering, along with important tradeoffs in such areas as power, performance,
and cost

2. Embedded systems software design, either in assembly language or a high-level language or both, for typical embedded systems
applications using modern tools and approaches for development and debugging

3. Digital interfacing using both parallel and asynchronous/synchronous serial techniques incorporating typical on-chip modules as such as
general purpose I/O, timers, and serial communication modules (e.g., UART, SPI, I2C, and CAN)

4. Analog interfacing using analog-to-digital convertors connected to common sensor elements and digital-to-analog converters
connected to typical actuator elements

5. Mobile and wireless embedded systems using both short-range (e.g., Bluetooth, 802.15.4) and long-range (e.g., cellular, Ethernet) in
various interconnection architectures

CE-ESY Core Knowledge Units

CE-ESY-1 History and overview
Minimum core coverage time: 1 hour

Core Learning Outcomes:

� Identify some contributors to embedded systems and relate their achievements to the knowledge area.
� Describe the characteristics of an embedded system and its role in several example applications.
� Explain the reasons for the importance of embedded systems.
� Describe the relationship between programming languages and embedded systems.
� Describe how computer engineering uses or benefits from embedded systems.

CE-ESY-2 Relevant tools, standards, and/or engineering constraints
Minimum core coverage time: 2 hours

Core Learning Outcomes:

� Use an integrated development environment (IDE) to write, compile and/or assemble, and debug a program (high-level or assembly
language) for a target embedded system.

� Contrast instrumentation choices for diagnosing/understanding hardware aspects of embedded systems behavior.
� List several standards applicable to embedded such as signaling levels and serial communication protocols.

CE-ESY-3 Characteristics of embedded systems
Minimum core coverage time: 2 hours

Core Learning Outcomes:

� Contrast CPUs used for embedded systems versus those used for general purpose computing.
� Evaluate and rank tradeoffs such as cost, power, and performance for different embedded systems applications.
� Describe architectural features of the target embedded system(s) (register structure, memory architecture, CPU features, peripheral

subsystems).
� Contrast the different types of processors for embedded systems: CPU microcontrollers, DSP processors, GPUs, heterogeneous SOCs

(CPUs/accelerators), FPGA-based processors.

CE-ESY-4 Basic software techniques for embedded applications
Minimum core coverage time: 3 hours

Core Learning Outcomes:

� Manually translate simple high-level language statements to equivalent assembly language.
� Describe the actions of compilation, assembly, linking in the program translation process.
� Describe actions taken by compiler-generated code after system reset but before user application execution.
� Describe memory assignments made by a compiler for global variables, local variables, subroutine parameters and dynamically allocated

storage.
� Explain the basic loop-forever structure of an embedded program.
� Design simple programs for embedded system applications including some that include modular/hierarchical programming techniques

such as subroutines and functions.
� Demonstrate debugging techniques for simple embedded application programs.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 81 of 149

CE-ESY-5 Parallel input and output
Minimum core coverage time: 3 hours

Core Learning Outcomes:

� Describe the appropriateness of different I/O configurations (input, strong drive, weak pullup/pulldown, open-drain, tri-state) available
in general purpose I/O (GPIO) for a given target application.

� Create programs that perform a set of input/output operations on one more GPIOs using a polled approach.
� Describe how interrupts are supported on the target embedded system(s).
� Create programs that perform a sequence of input/output operations on one more GPIOs using an interrupt-driven approach.
� Discuss mechanisms such as hardware and software FIFOs for buffering data streams.

Elective Learning Outcomes:

� Discuss Direct Memory Access (DMA) and describe how it is supported on the target embedded system.
� Create programs that perform a sequence of input/output operations using DMA.

CE-ESY-6 Asynchronous and synchronous serial communication
Minimum core coverage time: 6 hours

Core Learning Outcomes:

� Discuss the concepts of full-duplex and half-duplex communication.
� Contrast parallel I/O versus serial I/O tradeoffs in terms of throughput, wiring cost, and application.
� Describe the data formatting, timing diagrams, and signaling levels used in an asynchronous serial interface.
� Create programs that perform I/O to an external device or system that uses an asynchronous serial interface.
� Describe the data formatting, timing diagrams, and signaling levels used in a synchronous serial interface such as SPI or I2C.
� Create programs that perform I/O to an external device or system that uses a synchronous serial interface such as SPI or I2C.

CE-ESY-7 Periodic interrupts, waveform generation, time measurement
Minimum core coverage time: 3 hours

Core Learning Outcomes:

� Describe the basic features and operation of typical hardware timers used in embedded systems.
� Create programs that perform periodic I/O triggered by hardware timer-generated interrupts.
� Create programs that measure waveform characteristics such as pulse width and frequency using hardware timers.
� Describe applications of pulse width modulation.
� Create programs that use pulse width modulation for external device control.

CE-ESY-8 Data acquisition, control, sensors, actuators
Minimum core coverage time: 4 hours

Core Learning Outcomes:

� Describe terms and properties relating to Analog-to-Digital Conversion (ADC) and Digital-to-Analog Conversion (DAC) such as sampling
rate, reference voltage, conversion time, precision, range, and encoding method.

� Perform voltage to binary and binary to voltage numerical conversions given range, encoding method, and reference voltage
parameters.

� Describe DAC and ADC architectural approaches such as resistor ladder, successive approximation, flash, and delta-sigma, and give
tradeoffs such as conversion time and circuit complexity.

� Demonstrate numerical conversion from a physical quantity such as pressure, temperature, and acceleration to voltage or current
given an example sensor and its characteristic equation or graph.

� Create programs that use one or more external sensors for monitoring physical properties.
� Demonstrate numerical conversion from voltage or current to a physical quantity such as linear/angular movement, sound, and light

given an example actuator and its characteristic equation or lookup-up table.
� Create programs that use one or more actuators for effecting physical control by an embedded system.
� Design circuitry that transforms voltage level/current drive from/to external sensors/actuators to that required/provided by a target

CPU.

CE-ESY-9 Implementation Strategies for Complex Embedded Systems
Minimum core coverage time: 7 hours

Core Learning Outcomes:

� Describe the need for structured approaches in writing complex embedded applications.
� Describe techniques used in event-driven state machine frameworks such as events, event queues, active objects, event processing,

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 82 of 149

priority queues, and hierarchical state machines.
� Describe techniques used in real time operating systems (RTOS) such as message passing, preemptive versus cooperative scheduling,

semaphores, queues, tasks, co-routines, and mutexes.
� Create programs using either a state machine framework or an RTOS (or both) for sample embedded system applications.

CE-ESY-10 Techniques for low-power operation
Minimum core coverage time: 3 hours

Core Learning Outcomes:

� Describe sources of energy consumption such as toggling, leakage and pin configurations used for minimizing power.
� Describe power saving approaches used in embedded system design and their corresponding performance/power tradeoffs such as

sleep/hibernate modes, peripheral system enable/disable, and clock frequency management, and appropriate GPIO configurations
during sleep/hibernate.

� Describe wakeup mechanisms such as watchdog timer, real time clock, and external interrupts.
� Write programs that demonstrate minimal energy usage in performing I/O tasks through use of sleep and/or hibernate modes.
� Compute system battery life for an embedded system platform given parameters such as battery capacity, current draw, wake time,

sleep time, clock frequency.

CE-ESY-11 Mobile and networked embedded systems
Minimum core coverage time: 3 hours

Core Learning Outcomes:

� Describe the role of embedded systems in the ‘internet of things.’
� Discuss options for adding short-range wireless connectivity to an embedded system such as Bluetooth and 802.15.4 and tradeoffs

relating to cost, power, throughput, and connectivity.
� Discuss options for adding long-range wireless connectivity to an embedded system such as cellular and Ethernet and tradeoffs relating

to cost, power, throughput, and connectivity.
� Contrast hardware options for adding wireless connectivity to an embedded system such as external smart modules or software stack-

plus-radio integrated circuits.
� Contrast connectivity architectures such as point-to-point, star, and mesh.
� Discuss security options for protecting wireless communication links.

CE-ESY-12 Advanced input/output issues
Minimum core coverage time: 3 hours

Core Learning Outcomes:

� Discuss concepts used in I/O buses such as master/slave devices, arbitration, transactions, priorities, and packets.
� Contrast single-ended signaling versus differential signaling for use in high-speed serial busses, and methods for measuring differential

signaling quality such as eye-diagrams.
� Describe features such as topology, signaling levels, arbitration, speed, packet structure, and data transfers for one or more advanced

serial bus protocols such as the Controller Area Network, Universal Serial Bus, and IEEE 1394 (FireWire).
� Discuss architectures and applications of persistent storage for embedded systems, such as flash drives, SD cards, and FRAM.

CE-ESY Supplementary Knowledge Units

CE-ESY-13 Computing platforms for Embedded Systems
Supplementary

Elective Learning Outcomes:

� Describe multimedia peripherals found in advanced embedded System-On-Chip implementations such video encoding, audio
processing, display processing.

� Describe interconnect and networking options for SoCs, including Network-on-Chip architectures.
� Contrast performance, power, and flexibility tradeoffs for hard core versus software CPUs found in Field Programmable Gate Arrays.
� Describe embedded applications that benefit from a multi-core approach.
� Describe embedded applications that benefit from other types of processors for embedded systems: DSP processors, GPUs,

heterogeneous SOCs (CPUs/accelerators), FPGA-based processors.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 83 of 149

CE-NWK Computer Networks
[20 core hours]

Area Scope
The knowledge units in this area collectively encompass the following:

1. Development history of computer network, network hierarchy and the important role of computer network in the computer industry
2. Related standards and common tools (e.g., tools for performance evaluation and network topology) used in research of computer

networks
3. Architecture of computer networks, the OSI model, and the TCP/IP model
4. Fundamentals and technologies in data communication and transfer protocols of the physical layer and the data link layer
5. LAN networking, protocols of the MAC layer, and concepts and features of WAN
6. The network layer, the transport layer, the application layer, and typical network applications, such as e-mail, www, and ftp
7. Tradeoffs associated with various network architectures and protocols
8. Basic concepts, purposes, and common protocols of network management
9. Features and networking technologies of wireless sensor networks

CE-NWK Core Knowledge Units

CE-NWK-1 History and overview
Minimum core coverage time: 1 hour

Core Learning Outcomes:

� Describe the origins and development history of computer networks.
� Explain important applications of computer network.
� Identify people who made important contributions to networks and specify the contributions they made.
� Explain the basic composition and hierarchy of computer network.
� Discuss the role of hierarchy in computer network construction.
� Explain the main protocols and the key technologies related to computer networks.

CE-NWK-2 Relevant tools, standards and/or engineering constraints
Minimum core coverage time: 1 hour

Core Learning Outcomes:

� Describe the broad taxonomy of wireless standards such as cellular network standards vs. 802 family standards.
� Provide an overview of the IEEE 802 family standards including IEEE802.3, 802.11, 802.15, and 802.16.
� Provide an overview of cellular network standards including 2G, 3G, 3.5G, 4G, 5G, and LTE.
� Explain the Bluetooth wireless technology standard.
� Contrast functions and basic usages of a modern network simulator.
� Discuss constraints of the development of computer networks, such as transmission media, network security and network

management.

CE-NWK-3 Network architecture
Minimum core coverage time: 4 hours

Core Learning Outcomes:

� State the fundamental concepts of networks and their topologies.
� Contrast network architectures with the network’s hardware components.
� Contrast the elements of a protocol with the concept of layering.
� Explain the importance of networking standards and their regulatory committees.
� Describe the seven layers of the OSI model.
� Define the role of networking and internetworking devices such as repeaters, bridges, switches, routers, and gateways.
� Explains the pros and cons of network topologies such as mesh, star, tree, bus, ring, and 3-D torus.
� Describe the TCP/IP model.
� Contrast the TCP/IP model with the OSI model.

CE-NWK-4 Local and wide area networks
Minimum core coverage time: 4 hours

Core Learning Outcomes:

� Explain the basic concepts of LAN, MAN, and WAN technologies, topologies, and associated tradeoffs.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 84 of 149

� Describe the use of network technologies for on-chip interconnect networks such as Network-on-Chip (NoC) architectures.
� Contrast different components and requirements of network protocols with their tradeoffs.
� Explain the functions of the physical layer and describe features of different transmission media and technologies.
� Articulate the basic concepts of error detection and correction at the data-link layer.
� Contrast circuit and packet switching
� Explain the access and control methods of common shared media.
� Contrast key innovations of Ethernet and Gigabit Ethernet.
� Explain the key concepts of carrier-sense multiple-access networks (CSMA).
� Explain how to build a simple network using a network protocol that operates at the physical and data-link layers of the OSI model.

Elective Learning Outcomes:

� Describe protocols for addressing and congestion control.
� Describe protocols for virtual circuits and quality of service.

CE-NWK-5 Wireless and mobile networks
Minimum core coverage time: 2 hours

Core Learning Outcomes:

� Explain the source of changes in the wireless and mobile industry from the view point of new service models such as the mobile
ecosystem (e.g., Apple and Android ecosystems).

� Describe the fundamental components that tend to be unchanged for long periods such as mobile IP, Wi-Fi, and cellular.
� Explain the potential issues in wireless media access such as the hidden terminal problem and the exposed terminal problem.
� Explain the basics of a Wi-Fi network such as protocol stack and frame structure as well as its development such as IEEE802.11 a/b/g/n

series standards.
� Contrast the basic concepts in cellular network such network architecture, framework, and LTE.
� Describe the main characteristics of mobile IP and explain how it differs from standard IP regarding mobility management and location

management; illustrate how traffic is routed using mobile IP.
� Describe features of typical wireless MAC protocols.

Elective Learning Outcome:

� Explain wireless CSMA/CA and RTS/CTS enhancement mechanisms.

CE-NWK-6 Network protocols
Minimum core coverage time: 3 hours

Core Learning Outcomes:

� Contrast connection-oriented and connectionless services.
� Contrast network protocols in dimensions related to their syntax, semantics, and timing.
� Define the role of key layers from a software stack including physical-layer networking concepts, data-link layer concepts,

internetworking, and routing.
� Explain some common protocol suites and the services they provide (e.g., IPv4, IPv6, and TCP/UDP).
� Describe the functions of the network layer and networking technology.
� Contrast different network architectures.
� Describe the important technologies used in routers.
� Contrast at least two important routing algorithms.
� Explain congestion control and contrast its related algorithms.
� Describe main contents of the IP, TCP and UDP protocols.
� Explain the role of the Domain Name System (DNS) and the benefits of its distributed design.

CE-NWK-7 Network applications
Minimum core coverage time: 2 hours

Core Learning Outcomes:

� Describe the key components of a web solution stack using LAMP (Linux, Apache HTTP server, MySQL, PHP/Perl/Python) or other
similar illustrative examples.

� Explain the different roles and responsibilities of clients and servers for a range of possible applications.
� Select a range of tools that ensures an efficient approach to implementing various client-server possibilities.
� Design and build a simple interactive web-based application (for example, a simple web form that collects information from the client

and stores it in a file on the server).
� Discuss web software stack technologies such as LAMP solution stack.
� Explain characteristics of web servers such as handling permissions, file management, and capabilities of common server architectures.
� Describe support tools for website creation and web management.
� Describe at a high level, ways in which a wide variety of clients and server software interoperates to provide e-mail services worldwide.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 85 of 149

Elective Learning Outcomes:

� Implement solutions using dynamic HTML and client- and server-side models for web applications.
� Give examples of and state advantages and disadvantages of peer-to-peer models.
� Explain the principles, advantages, and challenges of cloud computing.
� Give examples of cloud computing APIs or commercial services and summarize the key abilities they provide.
� Describe the key components and tradeoffs of a modern network application that requires a hybrid of many areas with computer

networks such as machine learning, data mining, HCI, and transportation systems.

CE-NWK-8 Network management
Minimum core coverage time: 3 hours
Core Learning Outcomes:

� Discuss the possible objectives and main instruments for network management.
� Describe the role of a domain name server (DNS) in distributed network management.
� Describe common network management protocols such as ICMP, and SNMP.
� Contrast three main issues related to network management.
� Discuss four typical architectures for network management including the management console, aggregators, and device agents.
� Demonstrate the management of a device such as an enterprise switch through a management console.
� Contrast various network management techniques as they apply to wired and wireless networks such as topics on devices, users, quality

of service, deployment, and configuration of these technologies.
� Discuss the address resolution protocol (ARP) for associating IP addresses with MAC addresses.
� Explain two quality of service issues such as performance and failure recovery.
� Describe ad hoc networks.
� Explain troubleshooting principles and techniques related to networks.
� Describe management functional areas related to networks.

CE-NWK Supplementary Knowledge Units

CE-NWK-9 Data communications
Supplementary

Elective Learning Outcomes:

� Define the fundamental concepts of data communications.
� Apply signals and signal encoding methods to communication service methods and data-transmission modes.
� Explain the role of modulation in data communication.
� Contrast the issues involved with A/D and D/A conversion in data communications.
� Contrast communication hardware interfaces such as modems.
� Explain various approaches to multiplexing.
� Explain the basic theory of error detecting and correcting codes and provide an example.

CE-NWK-10 Performance evaluation
Supplementary

Elective Learning Outcomes:

� Describe performance metrics.
� Contrast how different performance metrics affect a specific network and/or service paradigm.
� Contrast service paradigms such as connection-oriented service and connectionless service.
� Contrast network performance characteristics including latency and throughput.
� Discuss network error sources such as dropped packets and corrupted data.
� Define a “quality of experience” metric (QoE, QoX or simply QX), which is a measure of a customer's experiences with a service (e.g.,

web browsing, phone call, TV broadcast, call to a call center).
� Apply fundamental modeling theory to analyze the performance of a network (e.g., a M/M/1 queue).

CE-NWK-11 Wireless sensor network
Supplementary

Elective Learning Outcomes:

� Describe the features of wireless sensor network (WSN) systems.
� Describe the MAC and routing protocols of WSNs.
� Discuss the requirements and strategies of WSN data fusion.
� Provide an example of a real application of WSNs.
� Contrast circuit switching vs packet switching: virtual circuit switching (MPLS).

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 86 of 149

CE-PPP Preparation for Professional Practice
[20 core hours]

Area Scope
The knowledge units in this area collectively encompass the following:

1. The importance of effective communication among professionals and other diverse audiences
2. The significance of leadership and professional interaction when functioning within an interdisciplinary team
3. The professional and ethical responsibilities of practicing computer engineers and the effects of their work on society
4. The importance of understanding contemporary issues, lifelong learning strategies, and legal and intellectual property issues
5. The importance of business acumen and skill in managing projects in the computer engineering field

CE-PPP Core Knowledge Areas

CE-PPP-1 History and overview
Minimum core coverage time: 1 hour

Core Learning Outcomes:

� Describe the nature of professionalism and its place in the field of computer engineering.
� Identify some contributors and relate their achievements to social and professional issues.
� Contrast ethical and legal issues as related to computer engineering.
� Indicate reasons for studying social and professional issues.
� Identify stakeholders in an issue and an engineer’s obligations to them.
� Explain professionalism and licensure relative to a practicing computer engineer.
� Describe how computer engineering uses or benefits from social and professional issues.

CE-PPP2 Relevant tools, standards, and/or engineering constraints
Minimum core coverage time: 1 hour

Core Learning Outcomes:

� Interpret the social context of a specific implementation.
� Identify non-technical assumptions and values that an engineer would associate with the design of a computer component.
� Explain why “freedom of expression” in cyberspace is important in computer engineering.
� Describe positive and negative ways in which computer engineering alters the modes of interaction between people.
� Explain why computing/network access is restricted in some countries.
� Illustrate the use of example, analogy, and counter-analogy in an ethical argument.
� Contrast what is legal with what is ethical.
� Explain the importance of ethical integrity in the practice of computer engineering.

CE-PPP-3 Effective communication strategies
Minimum core coverage time: 2 hours

Core Learning Outcomes:

� Listen attentively in technical and non-technical contexts.
� Write technical reports using correct spelling and grammar.
� Use compelling arguments when writing technical reports and when making oral presentations.
� Become an assertive communicator in writing and in speaking.
� Build positive rapport with an audience.
� Develop strategies for effective communication in writing and in speaking.
� Describe ways in which body language affects communication.
� Use appropriate visual aids for effective communication.
� Use visualization skill in presenting a technical paper or report.
� Write technical reports per specified guidelines.
� Use a presentation mode appropriate for a wide range of audiences.
� Use a writing style appropriate to a wide range of audiences.
� Engage with an audience in response to questions.
� Write technical reports that are well organized and structured per accepted standards.

CE-PPP-4 Interdisciplinary team approaches
Minimum core coverage time: 1 hour

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 87 of 149

Core Learning Outcomes:
� Describe the meaning of interdisciplinary teams in two different contexts.
� Develop a possible skill set needed to function effectively on an interdisciplinary team.
� Describe some computer engineering projects where interdisciplinary approaches are important.
� Explore ways in which industry approaches teamwork toward a common goal.
� Create an interdisciplinary team for a given project by assigning roles and responsibilities for each team member.
� Identify situations that would undermine interactions among members of an interdisciplinary team.
� Explore ways in which one might assess the performance of an interdisciplinary team.
� Describe possible assessment methods used to monitor interdisciplinary teams.

CE-PPP-5 Philosophical frameworks and cultural issues
Minimum core coverage time: 2 hours

Core Learning Outcomes:

� Summarize the basic concepts of relativism, utilitarianism, and deontological theories.
� Describe some engineering problems related to ethical relativism.
� Describe the differences between scientific and philosophical approaches to computer engineering dilemmas.
� Contrast the distinction between ethical theory and professional ethics.
� Identify the weaknesses of the “hired agent” approach, strict legalism, naïve egoism, and naïve relativism as ethical frameworks.
� Contrast Western and non-Western philosophical approaches and thought processes as they apply to the computer engineering field.

CE-PPP-6 Engineering solutions and societal effects
Minimum core coverage time: 2 hours

Core Learning Outcomes:

� Articulate the importance of product safety when designing computer systems.
� Describe the differences between correctness, reliability, and safety.
� Explain the limitations of testing to ensure correctness.
� Describe other societal effects beyond risk, safety, and reliability.
� Identify unwarranted assumptions of statistical independence of errors.
� Discuss the potential for hidden problems in reuse of existing components.
� Explain ways computer engineers would assess and manage risk, and how they would inform the public of risk.
� Articulate ways public perception of risks often differs from actual risk, as well as the implications of this difference.
� Explain why product safety and public consumption should be a hallmark of computer engineering.

CE-PPP-7 Professional and ethical responsibilities
Minimum core coverage time: 3 hours

Core Learning Outcomes:

� Identify progressive stages in a whistle-blowing incident.
� Specify the strengths and weaknesses of relevant professional codes as expressions of professionalism.
� Identify ways professional codes could become guides to decision making.
� Explore some historical examples of software risks such as the Therac-25 case.
� Provide arguments for and against licensure in computer engineering.
� Provide arguments for and against licensure in non-engineering professions.
� Identify ethical issues that may arise in software development and determine how to address them technically and ethically.
� Develop a computer use policy with enforcement measures.

CE-PPP-8 Intellectual property and legal issues
Minimum core coverage time: 3 hours

Core Learning Outcomes:

� Describe the foundations of intellectual property.
� Distinguish among patent, copyright, and trade secret protection.
� Contrast between a patent and a copyright.
� Outline some of the transnational issues concerning intellectual property.
� Discuss the legal background of copyright in national and international law.
� Explain ways patent and copyright laws might vary internationally.
� Outline the historical development of software patents and Contrast with other forms of intellectual property protection for software.
� Distinguish among employees, contractors, and consultants and the implications of each group.
� Explore a patent related to computer engineering and provide a summary of its content.
� Explain product and professional liability and articulate their applicability within computer engineering.
� Analyze the ethical ramifications of free open-source hardware and software.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 88 of 149

CE-PPP-9 Contemporary issues
Minimum core coverage time: 2 hours

Core Learning Outcomes:

� Summarize the legal bases for the right to privacy and freedom of expression in one’s own country.
� Discuss ways in which privacy varies from country to country.
� Describe current computer-based threats to privacy.
� Contrast the difference between viruses, worms, and Trojan horses.
� Explain how the internet might change the historical balance in protecting freedom of expression.
� Articulate some of the privacy implications related to massive database systems.
� Outline the technical basis of viruses and denial-of-service attacks.
� Provide examples of computer crime and articulate some crime prevention strategies.
� Define cracking and contrast it to hacking in computer engineering.
� Enumerate techniques to combat “cracker” attacks.
� Discuss several “cracker” approaches and motivations.

CE-PPP-10 Business and management issues
Minimum core coverage time: 3 hours

Core Learning Outcomes:

� Assess the total job cost of a project.
� Apply engineering economic principles when considering fiscal arrangements.
� Summarize the rationale for antimonopoly efforts.
� Describe several ways in which shortages in the labor supply affect the information technology industry.
� Explain ways in which computer engineers should cost out jobs with considerations of manufacturing, hardware, software, and

engineering implications.
� Contrast some of the prospects and pitfalls in entrepreneurship.
� Describe the economic implications of monopolies.
� Describe the effects of skilled labor supply and demand concerning the quality of computing products.
� Summarize the rationale for antimonopoly efforts.
� Contrast two pricing strategies one might use in the computing domain.

CE-PPP Supplementary Knowledge Units

CE-PPP-11 Tradeoffs in professional practice
Supplementary

Elective Learning Outcomes:

� Indicate some important tradeoffs a computer engineer may have to make while practicing professionally.
� Articulate some ethical tradeoffs when making technical decisions.
� Describe some unethical tradeoffs that might occur in professional practice.
� Evaluate the risks of entering one’s own business.
� Identify the professional’s role in security and the tradeoffs involved.
� Describe the tradeoff between security and privacy, particularly as reflected in the post-9-11 era.
� Defend ways to address limitations on access to computing.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 89 of 149

CE-SEC Information Security
[20 core hours]

Area Scope
The knowledge units in this area collectively encompass the following:

1. Recognition that security is risk management and inherently includes tradeoffs
2. Familiarity with the implications of hostile users, including social engineering attacks and misuse cases
3. Framework for understanding algorithms and other technological measures for enhancing security
4. Strategic and tactical design issues in information security

CE-SEC Core Knowledge Units

CE-SEC-1 History and overview
Minimum core coverage time: 2 hours

Core Learning Outcomes:

� State examples of famous security breaches and denials of service.
� Discuss common computer crime cost estimates and the difficulty of estimating them.
� Define ethical hacking.
� Contrast active with passive attacks.
� Discuss the issues surrounding computer security and privacy rights.
� Enumerate various motivations of attackers.
� Identify the types and targets of computer crime.
� Summarize the major types of attacks performed by cybercriminals.
� Discuss the professional’s role in security and the tradeoffs involved.
� Give examples of historic and contemporary cryptography algorithms.
� Justify the use of various security principles (e.g. defense in depth, functional vs. assurance requirements, security through obscurity is

flawed, security is risk management, complexity is the enemy of security, and benefits of responsible open disclosure).
� Explain and defend the use of each of various security mechanisms (e.g., least privilege, fail-safe defaults, complete mediation,

separation of privilege, and psychological acceptability).

CE-SEC-2 Relevant tools, standards, and/or engineering constraints
Minimum core coverage time: 2 hours

Core Learning Outcomes:

� Discuss the major provisions of a relevant law such as HIPAA or the EU Data Protection Directive.
� Summarize intellectual property and export control laws affecting security, especially encryption.
� Describe some common approaches and tools used in penetration testing.
� Articulate some challenges of computer forensics.

CE-SEC-3 Data security and integrity
Minimum core coverage time: 1 hour

Core Learning Outcomes:

� Define confidentiality and integrity.
� Give examples of systems where integrity alone is sufficient.
� Define “perfect forward secrecy” and explain why it is desirable.

CE-SEC-4 Vulnerabilities: technical and human factors
Minimum core coverage time: 4 hours

Core Learning Outcomes:

� Define misuse cases and explain their role in information security.
� Describe the role of human behavior in security system design, including examples of social engineering attacks.
� Perform a simple fault tree analysis.
� Explain the types of errors that fuzz testing can reveal.
� Discuss issues related to the difficulty of updating deployed systems.
� Explain the role of code reviews in system security.
� Define the problem of insecure defaults.
� Explain the tradeoffs inherent in responsible disclosure.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 90 of 149

� Discuss why the advantage is with the attacker in many contexts and how this must be addressed in system design.
� Explain how to execute a stack overrun attack and the knowledge it requires.
� Discuss recent examples of exploited memory access bugs and the errors that lead to their deployment and exploitation.
� Explain the role of both safe libraries and argument validation in defending against buffer overflows.
� Illustrate how a stack canary works.
� Explain the problems solved by address space randomization and non-executable memory.
� Define several types of malware such as viruses, worms, Trojan horses, key loggers, and ransomware.
� Discuss countermeasures to common types of malware.
� Explain current issues in the “arms race” between malware authors and defense system authors.

CE-SEC-5 Resource protection models
Minimum core coverage time: 1 hour

Core Learning Outcomes:

� Explain the pros and cons of various discretionary and mandatory resource protection models.
� Illustrate an access control matrix model.
� Define the Bell-LaPadula model.

CE-SEC-6 Secret and public key cryptography
Minimum core coverage time: 3 hours

Core Learning Outcomes:

� State the motivation for putting all encryption algorithm variability in the keys.
� Discuss the effect of processing power on the effectiveness of cryptography.
� Explain the meaning of and relationship between the three basic classes of cryptographic attacks: ciphertext only, known plaintext,

chosen plaintext.
� Discuss the similarities and differences among the three basic types of cryptographic functions (zero-, one-, and two-key): hash, secret

key, and public key.
� Discuss block and key length issues related to secret key cryptography.
� Describe and evaluate a symmetric algorithm such as advanced encryption standard (AES), focusing on both design and

implementation issues.
� Explain some uses of one-time pads.
� Perform modular arithmetic (addition, multiplication, and exponentiation).
� Apply the basic theory of modular arithmetic (Totient function and Euler’s theorem).
� Execute and apply the RSA algorithm for encryption and digital signatures.
� Execute and apply the Diffie-Hellman algorithm for establishing a shared secret.
� Demonstrate and discuss the motivations and weaknesses in various methods for applying secret key (block) encryption to a message

stream such as cipher block chaining (CBC), cipher feedback mode (CFB), and counter mode (CTR).

CE-SEC-7 Message authentication codes
Minimum core coverage time: 1 hour

Core Learning Outcomes:

� Explain why hashes need to be roughly twice the length of secret keys using the birthday problem.
� Discuss the uses of hashes for fingerprinting and signing.
� Discuss the key properties of a cryptographic hash function contrasted with a general hash function.
� Explain the purpose of key operations used in cryptographic hashes such as permutation and substitution.
� Explain how one can use a hash for a message authentication code (MAC).
� State key properties of secure hash algorithms or family such as SHA-3, or its successor.
� Explain the problem solved by the HMAC standard.

CE-SEC-8 Network and web security
Minimum core coverage time: 3 hours

Core Learning Outcomes:

� Describe the goals of Transport layer security (TLS) and how they are attained using secret and public key methods along with
certificates

� Discuss the reasons for using a firewall, various topologies, and firewall limitations.
� Diagram and explain the use of virtual private networks (VPNs).
� Describe common denial of service attack methods, including distributed and amplified attacks, along with countermeasures taken at

the computing system, protocol design, and backbone provider levels.
� Define packet filtering.
� Discuss the ramifications of the HTTP/HTTPS web platform design being stateless.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 91 of 149

� Describe the basic structure of URLs, HTTP requests, and HTTP digest authentication as they relate to security.
� Explain the use of HTTP cookies including session cookies, expiration, and re-authentication for key operations.
� Define cross-site scripting.
� Explain an SQL injection attack and various methods of remediation.
� Be familiar standards such as open web application security project (OWASP) and the OWASP Top 10 list.

CE-SEC-9 Authentication
Minimum core coverage time: 1 hour

Core Learning Outcomes:

� Explain the difference between authorization and authentication.
� Comment on authentication methods using password and/or address-based methods.
� Discuss eavesdropping and server database reading and explain how various authentication methods deal with them.
� Explain the general use of trusted intermediaries for both secret and private key systems.
� Discuss issues specific to authenticating people, including the three main approaches to doing so.
� Describe the problems solved by multi-factor authentication methods including biometrics.

CE-SEC-10 Trusted computing
Minimum core coverage time: 1 hour

Core Learning Outcomes:

� Describe current approaches to trusted computing such as trusted hardware, secure storage, and biometrics.
� Evaluate a circumvention method for a trusted computing system and discuss the tradeoffs between implementation cost, information

value, and circumvention difficulty.

CE-SEC-11 Side-channel attacks
Minimum core coverage time: 1 hour

Core Learning Outcomes:

� Discuss various side channels and methods of encoding information on them.
� Discuss the tradeoffs of side-channel protection and system usability.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 92 of 149

CE-SGP Signal Processing
[30 core hours]

Area Scope
The knowledge units in this area collectively encompass the following:

1. Need for and tradeoffs made when sampling and quantizing a signal
2. Linear, time-invariant system properties
3. Frequency as an analysis domain complementary to time
4. Filter design and implementation
5. Control system properties and applications

CE-SGP Core Knowledge Units

CE-SGP-1 History and overview
Minimum core coverage time: 1 hour

Core Learning Outcomes:

� Explain the purpose and role of digital signal processing and multimedia in computer engineering.
� Explain some important signal processing areas such as digital audio, multimedia, image processing, video, signal compression, signal

detection, and digital filters.
� Contrast analog and digital signals using the concepts of sampling and quantization.
� Draw a digital signal processing block diagram and define its key components: antialiasing filter, analog to digital converter, digital

signal processing, digital to analog filter, and reconstruction filter.
� Explain the need for using transforms and how they differ for analog and discrete-time signals.
� Contrast some techniques used in transformations such as Laplace, Fourier, and wavelet transforms.
� Indicate design criteria for low- and high-pass filters.

CE-SGP-2 Relevant tools, standards, and/or engineering constraints
Minimum core coverage time: 3 hours

Core Learning Outcomes:

� Describe the tradeoffs involved with increasing the sampling rate.
� Indicate key issues involved with sampling periodic signals including the sampling period.
� Indicate key issues involved with sampling non-periodic signals including spectral resolution.
� Prove whether a system is linear, time-invariant, causal, and/or stable given its input to output mapping.
� Derive non-recursive and recursive difference equations, as appropriate, given descriptions of input-output behavior for a linear, time-

invariant system.

CE-SGP-3 Convolution
Minimum core coverage time: 3 hours

Core Learning Outcomes:

� Explain how the concept of impulse response arises from the combination of linearity and time-invariance.
� Derive the linear convolution summation from the definition of impulse response and linearity.
� Use the commutative property of convolution as a foundation for providing two explanations of how a system output depends on the

input and system impulse response.

CE-SGP-4 Transform analysis
Minimum core coverage time: 5 hours

Core Learning Outcomes:

� State, prove, and apply properties of the z–transform and its inverse.
� State, prove, and apply properties of the discrete-time Fourier transform (DTFT) and its inverse.

� Explain how the DTFT may be interpreted as a spectrum.
� Explain the relationship between the original and transformed domains (e.g., aliasing).

� State, prove, and apply properties of discrete Fourier transform (DFT) and its inverse.
� Prove and state the symmetries of the Fourier transforms for real signals.
� State the frequency shift property for Fourier transforms.
� Prove and state how Parseval’s theorem relates power or energy, as appropriate, for the Fourier transforms.
� Explain the relationship among the z-transform, DTFT, DFT, and FFTs (fast Fourier transforms).

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 93 of 149

� Define and calculate the Laplace transform of a continuous signal.
� Define and calculate the inverse Laplace transform.

CE-SGP-5 Frequency response
Minimum core coverage time: 5 hours

Core Learning Outcomes:

� Interpret the frequency response of an LTI system as an alternative view from the impulse response.
� Analyze the frequency response of a system using the DTFT and the DFT.
� Determine pole and zero locations in the z-plane given a difference equation describing a system.
� Relate the frequency selectivity of filters to the z–transform domain system representation.
� Describe the repeated time series implication of frequency sampling.

CE-SGP-6 Sampling and aliasing
Minimum core coverage time: 3 hours

Core Learning Outcomes:

� State the sampling theorem and the related concepts of the Nyquist frequency and aliasing.
� Demonstrate aliasing on a sampled sine wave.
� State the relationship between time and frequency domains with respect to sampling.
� Explain when spectra are discrete vs. continuous.
� Calculate the errors or noise generated by sampling and quantizing.

CE-SGP-7 Digital spectra and discrete transforms
Minimum core coverage time: 6 hours

Core Learning Outcomes:

� Sketch the spectrum of a periodic signal.
� Contrast the spectra of an impulse and a square wave.
� Calculate spectra of periodic and aperiodic signals.
� Explain how the block size controls the tradeoff between spectral resolution and density.
� Calculate a spectrogram and explain what its key parameters are.
� Explain filtering as adding spectra in a frequency domain on a logarithmic scale.
� Design interpolation and reconstruction filters using the sinc function.

CE-SGP-8 Finite and infinite impulse response filter design
Minimum core coverage time: 4 hours

Core Learning Outcomes:

� Design finite and infinite impulse response (FIR and IIR) filters that have specified frequency characteristics including magnitude and
phase responses.

� Explain the general tradeoffs between FIR and IIR filters.
� Demonstrate that not all recursive filters are IIR, using a moving average as an example.
� Use the DFT to accomplish filtering through (circular) convolution.
� State the condition for linear phase in an FIR filter.
� Explain the tradeoffs between spectral resolution, length, and delay in an FIR filter.
� Explain why one or more FIR filter design methods work.
� Explain why one or more IIR filter design methods work including notch filters using pole-zero pairs.
� Design a digital filter using analog techniques (e.g., bilinear transform) and explain its key parameters.
� Explain physically realizable system issues relevant in filter design including causality and time shifts, and response truncation.

CE-SGP Supplementary Knowledge Units

CE-SGP-9 Window functions
Supplementary

Elective Learning Outcomes:

� Explain how window functions improve transform properties.
� Explain the periodic assumption in spectral analysis.
� Explain the purpose of a window function and its effect on a spectrum.
� Discuss the tradeoffs of common window functions such as rectangular, Blackman, Hann, and Hamming.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 94 of 149

� Select an appropriate window function given a problem statement regarding detection or identification tradeoffs.

CE-SGP-10 Multimedia processing
Supplementary

Elective Learning Outcomes:

� Define signals that vary in time and/or space and interpret frequencies in both domains.
� Describe how sampling affects image integrity.
� Explain how low-pass filtering tends to smooth images.
� Contrast between reconstruction and enhancement filters.
� Describe methods for minimizing image noise.
� Describe how digital techniques perceptually or otherwise enhance speech and audio signals.
� Explain techniques for noise reduction (e.g., Weiner or median filters) or cancellation (e.g., LMS filters) in audio processing.
� Explain the motivation for audio coding and state key elements of MPEG or related algorithms including perceptual elements.

CE-SGP-11 Control system theory and applications
Supplementary

Elective Learning Outcomes:

� Define basic control system concepts (e.g., zero-state response, zero-input response, stability).
� Contrast design methods (root-locus, frequency-response, state-space) for control systems.
� Explain limitations and trade-offs associated with microcontroller implementations of digital control systems.
� Describe potential applications of digital control systems for electro-mechanical systems, including robotics.
� Implement a simple microcontroller-based motion control system with sensors and actuators.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 95 of 149

CE-SPE Systems and Project Engineering
[35 core hours]

Area Scope
The knowledge units in this area collectively encompass the following:

1. The role of systems engineering principles throughout a computer system’s life cycle, including important tradeoffs in such areas as
power, performance, and cost

2. Project management, including team management, scheduling, project configuration, information management, and design of project
plans

3. Human-computer interaction styles and usability requirements, design of user interfaces, and input/output technologies
4. Analysis and design to produce desired levels of risk, dependability, safety, and fault tolerance in computer-based systems
5. System requirements and methods for eliciting and analyzing requirements for a computer-based system
6. System specifications, their relationship to requirements and system design, and methods for developing and evaluating quality

specifications for computer-based systems
7. System architectural design and evaluation, including tools and methods for modeling, simulating, and evaluating system designs at the

architectural level
8. Methods and tools for concurrent hardware and software design, system integration, testing, and validation, including unit and system

level test plans
9. Design for manufacturability, sustainability, and maintainability throughout the product life cycle

CE-SPE Core Knowledge Units

CE-SPE-1 History and overview
Minimum core coverage time: 1 hour

Core Learning Outcomes:

� Articulate differences between software and hardware engineering, and computer systems engineering.
� Explain briefly the concept of a system and a subsystem, and discuss the role of people, the different disciplines involved, and the need

for interdisciplinary approaches to the development of the range of computer-based systems.
� Indicate some important elements of computer systems engineering such as design processes, requirements, specifications, design,

testing, validation, evolution, project management, hardware-software interface, and the human-computer interface.
� Define and explain product life cycle, the role of system engineering throughout a product life cycle, and reasons why many computer-

based system designs become continually evolving systems.
� Provide reasons for the importance of testing, validation, and maintenance in computer systems development.
� Explain the importance of design decisions and tradeoffs at the systems level, including balancing costs, performance, power,

dependability, and market considerations.

CE-SPE-2 Relevant tools, standards and/or engineering constraints
Minimum core coverage time: 3 hours

Core Learning Outcomes:

� Select, with justification, an appropriate set of tools to support the development of a range of computer-based systems, including tools
for project management, requirements and specifications definition and analysis, configuration management, tradeoff analysis, and
computer-aided tools for software, hardware, and systems design, including modeling, simulation, evaluation, and testing.

� Analyze and evaluate a set of tools in an area of computer system development (e.g., management, modeling, or testing).
� Demonstrate the ability to use a range of tools to support the development of a computer-based system of medium size. (This could be

done in the context of a class project or assignment.)
� Explain the importance and influence of standards, guidelines, legislation, regulations, and professional issues on the development of

computer-based systems.
� Describe tradeoffs that occur in following regulatory standards and regulations.

CE-SPE-3 Project management
Minimum core coverage time: 3 hours

Core Learning Outcomes:

� Describe basic elements of project management that support development of computer-based systems for a variety of applications,
including interdisciplinary issues.

� Describe the different phases of a system’s life cycle and identify tools to support these phases, including such project-management
tools as Gantt charts for project planning, scheduling, cost analysis, resource allocation, and teamwork.

� Demonstrate, through involvement in team projects, the central elements of team building and team management, including team
composition and organization, roles and responsibilities in a design team, decision-making processes, project tracking, and team

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 96 of 149

problem resolution.
� Describe methods and tools for project configuration management and management of project information, ensuring timely

compliance with specifications and timely delivery.
� Prepare a project plan for a computer-system design project that includes estimates of size and effort, a schedule, resource allocation,

configuration control, change management, and project risk identification and management—this could be done in the context of a
class project or assignment.

Elective Learning Outcomes:

� Identify and describe the use of metrics in support of project management.
� Describe the roles of consultants and subcontractors in design projects, including their use and their management.
� Discuss how standards and legal requirements can affect the management of design projects.

CE-SPE-4 User Experience2
Minimum core coverage time: 6 hours

Core Learning Outcomes:

� Define the meaning of user experience (UX) and describe the evolution from human factors to user experience design (UXD).
� Contrast the physical and non-physical aspects of UXD.
� Summarize some common human-computer interaction styles, and discuss how one would analyze human interaction with computer-

based systems.
� Describe common usability guidelines and standards; give examples of functional and usability requirements that can be beneficial in

developing human-centered computer systems, including users with different abilities (e.g., age, physical disabilities).
� Identify fundamental principles for effective GUI design, relevant to different applications and different system platforms in computer

engineering.
� Discuss tradeoffs involved when developing a UX system environment.
� Identify system components that are suitable for the realization of high-quality multimedia interfaces.
� Evaluate an existing interactive system with appropriate human-centered criteria and usability, giving reasons for selection of criteria

and techniques.
� Discuss the role of visualization technologies in human-computer interaction.
� Explain the importance of social psychology in the design of user interfaces.
� Describe two main principles for universal design.
� List advantages and disadvantages of biometric access control.
� Describe a possible interface that allows a user with severe physical disabilities to use a website.
� Design, prototype, and conduct a usability test of a simple 2D GUI, using a provided GUI-builder, and, in doing so, create an appropriate

usability test plan.

Elective Learning Outcomes:

� Discuss other techniques for interaction, such as command line interface and shell scripts.
� Identify the potential for the use of intelligent systems in a range of computer-based applications, and describe situations in which

intelligent systems may, or may not, be reliable enough to deliver a required response.

CE-SPE-5 Risk, dependability, safety, and fault tolerance
Minimum core coverage time: 3 hours

Core Learning Outcomes:

� Recognize risk, dependability, and safety requirements for a range of computer-based systems, and discuss potential tradeoffs
between these and other system requirements, such as performance and low-power operation.

� Explain the concepts of reliability, availability, and maintainability, as measures of system dependability, and explain their relationship
to faults.

� Perform a risk analysis of a medium-size computer-based system.
� Identify at least two tradeoff concerns when developing a safety critical system.
� Indicate why it is important to know how to build dependable systems from unreliable components.
� Demonstrate an ability to model reliability, availability, and maintainability of simple computer-based systems.
� Describe some strategies for achieving desired levels of dependability, safety, and security.
� Discuss the nature of hardware and software faults, and redundancy methods used to tolerate them.
� Describe fault tolerance and dependability requirements of different applications (such as database, aerospace, telecommunications,

industrial control, and transaction processing).

Elective learning outcomes:

� Describe one or more strategies for risk reduction and risk control, including implications for implementation.
� Discuss how international standards, legal requirements, and regulations relate to risk, safety and dependability impact the design of

computer-based systems.

2 User experience (UX) was formerly known as human-computer interaction (HCI)

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 97 of 149

� Discuss the use of failure modes and effects analysis (FEMA) and fault tree analysis in the design of high-integrity systems.
� Identify some hardware redundancy approaches for fault-tolerant system design, including the use of error detecting and correcting

codes.
� Discuss one or more software approaches to tolerating hardware faults.
� Describe one or more methods for tolerating software faults, such as N-version programming, recovery blocks, and rollback and

recovery.

CE-SPE-6 Hardware and software processes
Minimum core coverage time: 3 hours

Core Learning Outcomes:

� Explain the need for a disciplined approach to system development and the elements of a disciplined approach in specific contexts.
� Describe the nature of a life cycle, the role of life cycle models, quality in relation to the life cycle, the influence of system nature, and

the size on choice of life cycle model.
� Describe some common software and hardware development models and show how to use these models during the development of a

computer-based system.
� Explain how to gather data to inform, assess, and improve system design processes.
� Describe the benefits of agile methods for hardware and software design.
� Discuss the importance of modular design processes, and the design for modularity and reuse in the development of a computer-based

system.
� Select, with justification, system development models most appropriate for the development and maintenance of diverse computer-

based systems.

Elective Learning Outcomes:

� Explain the role of process maturity models, standards, and guidelines.
� Identify several metrics for software, hardware, and system processes.

CE-SPE-7 Requirements analysis and elicitation
Minimum core coverage time: 2 hours

Core Learning Outcomes:

� Perform an analysis of a proposed computer-based system design project, including identification of need, information gathering,
problem definition, feasibility considerations, and economic considerations.

� Articulate a range of functional and non-functional requirements that might be applicable to the design of computer-based systems for
a range of applications, and discuss how requirements can change as a system design project evolves.

� Discuss how tradeoffs between different system requirements might be necessary for a proposed computer-based system design.
� Describe the strengths and weaknesses of different approaches to requirements elicitation and capture.
� Apply one or more techniques for elicitation and analysis to produce a set of requirements for a medium-size computer-based system.
� Describe some quality factors for measuring the ability of a system design to meet requirements
� Conduct a review of a computer-based system requirements document using best practices to determine the document’s quality.

Elective Learning Outcomes:

� Use a common, non-formal method to model and state—in the form of a requirements specification document—the requirements for
a medium-size computer-based system (e.g., structured analysis or object-oriented-analysis).

CE-SPE-8 System specifications
Minimum core coverage time: 2 hours

Core Learning Outcomes:

� Discuss the relationship and differences between system specifications and requirements.
� Articulate some typical functional and nonfunctional specifications for the design of a computer-based system and the importance of

specifications to the design process.
� Discuss one or more approaches for deriving system specifications from a requirements document.
� Discuss how tradeoffs between different system specifications might be necessary to meet system requirements.
� Assess the quality of a given specification, considering such factors as completeness, consistency, simplicity, verifiability, basis for

design, specification in the event of failure, and degraded modes of operation.
� Given a set of requirements, create a high-quality specification for a computer-based system of medium complexity.
� Create a test plan, based on the specification, considering the role of independence in relation to test, safety cases, and limitations of

such tests.

Elective Learning Outcomes:

� Describe and demonstrate the use of one or more formal specification languages and techniques.
� Translate into natural language a system specification written in a commonly used formal specification language.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 98 of 149

CE-SPE-9 System architectural design and evaluation
Minimum core coverage time: 4 hours

Core Learning Outcomes:

� Describe concepts and principles of system architecture design, such as top-down design, subdivision into systems and subsystems,
modularity and reuse, the hardware/software interface, and tradeoffs between various design options.

� Describe strengths and weaknesses of various systems-level architectural design methods, including procedural and functional
methods.

� Describe design methods to meet system specifications and achieve performance measures, including dependability and safety.
� Given a system specification, select an appropriate design methodology (e.g., structured design or modular design) and create an

architectural design for a medium-size computer-based system.
� Demonstrate ability to model, simulate, and prototype a range of computer-based system architectures.
� Using appropriate guidelines, conduct the review of one or more computer-based system designs to evaluate design quality based on

key design principles and concepts.

Elective Learning Outcomes:

� At the architectural level, discuss possible failure modes, common cause failures, dealing with failure, inclusion of diagnostics in the
event of failure, and approaches to fault-tolerant design.

� Discuss design issues associated with achieving dependability, the role of redundancy, independence of designs, separation of
concerns, and specifications of subsystems.

CE-SPE-10 Concurrent hardware and software design
Minimum core coverage time: 3 hours

Core Learning Outcomes:

� Recognize the potential of hardware-software co-design in circumstances in which this approach is pertinent.
� Discuss how particular design constraints can make the coordinated development of both hardware and software important, such as in

the design of low-power systems, real-time systems, or systems with high-performance requirements.
� Apply hardware-software co-design principles in situations of modest complexity.
� Discuss challenges to effective hardware-software co-design, such as demands of hard real-time features.
� Demonstrate ability to co-design to achieve specific technical objectives, such as low power, real-time operation, and high

performance.
� Select and apply computer-aided tools to support hardware and software co-design.

CE-SPE-11 System integration, testing and validation
Minimum core coverage time: 3 hours

Core Learning Outcomes:

� Recognize the range of testing and validation methods appropriate for each stage of the system life cycle, including review of hardware
models and software code; white box, black box, and regression testing; stress testing; and interface testing.

� Describe the role of various system validation tools and show how tools can support efficient and effective development.
� Discuss approaches to testing and validation at the unit level and at the integration and system levels.
� Create a test plan and generate test cases for a computer-based system of medium complexity, selecting an appropriate combination

of tests for ensuring system quality.
� Demonstrate the application of the different types and levels of testing (unit, integration, systems, and acceptance) on computer-based

systems of medium size.
� Undertake, as part of a team activity, an inspection of a medium-size computer-based system design.
� Discuss methods used for manufacturing test and inspection, and acceptance testing.

Elective Learning Objectives:

� Discuss methods for specialized testing: security, dependability/fault tolerance, and usability.

CE-SPE-12 Maintainability, sustainability, manufacturability
Minimum core coverage time: 2 hours

Core Learning Outcomes:

� Describe the need for, and characteristics of, maintainable software, hardware, and system designs.
� Discuss the inevitability of maintenance in certain systems, such as diagnosis, defect removal, hardware and/or software upgrades, and

enhancement.
� Describe how to apply principles of maintainable design to a computer-based system of modest complexity.
� Identify issues associated with system evolution and explain their impact on the system life cycle.
� Explain configuration management and version control in engineering systems—the need for it, the issues associated with it, the

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 99 of 149

nature of the information to be held, legal requirements, and planning for possible disasters.
� Develop a plan for reengineering a medium-size product in response to a change request.
� Identify and exploit opportunities for component reuse in a variety of contexts.
� Discuss how design decisions can affect future generations, including impact on the environment and energy resources, and disposal of

systems and components at end of life.
� Discuss design for manufacturability, part selection and standardization, manufacturing cost, and product lead-time for delivery.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 100 of 149

CE-SRM System Resource Management
[20 core hours]

Area Scope
The knowledge units in this area collectively encompass the following:

1. Management of resources in computing systems with diverse components
2. Real-time operating constraints and their effect on system resource management
3. Resource management in mobile environments
4. Tradeoffs associated with resource management in different operating environments

CE-SRM Core Knowledge Units

CE-SRM-1 History and overview of operating systems
Minimum core coverage time: 1 hour

Core Learning Outcomes

� Explain the purpose of an operating system and the services one provides.
� Describe differences in functionality found in mobile, networked, client-server, distributed operating systems, and single user systems.
� Define key design criteria including efficiency, robustness, and security.
� Explain major threats to operating systems and how to guard against them.

CE-SRM-2 Relevant tools, standards, and/or engineering constraints
Minimum core coverage time: 1 hour

Core Learning Outcomes

� Give examples of real-time performance monitoring tools and log-based performance monitoring tools.
� Explain what information a real-time performance monitoring tool provides and when such a tool is useful.
� Explain what information a log-based performance monitoring tool provides and when such a tool is useful.
� List key components of the IEEE POSIX (Portable Operating System Interface) standard.
� Define the role of some key SRM APIs such as WinAPI and various Java APIs.

CE-SRM-3 Managing system resources
Minimum core coverage time: 8 hours

Core Learning Outcomes

� Describe the role of an operating system in managing system resources and interfacing between hardware and software elements.
� Explain what concurrency is and why it must be supported in managing system resources.
� Give examples of runtime problems that can arise due to concurrent operation of multiple tasks or components in the system, such as

deadlock and race conditions.
� Describe basic types of interrupts and what must be done to handle them.
� Give examples that illustrate why task scheduling and dispatch are needed as system resources are managed.
� Explain the difference between preemptive and non-preemptive scheduling and demonstrate awareness of common algorithms used

for scheduling.
� Describe how interrupts, dispatching tasks, and context switching are used to support concurrency.
� Explain the memory hierarchy (cache through virtual memory) and the cost-performance tradeoffs made in design.
� Describe the choices to be made in file system design and how these choices affect system resource management.

CE-SRM-4 Real-time operating system design
Minimum core coverage time: 4 hours

Core Learning Outcomes

� Explain the characteristics of hard real-time, soft real-time, and safety-critical real-time environments.
� Discuss issues of uncertainty that can arise in memory hierarchy design and disk or other fixed storage design and methods of

addressing them.
� Explain latency and its role in RTOS design.
� Explain how an event-driven scheduler operates and be able give examples of commonly used algorithms.
� Explain how round-robin scheduling differs from event driven strategies.
� Explain why memory allocation is critical in a real-time system.
� Explain failure modes and recovery strategies appropriate for RTOS.
� Discuss tradeoffs among various operating system options.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 101 of 149

CE-SRM-5 Operating systems for mobile devices
Minimum core coverage time: 3 hours

Core Learning Outcomes

� Describe the system communication that must be managed in a mobile device (e.g., Wi-Fi, Bluetooth).
� Discuss constraints inherent in the mobile environment.
� Explain the demands placed on the mobile operating system by the user.
� Discuss the challenges of implementation across mobile platforms.
� Discuss sources of security threats and their management.

CE-SRM-6 Support for concurrent processing
Minimum core coverage time: 3 hours

Core Learning Outcomes

� Explain and give examples of basic concepts in concurrent processing such as multiprocessor, multicore, SIMD, MIMD, shared memory,
and distributed memory.

� Explain what is needed to support scheduling of multiple threads.
� Describe how simultaneous multithreaded (SMT) execution works.

CE-SRM Supplementary Knowledge Units

CE-SRM-7 System performance evaluation
Supplementary

Elective Learning Outcomes

� Describe why performance is important in significant applications (e.g., mission critical systems).
� Explain why metrics such as response time, throughput, latency, availability, reliability, and power consumption are significant in

performance evaluation.
� Explain what must be measured to make use of important performance evaluation metrics.
� Describe the strengths of commonly used benchmark suites and their limitations.
� Demonstrate understanding of commonly used evaluation models (e.g., deterministic, stochastic, simulation) and circumstances in

which it is appropriate to use them.
� Explain how profiling and tracing data is collected and used in evaluating system performance.

CE-SRM-8 Support for virtualization
Supplementary

Elective Learning Outcomes

� Define the role of the hypervisor or virtual machine monitor.
� Describe what the role of the host machine is and its relationship to the guest machines.
� Describe what the host operating system is and how it is related to guest operating systems.
� Explain what a native hypervisor is and how it differs from a hosted hypervisor.
� Give examples of isolation and security issues arising in virtualized environments.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 102 of 149

CE-SWD Software Design
[45 core hours]

Area Scope
The knowledge units in this area collectively encompass the following:

1. Programming paradigms and constructs
2. Data structures and use of standard library functions for manipulating them
3. Object oriented design and the use of modeling languages
4. Testing and software quality concepts
5. Tradeoffs among different software design methods

CE-SWD Core Knowledge Units

CE-SWD-1 History and overview
Minimum core coverage time: 1 hour

Core Learning Outcomes:

� Explain why early software was written in machine language and assembly language.
� Name some early programming languages and list some of their key features.
� Give examples of milestones in interactive user interfaces.
� Describe the magnitude of changes in software development environments over time.
� Explain why high level languages are important to improved productivity.
� List and define the steps of a software life cycle.

CE-SWD-2 Relevant tools, standards, and/or engineering constraints
Minimum core coverage time: 3 hours

Core Learning Outcomes:

� Identify the roles of software development tools, such as compilers, assemblers, linkers, and debuggers.
� Identify the expected functionality of a typical modern integrated development environment (IDE).
� Use an IDE to develop a simple application.
� Effectively use a debugger to trace code execution and identify defects in code.

CE-SWD-3 Programming constructs and paradigms
Minimum core coverage time: 12 hours

Core Learning Outcomes:

� Explain the execution of a simple program.
� Write simple and secure programs that accomplish the intended task.
� Write simple functions and explain the roles of parameters and arguments.
� Design, implement, test, and debug a program that uses fundamental programming constructs in nontrivial ways.
� Choose appropriate iteration and conditional constructs to accomplish a given programming task.
� Contrast imperative (i.e., procedural), declarative (i.e., functional), and structured (i.e., object-oriented) software design paradigms.
� Define and explain the elements of good programming (including the need to avoid opportunities for security breaches).

CE-SWD-4 Problem-solving strategies
Minimum core coverage time: 5 hours

Core Learning Outcomes:

� Identify a practical example of a problem in which different problem-solving strategies would be useful.
� Use a divide-and-conquer strategy to solve a problem.
� Use a greedy approach to solve an appropriate problem and determine if the approach used produces an optimal result.
� Explain the role of heuristics in problem-solving strategies.
� Discuss tradeoffs among different problem-solving strategies.
� Given a problem, determine an appropriate problem-solving strategy to use in devising a solution.

Elective Learning Outcomes:

� Use dynamic programming to solve an appropriate problem.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 103 of 149

CE-SWD-5 Data structures
Minimum core coverage time: 5 hours

Core Learning Outcomes:

� Demonstrate knowledge of fundamental data structures, their uses, and tradeoffs among them.
� Demonstrate the use of high quality program libraries for building and searching data structures.
� Explain what a hash table is, why it is useful, and the role that collision avoidance and resolution play.
� Explain what a binary search tree is and why maintaining balance has impact on algorithm performance.
� Solve problems using library functions for standard data structures (linked lists, sorted arrays, trees, and hash tables) including

insertion, deletion, searching and sorting (rather than implementing the algorithm from scratch).

CE-SWD-6 Recursion
Minimum core coverage time: 3 hours

Core Learning Outcomes:

� Describe the concept of recursion and give examples of its use.
� Explain the relationship between iteration and recursion.
� Identify the base case and the general case of a recursively defined problem.
� Itemize possible problems that can occur at run-time because of employing recursion in programs.

CE-SWD-7 Object-oriented design
Minimum core coverage time: 4 hours

Core Learning Outcomes:

� Decompose a problem domain into classes of objects having related state (data members) and behavior (methods).
� Contrast and contrast method overloading and overriding and illustrate with examples.
� State the benefits and disadvantages of compile-time vs. runtime method binding.
� Employ a modeling language (such as UML) to illustrate a simple class hierarchy with subclass structure that allows re-use of code for

different subclasses.
� Explain mechanisms for disambiguation of function invocation when method names are overridden or overloaded.
� Explain the concepts of information hiding, coupling and cohesion, and data abstraction as they relate to object-oriented design.

CE-SWD-8 Software testing, verification, and validation
Minimum core coverage time: 5 hours

Core Learning Outcomes:

� Explain the differences between testing, verification, and validation.
� Demonstrate an understanding of unit testing strategies (e.g., white box, black box, and grey box) and tradeoffs.
� Demonstrate an understanding of verification and validation strategies.
� Construct a test dataset for use in unit testing of a module, exercise that dataset, and produce a test report.
� Explain the difference between unit testing and integration testing.
� Explain commonly used metrics for software quality.
� Describe at least one tool for automated testing and/or test pattern generation.

CE-SWD-9 Data modeling
Minimum core coverage time: 2 hours

Core Learning Outcomes:

� Explain and provide examples of data models and their use.
� Employ standard modeling notation (such as UML) to express and document an appropriate data model for a computer engineering

problem.

CE-SWD-10 Database systems
Minimum core coverage time: 3 hours

Core Learning Outcomes:

� Explain how use of database systems evolved from programming with simple collections of data files.
� Describe the major components of a modern database system.
� Describe the functionality provided by languages such as SQL.
� Give examples of interactions with database systems that are relevant to computer engineering.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 104 of 149

CE-SWD-11 Event-driven and concurrent programming
Minimum core coverage time: 2 hours

Core Learning Outcomes:

� Explain the problems associated with mobile systems and location aware systems, including the security issues.
� Explain the difficulties associated with the programming effective programming of multi-core processors.
� Demonstrate an ability to effectively program a multi-core processor.

CE-SWD Supplementary Knowledge Units

CE-SWD-12 Using application programming interfaces
Supplementary

Elective Learning Outcomes:

� Design and implement reusable functions.
� State the purpose of deprecation.
� Define backward and forward compatibility problems and some solutions to issues associated with these problems.
� Write code against common application program interfaces (APIs) for system services, data structures, or network communications.

CE-SWD-13 Data mining
Supplementary

Elective Learning Outcomes:
� Explain the role of data mining in computer engineering applications.
� Provide an illustration of the role of machine learning in computer engineering.

CE-SWD-14 Data visualization
Supplementary

Elective Learning Outcomes:

� Construct visualizations of data that improve comprehensive of the data, communication of the relevant information, and aid in
decision making.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 105 of 149

Appendix B

Computer Engineering Sample Curricula

This appendix to the Computing Curricula - Computer Engineering (CE2016) report contains several sample
curricula illustrating possible implementations of degree programs each satisfying the required specifications of
the body of knowledge detailed in this report. This appendix contains both three- and four-year programs.
Although four-year programs are most common, these examples illustrate how undergraduate programs of
different flavors and of different characteristics could implement these recommendations to suit different
institutional requirements and resource constraints. Hence, they serve a wide variety of educational goals and
student needs. None of these examples is prescriptive.

The following table summarizes the sample curricula in this appendix. This table serves as a guide to identifying
sample curricula that are most relevant to specific institutional needs and priorities.

Curriculum Administrative Entity
A Electrical & Computer Engineering Department
B Computer Science Department
C Joint – Computer Science and Electrical Engineering Departments
D People's Republic of China
E Bologna-3

B.1 Format and Conventions

All sample curricula in this appendix use a common format with five logical components:

1. A set of educational objectives for the program of study and an explanation of any assumed institutional,
college, department, or resource constraints

2. A summary of degree requirements, in tabular form, to indicate the curricular content in its entirety
3. A sample schedule that a typical student might follow
4. A map showing coverage of the computer engineering body of knowledge by courses in the curriculum
5. A set of course descriptions for those courses in the computing component of the curriculum

B.1.1 Course Hour Conventions

To clarify the identification of courses, levels, and implementations, course numbers reflect the identity of the
curriculum in which it appears and the level at which it appears in the program. Thus, a course numbered MTHX100
is a course in curriculum X commonly taught in the first year (at the freshman level). Likewise, PHYX200 is a course
commonly taught in the second year (at the sophomore level); ECEX300 is a course commonly taught in the third
year (at the junior level); and course ECEX400 is commonly taught in the fourth year (at the senior level).

To provide ease of comparison, all curricula implementations appear as a set of courses designed for a US system
in which a semester provides 14 weeks of lecture and laboratory. Typically, there is the equivalent of one week for
examinations, vacations, and reading periods. For simplicity, we specify lecture and lab times in “hours,” where
one “hour” of lecture or lab is typically 50 minutes in duration.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 106 of 149

We assign semester credit hours to each course, based on the number and types of formal activities within a given
week. These are determined as follows.

x Lecture hours: presentation of material in a classroom setting
o 1 credit hour = One, 1-hour lecture per week

x Laboratory hours: formal experimentation in a laboratory setting
o 1 credit hour = One, 3-hour laboratory session per week

The following are examples of ways to calculate credits for lectures and laboratories where the word hour is a 50-
minute time segment.

x 3-credit lecture course:
3 lecture hours per week for 14 weeks = 42 lecture hours (plus one week for examinations)

x 1-credit laboratory course:
One 3-hour laboratory session per week for 14 weeks = 42 lab hours

x 3-credit course with two lectures and a lab session each week:
2 lecture hours per week for 14 weeks = 28 lecture hours (plus one week for examinations)
One 3-hour lab per week for 14 weeks = 42 lab hours

x 3-credit project design course:
1 classroom meeting per week for 14 weeks = 14 lecture hours (plus one week for examinations)
2 credits of laboratory = 6 hours of laboratory per week for 14 weeks = 84 lab hours

B.1.2 Mapping of the computer engineering BoK to a sample curriculum

Each sample curriculum contains a table that maps the computer engineering BoK to the sample curriculum. The
table rows contain course numbers with BoK knowledge areas (KA) as column headers. If an entry in a row is non-
empty, then it contains the numbered knowledge units (KUs) from the knowledge area covered in that course. For
example, the entry 1-3,5 under the DIG knowledge area says that this course covers knowledge units 1,2,3 and 5
from CE-DIG. Note that:

x A course may have KUs from one KA, or it may have KUs from multiple KAs.
x The same KU may appear in multiple courses. For example, a two-course sequence in digital design may

both contain the DIG-1,2 KUs as both courses may cover history and relevant tools/standards/constraints,
but from different perspectives.

The second table row contains the minimum core BoK hours for each knowledge area as a reference. The bottom
two rows, labeled Core BoK Units and Supplementary BoK Units, list the knowledge units from each knowledge
area covered by this sample curriculum. Since all the sample curricula have complete BoK core coverage, the row
labeled Core BoK Units contains all core knowledge units from the knowledge areas. The row labeled
Supplementary BoK Units may contain non-empty entries, which list the supplementary BoK knowledge units
covered in those knowledge areas. The sample curricula do not cover all the supplementary BoK knowledge units
and the coverage shown does not convey a priority or recommended coverage.

B.1.3 Course descriptions

The provided course descriptions are what might typically appear in a course catalog. Because of their length, the
topics listed in these short descriptions are not exhaustive. A list of the BoK knowledge areas and knowledge units
covered by these courses augment these descriptions. For courses that include laboratory hours, these
descriptions do not include details on the laboratory experience. Section 4.4 describes expectations for the overall
laboratory experience, including teamwork, data collection and analysis, and other skills.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 107 of 149

B.2 Preparation to Enter the Profession

A major goal of the sample curricula in this appendix is the preparation of graduates for entry into the computer
engineering profession. There are many ways of building an undergraduate curriculum whose graduates are well-
educated computer engineers. To emphasize this point, the programs of study outlined in this section are quite
distinct. These programs differ in their emphasis and in the institutional constraints but do not represent all likely
program structures. For example, many programs include a first-year course to introduce students to the
discipline, provide hands-on engineering experiences, and engage the students. The absence of such a course in
any of the example curricula is not a judgment on the value of such courses.

The CE2016 steering committee designed these curricula to ensure appropriate coverage of the core learning
outcomes of the computer engineering BoK as defined in this report. However, as also discussed in the main
report, there are many other elements in the creation of a program that will effectively prepare graduates for the
professional practice of computer engineering, such as design and laboratory experience, oral and written
communication, and usage of modern engineering tools. Accordingly, professional accreditation addresses more
than just curriculum, and readers interested in accreditation should consult the relevant criteria from their
accrediting agency for complete accreditation criteria.

In addition, each individual computer engineering program may have educational goals that are unique to that
program and not directly reflected in the computer engineering BoK and curriculum models presented in this
report. It is the responsibility of each program to ensure that its students achieve each learning outcome essential
to the educational goals of the program.

B.3 Curricula Commonalities

Students desiring to study the application of computers and digital systems will find computer engineering to be a
rewarding experience. Study is intensive and students desiring to develop proficiency in the subfields of computer
engineering such as hardware, software, and systems that arise in the design, analysis, development, and
application of computers and digital systems, will find this program to be a challenge. Applied skills will enable
students to analyze, design, and test digital computer systems, architectures, networks, and processes.

Each sample curriculum leads to a bachelor’s degree in computer engineering and provides a balanced treatment
of hardware and software principles; each provides a broad foundation in some combination of computer science
and electrical/electronic engineering of computers and digital systems with emphasis on theory, analysis, and
design. Additionally, each of the first three curricula samples (Curricula A, B, and C) provides a broad foundation in
the sciences, discrete and continuous mathematics, and other aspects of a general education common in the US.
The remaining sample curricula (Curricula D and E) illustrate typical programs in computer engineering that one
might find in China, the United Kingdom, Europe, Asia, and other parts of the world. Curriculum E is consistent with
the Bologna Declaration, with the three-year program leading to a typical bachelor of engineering degree.

The common requirements are spread widely across a range of courses and allow revisiting the subject matter
with spiral learning taking place. Each curriculum contains sufficient flexibility to support various areas of
specialization. Each program structure allows a broad-based course of study and provides selection from among
many professional electives. In all cases, the culminating design experience takes place after students in the
program have developed sufficient depth of coverage in the core subject areas. A combination of theory, practice,
application, and attitudes accompany the construction of each course.

The goal of each program is to prepare students for a professional career in computer engineering by establishing
a foundation for lifelong learning and development. Each program also provides a platform for further work
leading to graduate studies in computer engineering, as well as careers in fields such as business, law, medicine,
management, and others. Students develop design skills progressively, beginning with their first courses in
programming, circuit analysis, digital circuits, computer architectures, and networks and they apply their

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 108 of 149

accumulating knowledge to practical problems throughout the curriculum. The process culminates in the
culminating design course(s), which complements the analytical part of the curriculum.

Graduates of each program should be well prepared for professional employment or advanced studies,
understanding the various areas of computer engineering such as applied electronics, digital devices and systems,
software design, and computer architectures, systems, and networks. Graduates should be able to apply their
acquired knowledge and skills to these and other areas of computer engineering. They will also possess design
skills and have a deep understanding of hardware issues, software issues, models, the interactions between these
issues, and related applications. The thorough preparation afforded by each of these computer engineering
curricula includes the broad education necessary to understand the effect of engineering solutions in a global and
societal context.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 109 of 149

B.4 Curriculum A: Administered by Electrical and Computer Engineering

Computer Engineering Program Administered by an
Electrical and Computer Engineering Department

B.4.1 Program Goals and Features

This program leads to a bachelor’s degree in computer engineering, as might be offered by a traditional electrical
and computer engineering (ECE) department. A computer science department sometimes offers foundation
courses in computer science such as programming; the ECE department teaches the remaining courses. As is
typical of most programs in engineering, this program has a smaller general education component than Curriculum
B (described next), with more hours devoted to computer engineering areas. This program usually has multi-
course sequences in circuits/electronics, digital design, embedded systems, and computer programming. Breadth
coverage occurs through courses in computer architecture, operating systems, networks, and computer security.
This program is oriented more towards hardware and system design, but contains more than sufficient software
coverage to enable graduates to be effective computer engineers.

B.4.2 Summary of Requirements

This program of study contains five required computer science courses (17 credits) and 14 required electrical and
computer engineering (ECE) courses (42 credits). The two computer engineering electives (6 credits), chosen from
courses in either the computer science or electrical and computer engineering departments, provide flexibility in
the program. Lab hours are present in ten courses, giving students significant hands-on experiences with modern
tools and design techniques. The capstone experience occurs over two courses in the senior year, allowing for a
substantial and complete design experience. Required oral technical writing courses address oral and written
communication skills, reinforced throughout the laboratory and the capstone project courses. Credit hours are
distributed as follows.

Credit-hours Areas
21 Mathematics
10 Natural science (Physics, Chemistry)
24 English composition, humanities, and social sciences
38 Required electrical and computer engineering
17 Required computer science
6 Technical electives (from ECE or CSC)
4 Design project
0 Free electives

120 TOTAL Credit Hours for Computer Engineering Program

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 110 of 149

B.4.3 Four-Year Model for Curriculum A

CE: can be offered in computer engineering department
ECE: offered in the electrical and computer engineering department
CSC: offered in the computer science department
*CE technical electives: approved elective course in either department

Course Description Credit Course Description Credit

Semester 1 Semester 2

MTH 101 Calculus I 3 MTH 102 Calculus II 3

CHM 101 Chemistry I & Lab 4 PHY 101 Physics I 3

CSCA101
Introduction to Computer
Programming

4 CSCA102
Intermediate Computer
Programming

4

 English Composition I 3 ECEA101 Introduction to ECE 2

 Humanities Elective 3 English Composition II 3

 Total Credit Hours 17 Total Credit Hours 15

Semester 3 Semester 4

MTH 201 Calculus III 3 MTH 203 Differential Equations 3

PHY 201 Physics II 3 MTHA204 Discrete Structures 3

ECEA201 Digital Devices & Lab 4 ECEA202 Microprocessors & Lab 4

CSCA201 Data Structures 3 ECEA203 Circuits/Electronics I 3

MTH 202 Linear Algebra 3 MTH 205 Probability & Statistics 3

 Total Credit Hours 16 Total Credit Hours 16

Semester 5 Semester 6

CSCA301 Algorithms 3 CSCA302 Client/Server Programming 3

ECEA301 Circuits/Electronics II & Lab 4 ECEA303 Signals & Systems 3

ECEA302 Digital System Design & Lab 3 ECEA304 Data Communication 3

 Humanities Elective 3 ECEA305 Computer Architecture 3

 Social Science Elective 3

 Total Credit Hours 13 Total Credit Hours 15

Semester 7 Semester 8

ECEA401 CE Design I 2 ECEA402 CE Design II 2

ECEA403 Embedded Systems & Lab 3 ECEA404 Computer Security 3

ENG 401 Writing for Engineers 3 ECEA405 Operating Systems 3

 CE Technical Elective* 3 CE Technical Elective* 3

 Fine Arts Elective 3 Social Science Elective 3

 14 14

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 111 of 149

B.4.4 Mapping of Computer Engineering BoK to Curriculum A

Refer to section B.1.2 for an explanation of this table.

BoK Area

Course

C
A
E

C
A
L

C
A
O

D
I
G

E
S
Y

N
W
K

P
P
P

S
E
C

S
G
P

S
P
E

S
R
M

S
W
D

A
C
F

D
S
C

L
A
L

P
R
S

Minimum Core
BoK Hours 50 30 60 50 40 20 20 20 30 35 20 45 30 30 20 30

CSCA101 1-4

CSCA102 4-8

CSCA201 5-9

CSCA301 1-8

CSCA302 1-12 10,12

ECEA101
1-
3,5

ECEA201 1-9

ECEA202 3, 5 3 1-8

ECEA203 1-4

ECEA301
5-
10

ECEA302

1,
2,
6-
11

ECEA303 1-7

ECEA304
1-
11

ECEA305 1-11

ECEA401
1-6,
11

 7-10

ECEA402 7-11
10-
12

ECEA403
9-
13

 10 4,6 11

ECEA404
1-
11

ECEA405 9 1-8

MTH 202
1-
10

MTH 203 1-7

MTHA204 1-9

MTH 205 1-10

Core BoK Units
Covered

1-
10 1-8 1-11 1-

11
1-
13

1-
11 1-11 1-

11 1-7 1-12 1-6 1-10 1-7 1-9 1-
10 1-10

Supplementary
BoK Units 9 7-8 11,12

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 112 of 149

B.4.5 Curriculum A – Course Summaries

CSCA101: Introduction to Computer Programming

Introductory problem solving and computer programming using object-oriented techniques; theoretical and practical
aspects of programming and problem solving

Prerequisite: College Algebra or equivalent
Credit Hours: 4; Lecture Hours: 42; Lab Hours: 42
BoK Coverage: CE-SWD 1-4

CSCA102: Intermediate Computer Programming

Object-oriented problem solving, design, and programming; introduction to data structures, algorithm design and
complexity

Prerequisite: CSCA101
Credit Hours: 4; Lecture Hours: 42; Lab Hours: 42
BoK Coverage: CE-SWD 4-8

CSCA201: Data Structures & Analysis of Algorithms

Non-linear data structures and their associated algorithms; trees, graphs, hash tables, relational data model, file
organization; advanced software design and development

Prerequisite: CSCA102 and College Algebra or equivalent
Credit Hours: 3; Lecture Hours: 42; Lab Hours: 0
BoK Coverage: CE-SWD 5-9

CSCA301: Introduction to Algorithms

Study of complexity of algorithms and algorithm design; tools for analyzing efficiency; design of algorithms, including
recurrence, divide-and-conquer, dynamic programming and greedy algorithms

Prerequisite: CSCA201, MTH 201 and MTHA204
Credit Hours: 3; Lecture Hours: 42; Lab Hours: 0
BoK Coverage: CE-CAL 1-8

CSCA302: Distributed Client/Server Programming

Design of software systems for use in distributed environments; client/Server models, multithreaded programming,
server-side web programming, graphical user interfaces, group projects involving client/server systems

Prerequisite: CSCA201
Credit Hours: 3; Lecture Hours: 28; Lab Hours: 42
BoK Coverage: CE-SWD 10, CE-SPE 1-12; CE-SWD 12

ECEA101: Introduction to ECE

What it means to be an engineer, engineering ethics, engineering modeling, the design process, areas of ECE,
communication skills

Prerequisite: Credit or registration in MTH 101
Credit Hours: 2; Lecture Hours: 15; Lab Hours: 42
BoK Coverage: CE-PPP 1-3, 5

ECEA201: Digital Devices

Binary codes, Boolean algebra, combinational logic design, flip-flops, counters, synchronous sequential logic,
programmable logic devices, MSI logic devices, adder circuits

Prerequisite: Credit or registration in CSCA101
Credit Hours: 4; Lecture Hours: 42; Lab Hours: 42
BoK Coverage: CE-DIG 1-9

ECEA202: Microprocessors

Architecture of microprocessor-based systems; study of microprocessor operation, assembly language, arithmetic
operations, and interfacing

Prerequisite: ECEA201, CSCA201
Credit Hours: 4; Lecture Hours: 42; Lab Hours: 42
BoK Coverage: CE-ESY 1-8, CE-CAO 3, 5, CE-DIG 3

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 113 of 149

ECEA203: Introduction to Electronic Circuits
Fundamentals of electric circuits and network analysis; transient analysis and frequency response of networks;
introduction to operational amplifiers; AC power

Prerequisite: PHY 201, MTH 202, Credit or registration in MTH 203
Credit Hours: 3; Lecture Hours: 42; Lab Hours: 0
BoK Coverage: CE-CAE 1-4

ECEA301: Intermediate Electronic Circuits

Operation circuit models and application of diodes and field-effect and bipolar junction transistors; electronic
instrumentation; foundations of electrical communications systems

Prerequisite: ECEA203
Credit Hours: 4; Lecture Hours: 42; Lab Hours: 42
BoK Coverage: CE-CAE 5-10

ECEA302: Digital System Design

Modern digital design techniques using logic synthesis, hardware description languages; field programmable gate
arrays, and modular building blocks

Prerequisite: ECEA202
Credit Hours: 3; Lecture Hours: 28; Lab Hours: 42
BoK Coverage: CE-DIG 1, 2, 6-11

ECEA303: Signals and Systems

Modeling of analog and discrete-time signals and systems, time domain analysis; Fourier series, continuous and
discrete-time Fourier transforms and applications, sampling, z-transform, state variables

Prerequisite: ECEA301
Credit Hours: 3; Lecture Hours: 42; Lab Hours: 0
BoK Coverage: CE-SGP 1-7

ECEA304: Data Communication Networks

The concepts and practices of data communications and networking to provide the student with an understanding of
the hardware and software used for data communications

Prerequisite: ECEA202
Credit Hours: 3; Lecture Hours: 42; Lab Hours: 0
BoK Coverage: CE-NWK 1-11, CE-SET 3-5

ECEA305: Computer Architecture

Detailed design and implementation of a stored-program digital computer system; designs for the CPU, I/O
subsystems, and memory organizations; ALU design and computer arithmetic

Prerequisite: ECEA202
Credit Hours: 3; Lecture Hours: 42; Lab Hours: 0
BoK Coverage: CE-CAO 1-11

ECEA401: CE Design I

Lectures on teaming, project management, engineering standards, economics, and ethical and professional issues;
student selects faculty mentor, performs project design, and presents orally

Prerequisite: ECEA302, CSCA302
Credit Hours: 2; Lecture Hours: 14; Lab Hours: 45
BoK Coverage: CE-SPE 7-10, CE-PPP 1-6, 11

ECEA402: CE Design II

Lectures on teaming, project management, engineering standards, economics, and ethical and professional issues;
student selects faculty mentor, performs project design, and presents orally

Prerequisite: ECEA401
Credit Hours: 3; Lecture Hours: 14; Lab Hours: 42
BoK Coverage: CE-SPE 10-12, CE-PPP 7-11

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 114 of 149

ECEA403: Embedded Systems
Advanced challenges in embedded systems design using contemporary practice; interrupt-driven, reactive, real-time,
object-oriented, and distributed client/server embedded systems

Prerequisite: ECEA302, ECEA301
Credit Hours: 3; Lecture Hours: 28; Lab Hours: 42
BoK Coverage: CE-ESY 9-13, CE-SPE 10, CE-SRM 4, 6; Supplementary CE-SWD 11

ECEA404: Information Security

Basic and advanced concepts in cryptography and network security: symmetric and asymmetric cryptography, key
management, wired and wireless network security protocols, network systems security

Prerequisite: ECEA304
Credit Hours: 3; Lecture Hours: 42; Lab Hours: 0
BoK Coverage: CE-SEC 1-11

ECEA405: Operating Systems

Historical development of operating systems to control complex computing systems; process management,
communication, scheduling techniques; file systems concepts and operation; data communication, distributed
process management

Prerequisite: ECEA202
Credit Hours: 3; Lecture Hours: 42; Lab Hours: 0
BoK Coverage: CE-SET 3-5, CE-SRM 1-6; Supplementary CE-CAL 9, CE-SRM 7-8

MTHA204: Discrete Structures

Concepts of algorithms, induction, recursion, proofs, logic, set theory, combinatorics, graph theory fundamental to
study of computer science

Prerequisite: CSCA101 and College Algebra or equivalent
Credit Hours: 3; Lecture Hours: 42; Lab Hours: 0
BoK Coverage: CE-DSC 1-7

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 115 of 149

B.5 Curriculum B: Administered by Computer Science

Computer Engineering Program Administered by a
Computer Science Department

B.5.1 Program Goals and Features

A computer science department sponsors this bachelor of science program in computer engineering. Programs of
this kind often develop through evolution from a computer science program, and therefore this model might be
of interest to schools that have a computer science department and either a general engineering program or a
physics department that teaches introductory engineering courses. As is typical of many computer science
programs, this model has a significantly larger general education component than the other curricula presented
in this appendix, and therefore fewer hours devoted to computer engineering. For this reason, the CE2016
steering committee designed several courses specifically to provide coverage of the core learning outcomes of
the CE BoK. Specifically, the committee designed courses that cover traditional electrical engineering in the CE
core to cover the core material without providing significant breadth or depth beyond the core learning
outcomes. In contrast, several computer science courses do go somewhat beyond the core material. There is,
however, sufficient coverage of electrical engineering, hardware, and systems to enable graduates to be effective
computer engineers.

B.5.2 Summary of Requirements

This program of study builds around a set of eleven required courses in computer science (including a
culminating design project) and three in electrical engineering. The program achieves flexibility through a
judicious choice of three technical electives and a culminating project. Laboratory experience occurs in the first
two introductory computer science courses, in the circuits and electronics course, and in the digital logic
course. The total number of hours devoted to laboratory experience is less than in the other curriculum models
presented in this appendix. In addition, since there are fewer courses that incorporate engineering design, the
culminating design project experience extends two full semesters to ensure that all graduates have significant
design experience, as well as experience with teamwork and modern engineering tools. The CE2016 steering
committee assumes that oral and written communication skills occur in both the general education and in the
computer engineering segments of this curriculum.

This curriculum utilizes a relatively traditional course structure and content, with credit hours distributed as
follows.

Credit-hours Areas
20 Mathematics and statistics
11 Natural science (physics, chemistry)
33 Humanities, social sciences, composition, and literature
25 Required computer science (excluding design project)
11 Required electrical engineering

9 Technical electives (from computer science or engineering)
5 Culminating design project (from computer science)
6 Free electives

120 TOTAL Credit Hours for Computer Engineering Program

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 116 of 149

B.5.3 Four-Year Model for Curriculum B

ELE: offered in an engineering or physics department
CSC: offered in the computer science department
*CE Technical Electives: offered in an engineering or computer science department

Course Description Credit Course Description Credit

Semester 1 Semester 2

MTH 101 Calculus I 4 MTH 102 Calculus II 4

CHM 101 Chemistry I 4 PHY 101 Physics I 4

CSCB101 Computer Science I 3 CSCB102 Computer Science II 3

 English Composition 3 Humanities / Social Science 3

 Total Credit Hours 14 Total Credit Hours 14

Semester 3 Semester 4

MTH 201 Differential Equations 3 MTH 203 Linear Algebra 3

PHY 201 Physics II 3 CSCB201 Algorithm Design 3

MTHB202 Discrete Structures 3 ELEB202 Circuits and Electronics 4

ELEB201 Introduction to Digital Design 4 CSCB202 Computer Organization 3

 Humanities / Social Science 3 Humanities / Social Science 3

 Total Credit Hours 16 Total Credit Hours 16

Semester 5 Semester 6

MTH 301 Probability and Statistics 3 CSCB302 Embedded Systems 3

CSCB301 Computer Architecture 3 CSCB303
Computer Networks & Information

Security
3

ELEB301 Systems and Signal Processing 3 CSCB304 Operating Systems 3

 Technical Writing 3 Humanities / Social Science 3

 Humanities / Social Science 3 Humanities / Social Science 3

 Total Credit Hours 15 Total Credit Hours 15

Semester 7 Semester 8

CSCB401 Senior Project I 2 CSCB402 Senior Project II 3

CSCB403 Ethics and Professionalism 1 CE Technical Elective 3

 CE Technical Elective 3 CE Technical Elective 3

 Humanities / Social Science 3 Humanities / Social Science 3

 Humanities / Social Science 3 Free Elective 3

 Free Elective 3

 Total Credit Hours 15 Total Credit Hours 15

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 117 of 149

B.5.4 Mapping of Computer Engineering BoK to Curriculum B

Refer to section B.1.2 in the front of this appendix for an explanation of this table.

BoK Area

Course

C
A
E

C
A
L

C
A
O

D
I
G

E
S
Y

N
W
K

P
P
P

S
E
C

S
G
P

S
P
E

S
R
M

S
W
D

A
C
F

D
S
C

L
A
L

P
R
S

Minimum Core
BoK Hours

50 30 60 50 40 20 20 20 30 35 20 45 30 30 20 30

CSCB101 1-5

CSCB102
1,

6-10,
11-12

CSCB201
1-8,
10

CSCB202
1-4,
6-8

CSCB301 6-11
8,
10

CSCB302 1-12

CSCB303 1-8 1-11

CSCB304
1-6,
7-8

CSCB401
2-4,
6-9

1-
12

CSCB402
2-4,
6-9

1-
12

CSCB403
1, 5,
6-10

ELEB201 5
1-7,
9,
11

ELEB202 1-10

ELEB301 1-8

MTH 101 1-3

MTH 102 3-4

MTH 201 5-7

MTHB202 1-9

MTH 203
1-
10

MTH 301 1-9

Core BoK Units
Covered 1-10 1-8 1-11 1-10 1-12 1-8 1-9 1-11 1-8 1-

12 1-6 1-10 1-7 1-9 1-
10 1-9

Supplementary
BoK Units 10 11 7-8 11-12

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 118 of 149

B.5.5 Curriculum B – Course Summaries

CSCB101: Computer Science I

Introduction to computing; algorithmic thinking, problem solving in the context of a modern programming language
and its associated development environment

Prerequisites: Pre-calculus or equivalent
Credit Hours: 3; Lecture Hours: 28; Lab Hours: 42
BoK Coverage: CE-SWD 1-5

CSCB102: Computer Science II

Second course in programming languages and systems; object-oriented design, data structures, recursion, data
modeling, fundamental concepts in software engineering

Prerequisites: CSCB101
Credit Hours: 3; Lecture Hours: 28; Lab Hours: 42
BoK Coverage: CE-SWD 1, 6-10; Supplementary CE-SWD 11-12

CSCB201: Algorithm Design

Analysis and design of algorithms, algorithm design strategies, searching and sorting algorithms, parallel algorithms,
tradeoffs in algorithmic performance, algorithmic complexity

Prerequisites: CSCB102
Credit Hours: 3; Lecture Hours: 42; Lab Hours: 0
BoK Coverage: CE-CAL 1-8; Supplementary CE-CAL 10

CSCB202: Computer Organization

Introductory course in computer organization and architecture; processor organization, instruction set architecture,
memory system organization, performance, and interfacing fundamentals

Prerequisites: CSCB101
Credit Hours: 3; Lecture Hours: 42; Lab Hours: 0
BoK Coverage: CE-CAO 1-4, 6-8

CSCB301: Computer Architecture

Computer bus structures, memory organization and structure, interrupt structures, arithmetic units, input-output
structures, central processor organization, control function implementation, pipelining, performance measurement,
and distributed system models

Prerequisites: CSCB202
Credit Hours: 3; Lecture Hours: 42; Lab Hours: 0
BoK Coverage: CE-CAO 6-11; CE-DIG 8, 10

CSCB302: Embedded Systems

Characteristics of embedded systems, techniques for embedded applications, parallel input and output, synchronous
and asynchronous serial communication, interrupt handling, applications involving data acquisition, control, sensors,
and actuators, implementation strategies for complex embedded systems

Prerequisites: CSCB202, CSCB301
Credit Hours: 3; Lecture Hours: 28; Lab Hours: 42
BoK Coverage: CE-ESY 1-12

CSCB303: Computer Networks and Information Security

Introduction to the design and performance analysis of local computer networks; architectures, protocols, standards,
and technologies of computer networks; principles of information security, authentication, sources of vulnerability,
malware, defenses against attack, network security

Prerequisites: CSCB202, MTHB202; Co-Requisite CSCB304
Credit Hours: 3; Lecture Hours: 42; Lab Hours: 0
BoK Coverage: CE-NWK 1-8; CE-SEC 1-11

CSCB304: Operating System

Basic operating systems and their components; concurrency, scheduling and dispatch, memory and device
management, file systems and performance evaluation, real-time operating systems, operating systems for mobile

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 119 of 149

devices
Prerequisites: CSCB201, CSCB202
Credit Hours: 3; Lecture Hours: 28; Lab Hours: 42
BoK Coverage: CE-SRM 1-6; Supplementary CE-SRM 7-8

CSCB401: Senior Project I

Individually designed projects oriented toward providing experience in project management, risk management,
specification of system requirements and architecture, system design, integration, testing, and deployment; solution
of open-ended problems; emerging technologies discussed in the context of these projects

Prerequisites: CSEB302, CSEB312, CSEB332
Credit Hours: 2; Lecture Hours: 14; Lab Hours: 42
BoK Coverage: CE-PPP 2-4, 6-9, CE-SPE 1-12

CSCB402 Senior Project II

Continuation of Senior Project I focused on implementation of a project design
Prerequisites: CSCB401
Credit Hours: 3; Lecture Hours: 14; Lab Hours: 84
BoK Coverage: CE-PPP 2-4, 6-9, CE-SPE 1-12

CSCB403: Ethics and Professionalism

Critical examination of ethical problems associated with computer science and engineering; legal and quasi-legal (i.e.,
policy and regulative) issues are also considered; the process of ethical decision-making, privacy and confidentiality,
computer crime, professional codes and responsibilities, software piracy, the impact of computers on society

Prerequisites: Junior standing
Credit Hours: 1; Lecture Hours: 0; Lab Hours: 42
BoK Coverage: CE-PPP 1, 5, 6-10

ELEB201: Introduction to Digital Design

Number systems and representation of information; computer arithmetic; analysis and synthesis of combinational and
sequential logic circuits; use of a modern hardware description language; organization and structure of computing
systems

Prerequisites: CSCB101
Credit Hours: 4; Lecture Hours: 42; Lab Hours: 42
BoK Coverage: CE-DIG 1-7, 9, CE-CAO 5; Supplementary CE-DIG 11

ELEB202: Circuits and Electronics

Fundamentals of electric circuits and network analysis; transient analysis, frequency response, Laplace transforms,
Fourier series, introduction to electronic materials and devices, diodes, bipolar transistors and logic families, MOS
technology

Prerequisites: MTH 201, PHY 102
Credit Hours: 4; Lecture Hours: 42; Lab Hours: 42
BoK Coverage: CE-CAE 1-10

ELEB301: Systems and Signal Processing

Sinusoidal and transient analysis, convolution, transform analysis, frequency response, digital processing of signals,
difference equations, sampling and aliasing, discrete time transforms and digital filter design

Prerequisites: ELEB202
Credit Hours: 3; Lecture Hours: 42; Lab Hours: 0
BoK Coverage: CE-SGP 1-8

MTHB202: Discrete Structures

Sets, functions, and relations, Boolean algebra, first order logic, proof techniques, counting arguments, iteration and
recursion, graphs, and trees

Prerequisites: Pre-calculus or equivalent
Credit Hours: 3; Lecture Hours: 42; Lab Hours: 0
BoK Coverage: CE-DSC 1-9

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 120 of 149

B.6 Curriculum C: Administered jointly by CS and EE

Computer Engineering Program Administered Jointly by a
Computer Science Department and an Electrical Engineering Department

B.6.1 Program Goals and Features

A computer science (CSC) department and an electrical and computer engineering (ECE) department jointly
administer this program leading to a bachelor’s degree in computer engineering (CE). This curriculum brings a core
competency and unique value of integrated knowledge in both computer software and hardware, providing a
balance among computer systems, hardware, and software as well as theory and applications. Studies in computer
engineering integrate fields from both computer science and electrical engineering. Computer engineering
students receive a flexible curriculum that has a balanced common core of required courses. Specialization occurs
via technical elective courses chosen from either department, tailoring a curriculum to a student’s interest and
employers’ needs in a dynamic job market. The thorough preparation afforded by the computer engineering
curriculum includes the broad education necessary to understand the impact of engineering solutions in a global
and societal context. Hence, graduates will be well prepared to pursue advanced studies in computer engineering
or they can choose from many different careers related to computers and their applications in high technology
environments.

B.6.2 Summary of Requirements

The general education component of this curriculum consists of 21 credits of mathematics, 16 credits of natural
science, and 18 credits of humanities and social science courses. The required core of computer engineering
courses consists of traditional CSC courses (e.g., programming fundamentals), traditionally ECE courses (e.g.,
circuits & electronics), and CE courses that can be taught by computer engineering faculty members in either
department (e.g., computer architecture & organization). Specialization occurs via technical electives chosen in
various knowledge areas from either department. Finally, the culminating design experience is a two-course
sequence in the senior year (CE Design I and CE Design II). Credit hours are distributed as follows.

Credit-hours Areas
21 Mathematics
16 Natural science (physics, chemistry)
18 Humanities, social sciences, composition, literature
12 Required computer engineering (CE)
19 Required electrical and computer engineering (ECE)
16 Required computer science (CSC)
12 Technical electives
6 Design project
0 Free electives

120 TOTAL Credit Hours for Computer Engineering Program

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 121 of 149

B.6.3 Four-Year Model for Curriculum C

CE: can be offered in computer engineering department
ECE: offered in the electrical and computer engineering department
CSC: offered in the computer science department
*CE Technical Electives: elective course offered in either department

Course Description Credit Course Description Credit

Semester 1 Semester 2

MTH 101 Calculus I 4 MTH 102 Calculus II 4

CHM 101 Chemistry I + Lab 4 PHY 101 Physics I + Lab 4

 Humanities / Social Science 3 CSCC101 Programming Fundamentals I 3

 Humanities / Social Science 3 CHM 102 Chemistry II or Biological Science 4

 Total Credit Hours 14 Total Credit Hours 15

Semester 3 Semester 4

MTH 201 Calculus III 4 MTH 202 Differential Equations 3

PHY 201 Physics II + Lab 4 ECEC202 Circuits & Electronics 4

CSCC201 Programming Fundamentals II 3 CEC201
Intro to Computer Architecture &
Organization

3

ECEC201 Digital & Logic Design + Lab 4 CSCC202 Intro to Discrete Structures 3

 Humanities / Social Science 3

 Total Credit Hours 15 Total Credit Hours 16

Semester 5 Semester 6

MTH 301 Computational Linear Algebra 3 CEC301
Introduction to Computer Systems
Engineering

3

CSCC301 Data Structures & Algorithms 4 MTH 302 Engineering Statistics 3

ECEC301
Embedded & Microprocessor Systems
+ Lab

4
CEC302

Computing Networks 3

ECEC302 Digital System Design + Lab 4 CE Technical Elective* 3

 Humanities / Social Science 3

 Total Credit Hours 15 Total Credit Hours 15

Semester 7 Semester 8

CSCC401 Operating Systems 3 CEC401 Computer and Network Security 3

ECEC401 Signals & Systems 3 CE Technical Elective* 3

CEC402 CE Design I 3 CE Technical Elective* 3

 CE Technical Elective* 3 CEC403 CE Design II 3

 Humanities / Social Science 3
Professional Communication &
Ethics for Engineers

3

 Total Credit Hours 15 Total Credit Hours 15

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 122 of 149

B.6.4 Mapping of Computer Engineering BoK to Curriculum C

Refer to section B.1.2 for an explanation of this table.

BoK Area

Course

C
A
E

C
A
L

C
A
O

D
I
G

E
S
Y

N
W
K

P
P
P

S
E
C

S
G
P

S
P
E

S
R
M

S
W
D

A
C
F

D
S
C

L
A
L

P
R
S

Minimum Core
BoK Hours

50 30 60 50 40 20 20 20 30 35 20 45 30 30 20 30

CSCC101 1-5

CSCC201 4
3-7,
12

CSCC202 1-9

CSCC301 1-8 4, 5

CSCC401 1-7

ECEC201 1-9

ECEC202
1-
10

ECEC301 6-8 1-8

ECEC302
2, 6-
10

 8-9

ECEC401 1-8

CEC201 6 1-9

CEC301 2,6 1-12 3 8-10

CEC302 6 1-8 8

CEC401 1-11

CEC402 1-4

CEC403 2-10

MTH 202 1-7

MTH 301 1-10

MTH 302 1-9

Core BoK Units
covered

1-
10 1-8 1-11 1-10 1-8 1-8 1-10 1-11 1-8 1-12 1-6 1-10 1-7 1-9 1-10 1-9

Supplementary
BoK Units 7 12

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 123 of 149

B.6.5 Curriculum C – Course Summaries

CSCC101: Programming Fundamentals I

Introductory problem solving and computer programming concepts, including object-oriented programming,
procedural and data abstraction, and program modularity

Prerequisite: none
Credit Hours: 3; Lecture Hours: 42; Lab Hours: 0
BoK Coverage: CE-SWD 1-5

CSCC201: Programming Fundamentals II

Intermediate problem solving and computer programming concepts, including algorithmic strategies, recursion, and
effective design and use of data structures and application programming interfaces (APIs)

Prerequisite: CSCC101
Credit Hours: 3; Lecture Hours: 42; Lab Hours: 0
BoK Coverage: CE-CAL 4, CE-SWD 3-7; Supplementary CE-SWD 12

CSCC202: Introduction to Discrete Structures

Concepts of discrete structures including Boolean algebra, first-order algebra, proof techniques, set theory, and graph
theory

Prerequisite: CSCC201, MTH 101
Credit Hours: 3; Lecture Hours: 42; Lab Hours: 0
BoK Coverage: CE-DSC 1-9

CSCC301: Data Structures and Algorithms

Design of basic data structures (e.g., stacks, queues, heaps, link structures, trees, graphs) and their manipulation;
design and analysis of classic algorithms for common tasks (e.g., sorting, searching, graph algorithms)

Prerequisite: CSCC201
Credit Hours: 4; Lecture Hours: 56; Lab Hours: 0
BoK Coverage: CE-CAL 1-8, CE-SWD 4-5

CSCC401: Operating Systems

Basic operating systems and their components: scheduling, resource management, process management, interrupt
handling, concurrent processing, and system performance evaluation

Prerequisite: CSCC301, CEC201
Credit Hours: 3; Lecture Hours: 42; Lab Hours: 0
BoK Coverage: CE-SRM 1-6; Supplementary CE-SRM 7

ECEC201: Digital & Logic Design + Lab

Elements of digital design (e.g., Boolean algebra, basic logic circuits), analysis and synthesis of combinational and
sequential logic circuits, introduction into finite state machines, hardware description language (HDL), and
programmable logic devices (e.g., FPGAs)

Prerequisite: CSCC101
Credit Hours: 3; Lecture Hours: 42; Lab Hours: 14
BoK Coverage: CE-DIG 1-9

ECEC202: Circuits & Electronics

Fundamentals of circuit analysis: basic concepts (e.g., voltage, current, Ohm's law); transient analysis and frequency
response of networks; introduction to operational amplifiers, electronic materials and devices, bipolar transistors and
logic families, and MOS technology

Prerequisite: MTH 201, PHY 201
Credit Hours: 4; Lecture Hours: 56; Lab Hours: 0
BoK Coverage: CE-CAE 1-10

ECEC301: Embedded & Microprocessor Systems + lab

Microprocessor-based embedded systems, synchronous and asynchronous serial communication, interfacing,
interrupt handling, data acquisition, real-time processing

Prerequisite: CEC201, ECEC201
Credit Hours: 4; Lecture Hours: 42; Lab Hours: 14
BoK Coverage: CE-CAO 6-8, CE-ESY 1-8

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 124 of 149

ECEC302: Digital System Design + Lab

Advanced digital design: modular design of combinational and sequential logic building blocks, control-datapath;
extensive use of hardware description language (HDL) and programmable logic devices (e.g., FPGAs); system
architecture design and evaluation

Prerequisite: ECEC201, CEC 201
Credit Hours: 4; Lecture Hours: 42; Lab Hours: 14
BoK Coverage: CE-DIG 2, CE-DIG 6-10, CE-SPE 8-9

ECEC401: Signals & Systems

Continuous-time and discrete-time signal analysis including Fourier series and discrete-time Fourier transforms;
sampling; finite and infinite impulse response (FIR and IIR) filter design; frequency response, and system function

Prerequisite: MTH 201, MTH 202, MTH 301
Credit Hours: 3; Lecture Hours: 42; Lab Hours: 0
BoK Coverage: CE-SGP 1-8

CEC201: Introduction to Computer Architecture & Organization

Introduction to computer architecture and system organization including instruction set architecture, processor
organization, bus structures, memory sub-systems, input/output interfacing and communication, pipelining, and
performance measurement

Prerequisite: CSCC201, ECEC201
Credit Hours: 3; Lecture Hours: 42; Lab Hours: 0
BoK Coverage: CE-CAO 1-9, CE-CAL 6

CEC301: Introduction to Computer Systems Engineering

Fundamental concepts in computer system engineering including project management; architectural design;
concurrent hardware and software design; system integration, testing, and validation; and concepts such as
maintainability, sustainability, manufacturability

Prerequisite: CEC201, CSCC301
Credit Hours: 3; Lecture Hours: 42; Lab Hours: 0
BoK Coverage: CE-SPE 1-12, CE-PPP 2, CE-PPP 6, CE-SRM 3, CE-SWD 8-10

CEC302: Computer Network

Architectures, protocols, standards, and technologies of computer networks including local and wide area networks,
wireless and mobile networks, network applications, and network management and security

Prerequisite: CEC201, ECEC301
Credit Hours: 3; Lecture Hours: 42; Lab Hours: 0
BoK Coverage: CE-CAL 6, CE-NWK 1-8, CE-SEC 8

CEC401: Computer and Network Security

Concepts in computer and network security including data security and integrity, vulnerabilities and exploitation,
social engineering, cryptography, authentication, network and web security, and trust computing

Prerequisite: CEC201, CEC302
Credit Hours: 3; Lecture Hours: 42; Lab Hours: 0
BoK Coverage: CE-NWK 8, CE-SEC 1-11

CEC402: CE Design I

First of a two-semester computer engineering capstone project which cumulates in a product with emphasis on
teaming, project management, concurrent hardware and software design; system integration, testing, and validation

Prerequisite: CEC301, ECEC301
Credit Hours: 3; Lecture Hours: 14; Lab Hours: 84
BoK Coverage: CE-PPP 1-4

CEC403: CE Design II

Second of a two-semester computer engineering capstone project which cumulates in a product with emphasis on
teaming, project management, concurrent hardware and software design; system integration, testing, and validation

Prerequisite: CEC402
Credit Hours: 3; Lecture Hours: 14; Lab Hours: 84
BoK Coverage: CE-PPP 2-10

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

B.7 Curriculum D: Administered in China

Computer Engineering Program Administered by the
Department of Computer Science and Technology in China

B.7.1 Program Goals and Features

This program leads to a bachelor’s degree in computer science and technology (CST). A computer science and
technology department generally combines computer engineering with computer science in China and administers
the program for the students in the computer engineering track. The curriculum brings together computing theory,
computer architecture, computer networks, and computer programming. It covers the core requirements of a CST
degree, but emphasizes understanding of the hardware and software from a system perspective. The program
provides a broad background in computer engineering concepts and practice that prepares students for graduate
study or careers in a wide range of industries and organizations.

B.7.2 Summary of Requirements

This program of study contains 22 required computer science and technology courses. The program provides
flexibility through ten hours of technical electives chosen from courses in either the electrical engineering or the
computer science and technology departments. Four laboratory-oriented courses, plus laboratory hours in other
courses, provide students significant hands-on experiences with modern tools and design techniques. The
capstone project for graduation is in the last semester to ensure that all graduates have significant design
experience. The program addresses oral and written communication skills throughout the laboratory and the
capstone project courses. Credit hours are distributed as follows.

Credit-hours Areas
25 Mathematics
10 Natural science (physics, chemistry)
2 Elective mathematics and natural Science

41 Humanities, social sciences, composition, literature, foreign language,
physical education

48 Required computer science and engineering (CE)
12 Lab courses – computer science and engineering (CE)
10 Technical Electives – basic and advanced (CE)
15 Capstone project for graduation (CE)
0 Free electives

163 TOTAL Credit Hours for Computer Engineering Program

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 126 of 149

B.7.3 Four-Year Model for Curriculum D

Course Description Credit Course Description Credit Course Description Credit

Semester 1 Semester 2 Semester 3

Physical
Education I

1
Physical
Education II

1
Practice in
English

2

Humanities and
social I

3
Humanities and
social II

3
CSTD

301

Practice in
Programming
(Lab Course)

2

English language
I

2
English language
II

2

MTH
101

Calculus I 5
MTH
201

Calculus II 5

MTH
102

Linear Algebra I 4
MTH
202

Linear Algebra II 2

MTH
103

Discrete
Mathematics I

3
CSTD

201

Fundamentals
Object-oriented
Programming

2

CSTD
101

Fundamentals of
Programming

3
MTH
203

Discrete
Mathematics II

3

CSTD

102

Introduction of
Information
Science

1
PHY
201

Physics I 4

Elective of
Humanities

1

Total Credit

Hours 23
Total Credit

Hours
22

Total Credit
Hours

4

Semester 4 Semester 5 Semester 6

PHY
401

Physics II 4
CSTD

501
Digital Logic
Circuits & Lab

4
CSTD

601

Practice in
Assembly
Language (Lab
Course)

3

PHY
402

Lab of Physics I 1
PHY
501

Lab of Physics II 1
CSTD

602
Practice in Java
(Lab Course)

2

CSTD

401
Data Structures 4

MTH
501

Probability and
Statistics

3

Humanities and
social III

5
CSTD

502
Formal Language
and Automata

2

English language
III

2
CSTD

503

Introduction to
Artificial
Intelligence

2

Physical
Education III

1
Physical
Education IV

1

MTH
401

Introduction to
Functions of One
Complex Variable
(Math/Sci Elec)

2
English language
IV

2

CSTD

402
Fundamentals of
Electronics & Lab

4
Elective of
humanities and
social

1

CSTD

504

Introduction to
High
Performance
Computing

2

Total Credit

Hours
23

Total Credit
Hours

18
Total Credit

Hours
5

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 127 of 149

Course Description Credit Course Description Credit Course Description Credit

Semester 7 Semester 8 Semester 9

CSTD

701
Computer
Organization

4
CSTD

801
Operating
System

3
CSTD

901

Design of
Whole
Computer
System (Lab
Course)

5

CSTD

702
Computer
Network

3
CSTD

802
Computer
Architecture

3

CSTD

703
Principle of
Compiler System

2
CSTD

803
Numerical
analysis

3

CSTD

704
Software
Engineering

3 Politics Theory 4

CSTD

705
Principle of
Signal Processing

3
Humanities and
social IV

3

Elective of
humanities and
social

2
CSTD

804

Emerging
technology on
Software (Tech
Elective)

2

CSTD

706
Introduction to
Database System 2

Total Credit
Hours

19
Total Credit

Hours
18

Total Credit
Hours

5

Semester 10 Semester 11
Humanities and
social V

5
CSTD

1101
Capstone project
for graduation

15

CSTD

1001

Network Security
and
Management
(Tech Elective)

3

CSTD

1002

Embedded
System (Tech
Elective)

3

Total Credit
Hours

11
Total Credit

Hours
15

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 128 of 149

B.7.4 Mapping of Computer Engineering BoK to Curriculum D
Refer to section B.1.2 for an explanation of this table.

BoK Area

Course

C
A
E

C
A
L

C
A
O

D
I
G

E
S
Y

N
W
K

P
P
P

S
E
C

S
G
P

S
P
E

S
R
M

S
W
D

A
C
F

D
S
C

L
A
L

P
R
S

Minimum Core
BoK Hours

50 30 60 50 40 20 20 20 30 35 20 45 30 30 20 30

CSTD101 1-6
CSTD102
CSTD201 1,3,4
CSTD301 3-8
CSTD401 1-8,10

CSTD402
1-10,

12
CSTD501 1-10
CSTD502#
CSTD503#

CSTD504
1-2,

10-11
CSTD601 3,8,9
CSTD602 4,8
CSTD701 1-9 8
CSTD702 1-10 6,7 8,9
CSTD703 10

CSTD704 3-5,10
1-5,
7-9

CSTD705 1-8

CSTD706
1-2,
9-10

CSTD801 1-7

CSTD802
1-2,

10-11
CSTD803#
CSTD804
CSTD901 1-12

CSTD1001 8 1-11
CSTD1002 1-13
CSTD1101 1-11
MTH101 1-4
MTH102 1-5
MTH103 1-6

MTH201
1-2,
5-7

MTH202
1-2,
6-10

MTH203
1-2,
7-9

MTH401#
MTH501 1-9

Core BoK Units
Covered 1-10 1-8 1-11 1-10 1-12 1-8 1-10 1-11 1-8 1-12 1-6 1-10 1-7 1-9 1-10 1-9

Supplementary
BoK Units 12 10 13 9-10 11 7

this course does not cover any BoK Unit.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 129 of 149

B.7.5 Curriculum D – Course Summaries

CSTD101 Fundamentals of Programming
Introduction to the basic concepts of computer programming, including problem solving, algorithmic thinking, simple
data structure, and some fundamental algorithms

Prerequisite: None
Credit Hours: 3 Lecture Hours: 48; Lab Hours: 0
BoK Coverage: CE-SWD 1-6

CSTD102 Introduction of Information Science
Introductory course in information science; fundamental problems and solving methods including some emerging
technologies in information science

Prerequisite: None
Credit Hours: 1; Lecture Hours: 16; Lab Hours: 0
BoK Coverage: CE-SET 1, 3-4

CSTD201 Fundamentals Object-oriented Programming
The basics of C++ programming, object-oriented programming, introductory problem solving, and computer
programming using object-oriented techniques

Prerequisite: CSTD101
Credit Hours: 2; Lecture Hours: 32; Lab Hours: 0
BoK Coverage: CE-SWD 1-2, 6-8

CSTD301 Practice in Programming
Highly practical course aiming at students’ innovative ideas and hands-on skills; through teaching and experiments,
students develop general knowledge about C language and basic programming algorithms

Prerequisite: CSTD101
Credit Hours: 2; Lecture Hours: 16; Lab Hours: 32
BoK Coverage: CE-SWD 3-8

CSTD401 Data Structures
Data abstraction and representation, data structure (e.g. vector, array, list, stack, queue, tree, priority queue, hash
table and graph) design and implementation, design of classic algorithms (e.g. search, sort and select, traverse,
pattern matching, topological search, hash), as well as algorithm evaluation and analysis

Prerequisite: CSTD101
Credit Hours: 4; Lecture Hours: 64; Lab Hours: 32
BoK Coverage: CE-CAL 1-8, 10

CSTD402 Fundamentals of Electronics & Lab
Fundamentals of electric circuits, including the basic concepts (e.g. voltage, current, power), basic components (e.g.
resistance, inductance, capacity, MOS transistor, operational amplifier), basic laws (e.g., Ohm’s law, Kirchhoff’s law,
equivalent resistance exchange) and methods of circuit analysis

Prerequisite: None
Credit Hours: 4; Lecture Hours: 48; Lab Hours: 16
BoK Coverage: CE-CAE 1-10, 12

CSTD501 Digital Logic Circuits & Lab
Emphasis on the analysis, design, and implementation of the digital logic circuit; Boolean algebra and logic
simplification, design and analysis of combinational circuits and sequential circuits, competition and risk management
in logic design

Prerequisite: CSTD402
Credit Hours: 4; Lecture Hours: 48; Lab Hours: 16
BoK Coverage: CE-DIG 1-10

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 130 of 149

CSTD502 Formal Language and Automata
Focusing on formal languages, context free languages, and the related computation models as well as the Turing
machine and the foundations of theoretical computing

Prerequisite: MTH103, MTH203
Credit Hours: 2; Lecture Hours: 32; Lab Hours: 0
BoK Coverage: None

CSTD503 Introduction to Artificial Intelligence
Introductory course on artificial intelligence; fundamental problems in artificial intelligence, production system,
search problem, AND/OR search graph, predicate calculus, advanced search, expert systems

Prerequisite: CSTD101, MTH103, MTH203
Credit Hours: 2; Lecture Hours: 32; Lab Hours: 0
BoK Coverage: None

CSTD504 Introduction to High Performance Computing
Organization of high performance computer, design methods of parallel programming, performance model of
programs, performance evaluation and optimization techniques, programming in MPI and OpenMP and algorithms in
high performance computing

Prerequisite: CSTD101
Credit Hours: 2; Lecture Hours: 32; Lab Hours: 0
BoK Coverage: CE-CAO1-2, 10-11

CSTD601 Practice in Assembly Language
The basic theory, programming tools, programming methods and applications of assembly language

Prerequisite: CSTD101
Credit Hours: 3; Lecture Hours: 32; Lab Hours: 32
BoK Coverage: CE-CAO 3, 8-9

CSTD602 Practice in Java
Java programming, Java’s history and evolution, development tools, object-oriented programming methods and
network programming technologies

Prerequisite: CSTD101
Credit Hours: 2; Lecture Hours: 32; Lab Hours: 32
BoK Coverage: CE-SWD 4, 8

CSTD701 Computer Organization
Introduction to single CPU computer organization and architecture; instruction set architecture, datapath and
controller, pipelining and performance measurement, hierarchical memory organization, bus structures, I/O
interfacing and communications, peripheral equipment

Prerequisite: CSTD101, CSTD501
Credit Hours: 4; Lecture Hours: 48; Lab Hours: 16
BoK Coverage: CE-CAO 1-9, CE-DIG 8

CSTD702 Computer Network
Computer network architecture, typical protocols and standards of LAN, WAN, wireless and mobile networks, classical
network applications, network management and security; networks social effects, network engineer’s professional
and responsibilities

Prerequisite: CSTD101, CSTD401
Credit Hours: 3; Lecture Hours: 48; Lab Hours: 0
BoK Coverage: CE-NWK 1-10, CE-PPP 6-7, CE-SEC 8-9

CSTD703 Principle of Compiler System
Overview of compilers, formal languages, grammar and automata, lexical analysis, syntax analysis, syntax-directed
translation, semantic analysis and intermediate code generation, symbol table, run time storage organization, code
optimization and generation

Prerequisite: CSTD401, CSTD502, CSTD602,
Credit Hours: 2; Lecture Hours: 32; Lab Hours: 0
BoK Coverage: None

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 131 of 149

CSTD704 Software Engineering
Focusing on the software development methods, software life cycle, design methods, software testing and
performance evaluation, software development management

Prerequisite: CSTD101, CSTD401
Credit Hours: 3; Lecture Hours: 48; Lab Hours: 0
BoK Coverage: CE-SPE 1-5,7-9 CE-PPP 3-5,10

CSTD705 Principle of Signal Processing
Concepts on signal and signal processing, continuous-time Fourier transform, discrete-time Fourier transform, Z-
transform and discrete time system analysis, design, and implementation of filters

Prerequisite: MTH101, MTH201
Credit Hours: 3; Lecture Hours: 48; Lab Hours: 0
BoK Coverage: CE-SGP 1-8

CSTD706 Introduction to Database System
Entity-relationship model and relational model; concepts, logic, and physical design of database, key techniques in
database management system (e.g., query, transaction management, concurrency control and error recovery),
expansion of database system structure, current research in database research, and new applications

Prerequisite: CSTD101, CSTD401
Credit Hours: 2; Lecture Hours: 32; Lab Hours: 0
BoK Coverage: CE-SWD 1-2, 9-10

CSTD801 Operating System
Introduction to the computer operating system, process management, process scheduling, storage management, file
management and device management

Prerequisite: CSTD101, CSTD401, CSTD701
Credit Hours: 3; Lecture Hours: 48; Lab Hours: 0
BoK Coverage: CE-SRM 1-7

CSTD802 Computer Architecture
Focusing on the structure, design principles, and other key concepts in computer architecture; design principles and
performance evaluation of computer architecture, parallel technology in timing and space, multicore processor and
multiprocessor system, high performance computing and networks, memory hierarchy architecture for single core
and multicore systems

Prerequisite: CSTD501, CSTD701, CSTD703
Credit Hours: 3; Lecture Hours: 48; Lab Hours: 0
BoK Coverage: CE-CAO 1-2, 10-11 CE-SET 4

CSTD803 Numerical analysis
Numerical computation and error analysis, direct and iteration methods to solve system of linear equations, calculate
Eigen values and Eigen vectors of matrices; function approximation and interpolation method: Lagrange's
interpolation, Newton’s interpolation, subsection low interpolation, and cubic spline interpolation; approximation for
numerical integration and differential; approximation method for solving equations

Prerequisite: MTH101, MTH102, MTH201, MTH202
Credit Hours: 3; Lecture Hours: 48; Lab Hours: 0
BoK Coverage:

CSTD804 Emerging technology on Software
Introduction to the frontier researches of software technology, including system software, data and knowledge
engineering, software engineering, computer aided design technology

Prerequisite:
Credit Hours: 2; Lecture Hours: 32; Lab Hours: 0
BoK Coverage: CE-SET 1-5

CSTD901 Design of Whole Computer System
Practice course on the design and implement of whole computer system—two or three students working together to
design and implement a mini-computer with the basic hardware, operating system, and complier

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 132 of 149

Prerequisite: CSTD701, CSTD702, CSTD703, CSTD801
Credit Hours: 5; Lecture Hours: 20; Lab Hours: 1403
BoK Coverage: CE-SPE 1-12

CSTD1001 Information Security and Network Management

Foundations of cryptography, symmetric cryptography, public key cryptography, Hash algorithms, digital signature,
user authentication technology, network security techniques, structure, and protocol standards for network
management and operations

Prerequisite: CSTD702
Credit Hours: 3; Lecture Hours: 48; Lab Hours: 0
BoK Coverage: CE-SEC 1-11, CE-NWK 8

CSTD1002 Embedded System

Components of embedded system (e.g., embedded processor; flash embedded memory; bus and communication in
embedded systems, sensors, and drivers), power source design, boot process, real time operating systems, driver
design, mid-ware and other embedded software, development, and test methods

Prerequisite: CSTD701, CSTD801
Credit Hours: 3; Lecture Hours: 48; Lab Hours: 0
BoK Coverage: CE-ESY 1-13

CSTD1101 Capstone project for graduation

The capstone project for graduation to ensure that all graduates have significant design experience, as well as
experience with teamwork and modern engineering tools

Prerequisite: None
Credit Hours: 15; Lecture Hours: 32 ; Lab Hours: 4004
BoK Coverage: CE-PPP 1-11

MTHD101: Calculus I

Introduction to the basic knowledge of limit theorem, including functional limit, continuity of function, and the
calculation of limit; includes calculus methods such as derivative and differential, integral, ordinary differential
equation and Improper integrals; series, convergence criteria, convergence domain and uniform convergence of
function series, term-by-term limit, term-by-term summation, term-by-term integral

Prerequisite: None
Credit Hours: 5; Lecture Hours: 80; Lab Hours: 0
BoK Coverage: CE-ACF 1-4

MTHD102: Geometry and Algebra I

One of the basic math courses in higher education, introducing the fundamental knowledge related to geometry,
algebra, and the relationship between these two fields; cover mapping, geometry order, and basic concepts of group,
ring, and field, as well as vectors in geometry spaces, linear space, and inner product space; algebra-related contents
including linear mapping, matrix, concept and properties of determinant, linear equation system, orthogonal matrixes
and similar matrixes

Prerequisite: None
Credit Hours: 4; Lecture Hours: 64; Lab Hours: 0
BoK Coverage: CE-LAL 1-5

MTHD103: Discrete Mathematics I

Logic proposition and propositional calculus, first order predicate logic and predicate calculus, natural formal system
of reasoning in propositional calculus and predicate calculus, as well as, operation and property of set and binary
relation, functions on set and their properties

Prerequisite: None
Credit Hours: 3; Lecture Hours: 48; Lab Hours: 0
BoK Coverage: CE-DSC 1-6

3 Summer assignment. Students must design and implement their own complete computer within five weeks; no other task occurs during this

summer session.
4 In China, undergraduate students must do a capstone project in their last semester that lasts at least 16 weeks and it has 400 lab hours.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 133 of 149

MTHD201: Calculus II

Knowledge related to multivariate functions; derivative, integral, line/surface integrals of the first type, line/surface
integrals of the second type, plane vector field and Green formula, space vector field and Gauss formula, Stokes
formula, path independent integral, linear ordinary differential equation of second order and system of linear
ordinary differential equation of first order

Prerequisite: MTHD101
Credit Hours: 5; Lecture Hours: 80; Lab Hours: 0
BoK Coverage: CE-ACF 1-2, 5-7

MTHD202: Geometry and Algebra II

Quadratic forms, quadratic curve and its categorization, common curved surface, space curve equation, quadratic
surface and its categorizations, as well as, plane orthogonal transformation, plane affine transformation, projection
plane and homogeneous coordinates, projective transformation and projective mapping, vector function and its
calculus, arc length of a curve and Frenet frame

Prerequisite: MTHD102
Credit Hours: 2; Lecture Hours: 32; Lab Hours: 0
BoK Coverage: CE-LAL 1-2, 6-10

MTHD203: Discrete Mathematics II

Graphing and its algebraic representation; path, cycle, and connectivity, as well as, tree, algebraic structure, group,
ring, field, lattice, and Boolean algebra

Prerequisite: MTHD103
Credit Hours: 3; Lecture Hours: 48; Lab Hours: 0
BoK Coverage: CE-DSC 1-2, 7-9

MTHD501: Probability and Statistics

Mathematical descriptions of random phenomenon, focusing on the core concepts of probability and statistics;
probability space, determining the probability of random events, conditional probability and its applications in
probability calculation, statistical independence of random events, random variable and its distribution, quantitative
statistical analysis of random phenomenon, basic methods of statistical analysis and statistical inference using
probability models

Prerequisite: None
Credit Hours: 3; Lecture Hours: 48; Lab Hours: 0
BoK Coverage: CE-PRS 1-9

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 134 of 149

B.8 Curriculum E: Bologna-3 Model

Computer Engineering Program Representative of a First Cycle
Program compatible with the Bologna Declaration

B.8.1 Program Goals and Features

This curriculum model demonstrates a typical program in computer engineering as one might find in first cycle
programs within the European Higher Education Area, the area within which the Bologna arrangements operate.

The Bologna Declaration was signed on the 19th of June 1999 in Bologna, Italy, by ministers from some 29 countries
in charge of higher education. Its purpose was to create a European Higher Education Area (EHEA) that would
facilitate the mobility of students between countries and enhance the quality of educational provision [EHEA].
Essentially, they saw degree structures taking the form of a first cycle bachelor’s degree taking three years and a
second cycle master’s degree taking a further two years, or five years in total. Accompanying these proposals were
requirements about standardizing the numbers of credits within degrees and ensuring comparability across
institutions in the work required of students. As of May 2015, 47 countries and over 4000 higher education
institutions have adopted the Bologna arrangements.

The basis for comparability within Bologna is the European Credit Transfer System (ECTS) and the ECTS credit. In
brief, one academic year counts as 60 ECTS credits, equivalent to 1500-1800 hours of study in all countries.
Typically, a bachelor’s degree requires 180-240 ECTS credits taking 3-4 years, and a master’s degree 90-120 ECTS
credits taking 1-2 years. The related qualifications frameworks depend on learning outcomes; they have become
essential to the Bologna process.

The Bologna framework attempts to connect different educational systems rather than harmonizing them.
Considerable flexibility exists in the Bologna arrangements to facilitate widespread compatibility. The UK, for
instance, has adopted the Bologna arrangements and yet the idea of an honors degree (not present within
Bologna) is dominant, different (but compatible) credit systems and qualification frameworks are often used, and
master’s degree programs often take (a full) 12 months.

The Bologna arrangements accommodate a wide variety of degree programs, many arrangements including
elements such as cultural issues and language studies often for facilitating mobility between countries. This
curriculum example offers guidance on computer engineering degrees for the first cycle, seen essentially as
providing the foundations of computer engineering. Second cycle arrangements are typically more advanced and
they tend to focus on specialization as would be expected of master’s degree programs.

Students desiring intensive study in computer engineering will find this program to be a challenging and rewarding
experience. The curriculum provides a broad foundation in the science and engineering of computers and digital
systems with emphasis on theory, analysis, and design. The curriculum will also develop analytical, computer, and
applied skills that will enable students to analyze, design and test digital and computer systems, architectures,
networks, and processes. Graduates of the program will be able to apply and evaluate various areas of computer
engineering such as applied electronics, digital devices and systems, electromagnetic fields and waves, computer
architectures, systems, and networks. And they will also be equipped to move to a related second cycle or master’s
degree program. Graduates must possess design skills and will have the capacity to apply their accumulated
knowledge to computer systems. The thorough preparation afforded by this computer engineering curriculum
includes the broad education necessary to understand the impact of engineering solutions in a global and societal
context.

A combination of theory, practice, application, and attitudes accompany the construction of each module or
course. The intention is to convey a certain ethos about computer engineering. Especially in the early years of a

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 135 of 149

course, this is an important consideration. Any model curriculum of this kind should contain general aims (or goals)
and specific objectives for the program of study; it should also capture the intended characteristics of its
graduates.

B.8.2 Summary of Requirements

This three-year program assumes that students have completed two semesters of calculus and two semesters of
physics prior to entering the program. These are indicated as prerequisites to various classes in this model.

The introduction of concepts in computer engineering appears in the early years. The justification for this is that
students should sample the discipline they will study, a matter deemed important for motivational purposes. For
the third year, the curriculum includes several optional classes.

In these programs of study, some element of laboratory experience constitutes an integral part of each course in
computer engineering; the purpose of this integration is to reinforce and illustrate the work of the associated
lectures. In some classes, the amount of laboratory work will typically be heavier than in other parts. Accordingly,
we have adopted the following convention:

x where intensive laboratory activity is desirable, a 3-credit class is typically composed of 28 hours of
lectures and 28 hours of laboratory work plus associated recitation time

x where less intensive laboratory activity is desired, then typically 14 hours of laboratory work and 42 hours
of lecture work is required together with the associated recitation hours

The three-year illustration of a computer engineering program contains 30 courses and 90 credit hours of study.
The distribution of credit hours is as follows.

Credit-hours Areas
15* Mathematics
0* Natural science (physics, chemistry)
0 Humanities, social sciences, composition, literature

21 Required computer engineering (CE)
21 Required electrical and computer engineering (ECE)
9 Required software engineering

12 Required computer science (CSC)
6 Technical electives
6 Design project (CE)
0 Free electives

90* TOTAL Credit Hours for Computer Engineering Program Bologna-3.
* Does not include prerequisite credit hours in calculus, physics, and other related college-level

courses taken prior to entering the program.

The illustration allows for electives (options) available in the third year of study. Students may choose two third-
year electives selected from a set of four computer engineering courses (modules). These four third-year electives
are: Computer Graphics, Intelligent Systems and Robotics, Device Development, and Multimedia Systems.

What follows is a representation of a possible curriculum models for a three-year degree program. Following this is
a mapping of courses from the program to the body of knowledge for computer engineering. The courses (or
modules) appear in the Course Summaries, which follows the illustration of the computer engineering curriculum.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 136 of 149

B.8.3 Three-Year Model for Curriculum E

Course Description Credit Course Description Credit

Semester 1 Semester 2

MTHE101 Discrete Structures for Computing 3 MTHE103 Calculus and Geometry 3

MTHE102 Applied Probability and Statistics 3 MTHE104 Linear Algebra 3

CSCE101 Computer and Information Systems 3 CEE101 Concepts in Computer Engineering 3

ELEE101 Foundations of Electronics 3 ELEE102 Digital Circuits I 3

SWEE101 Programming Basics 3 SWEE102 Programming Fundamentals 3

 Total Credit Hours 15 Total Credit Hours 15

Semester 3 Semester 4

MTHE201 Mathematics for Engineers 3 CSCE202
Operating Systems and Net-Centric
Computing

3

CEE201 Networking & Communications 3 CEE203
Professional Issues in Computer
Engineering

3

CSCE201 Analysis and Design of Algorithms 3 ELEE202 Analogue Circuits 3

CEE202 Computer Organization 3 CEE 204 Computer Systems Engineering 3

ELEE201 Digital Circuits II 3 CEE205 Embedded Computer Systems 3

 Total Credit Hours 15 Total Credit Hours 15

Semester 5 Semester 6

CEE301 Individual Project I 3 CEE302 Individual Project II 3

CSCE301
Programming Languages and Syntax
Directed Tools

3 CEE303 Computer Architecture 3

ELEE301 Signals and Systems 3 ELEE302 System Control 3

SWEE301 Software Engineering 3 ELEE303 Digital Signal Processing 3

 Technical Elective (Option A) 3 Technical Elective (Option B) 3

 Total Credit Hours 15 Total Credit Hours 15

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 137 of 149

B.8.4 Mapping of Computer Engineering BoK to Curriculum E

Refer to section B.1.2 for an explanation of this table.

BoK Area

Course

C
A
E

C
A
L

C
A
O

D
I
G

E
S
Y

N
W
K

P
P
P

S
E
C

S
G
P

S
P
E

S
R
M

S
W
D

A
C
F

D
S
C

L
A
L

P
R
S

Minimum Core
BoK Hours

50 30 60 50 40 20 20 20 30 35 20 45 30 30 20 30

CEE101 1-5 1-5

CEE201 1-8

CEE202 1-7

CEE203 1-10

CEE204 6-11 6-10

CEE205 1-12

CEE303 8-11

CSCE101 1-3 1-3 1-4 1-3

CSCE201 1-10

CSCE202 1-3 1-4 1-6

CSCE301 2-5
4-10,

12

ELEE101 1-6

ELEE102 1-7

ELEE201 7-10 8-10

ELEE202 4-8

ELEE301 1-8

ELEE302 7-10

ELEE303 7-8

MTHE101 1-9

MTHE102 1-9

MTHE103 1-7

MTHE104 1-10

MTHE201

SWEE101 1-7

SWEE102 1-8

SWEE301 8-12

Core BoK Units
Covered

1-10 1-8 1-11 1-10 1-12 1-8 1-10 1-11 1-8 1-12 1-6 1-10 1-7 1-9 1-10 1-9

Supplementary
BoK Units

11-
12 10 11 13 9-11 11 9-10 7-8 11-

12 10

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 138 of 149

B.8.5 Curriculum E – Course Summaries

CEE101: Concepts in Computer Engineering

Range of illustrations of the applicability of developments in computer engineering exhibiting the use of hardware
and software systems in a variety of different contexts including simple devices, embedded systems, systems with an
important human computer interface, systems involving computer communications, and systems of a sensitive nature
such as safety critical systems; issues involved in electronics, software, human computer interface, use of tools,
systems, and the engineering dimension

Prerequisites: Two courses in calculus and two courses in physics (achieved before entering the program)
Credit Hours: 3; Lecture Hours: 42; Lab Hours: 14
BoK Coverage: CE-SEC 1-5, CE-SPE 1-5

CEE201: Networking and Communications

Computers and computer communication; problems of security, reliability; speeds, capacity measures, reliability
measures; physical realities and the limitations; wireless possibilities; communications network architectures,
computer network protocols; variants on the basic topologies; local and wide area networks; client server computing;
data integrity and data security, problems, and solutions; performance issues; network management; nature and
special problems of mobile computing

Prerequisites: Two courses in calculus and two courses in physics (achieved before entering the program)
Credit Hours: 3; Lecture Hours: 42; Lab Hours: 14
BoK Coverage: CE-NWK 1-8

CEE202: Computer Organization

The fundamental elements of digital logic and their use in computer construction; register level description of
computer execution and the functional organization of a computer; essential elements of computer architecture;
major functional components of a modern computer system; characteristics of machine codes: instruction formats
and addressing modes; the elements of machine and assembly code programming; memory hierarchy and
organization; interfacing and communication between processor and peripheral devices; experiments provide
laboratory experience in hardware and software to interface memory and peripheral components to a computer
system

Prerequisites: CEE101
Credit Hours: 3; Lecture Hours: 42; Lab Hours: 14
BoK Coverage: CE-CAO 1-7

CEE203: Professional Issues in Computer Engineering

Critical examination of ethical problems associated with computer engineering; discussion of these problems
conducted within the framework of classical philosophical ethical theories; legal and quasi-legal (i.e., policy and
regulative) issues; process of ethical decision-making, privacy and confidentiality, computer crime, professional codes
and responsibilities, professional practice, system security and more generally cyber security, impact of computers on
society

Prerequisites: Second-year standing
Credit Hours 3; Lecture Hours: 42; Lab Hours: 0
BoK Coverage: CE-PPP 1-10

CEE204: Computer Systems Engineering

Approaches to the development of systems in computer engineering; the special problems and the issues; concept of
a life cycle, nature of life cycle models, phases of typical life cycles, quality issues; process and process improvement;
issues of teams, team selection, roles in teams, elements of team work; selection of support tools, standards and
technologies; techniques and approaches associated with the different phases; special problems of design and the
issues associated with tradeoffs, special problem of hardware/software tradeoffs; testing; maintenance; project
management

Prerequisites: CEE101
Credit Hours: 3; Lecture Hours: 28; Lab Hours: 28
BoK Coverage: CE-SEC 6-10, CE-SPE 6-10

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 139 of 149

CEE205: Embedded Computer Systems
Nature of embedded systems, specific problems, special issues; role in computer engineering; embedded
microcontrollers, embedded software; real time systems, problems of timing and scheduling; testing and
performance issues, reliability; low power computing, energy sources, leakage; design methodologies, software tool
support for development of such systems; problems of maintenance and upgrade; networked embedded systems

Prerequisites: Two courses in calculus and two courses in physics
Credit Hours: 3; Lecture Hours: 28; Lab Hours: 28
BoK Coverage: CE-ESY 1-12

CEE301: Individual Project I

Comprehensive individual project spanning two semesters, addressing a significant technical problem under the
guidance of a supervisor; students are expected to demonstrate an ability to apply the disciplined approaches of the
course in addressing the solution to the problem; students produce a final thesis on the work and this together with a
demonstration of the working system will form the assessment

Prerequisites: Third-year standing
Credit Hours: 3; Lecture Hours 42; Lab Hours: 14
BoK Coverage: Project dependent

CEE302: Individual Project II
Continuation of Individual Project I

Prerequisites: Third-year standing
Credit Hours: 3; Lecture Hours: 0; Lab Hours: 42
BoK Coverage: Project dependent

CEE303: Computer Architecture
Design principles associated with modern computer architectures; performance and cost considerations; architectural
features influenced by such features as operating systems and window systems, high level languages, networking,
security considerations; processor implementation strategies, micro-programming, pipelining, CISC and RISC, vector
processors; memory hierarchy, cache, virtual memory organization for high performance machines; special purpose
components and devices; simple demonstrations provide experience in the designs and operations of different types
of computer architecture such as memory architectures, I/O and bus subsystems, special purpose architectures,
parallel processing, and distributed systems; explore hardware and software issues and tradeoffs in the design,
implementation, and simulation of working computer systems

Prerequisites: CEE202
Credit Hours: 3; Lecture Hours: 42; Lab Hours: 14
BoK Coverage: CE-CAO 8-11

CSCE101: Computer and Information Systems
Representation of data of different kinds; elements of machine code and assembly language coding; role and function
of an operating system (including networking, e-mail and distributed systems) and the associated functionality;
programming language level, facilities and libraries; applications including description of the functionality of the
relevant software (word processors, databases, spreadsheets) and their use; human interaction, importance and
relevance of interface software; elements of computer interaction including desirable properties of screen design and
interfaces; fundamentals of the web; use of browsers and search engines in information retrieval; simple web page
construction; illustrations of information servers; search strategies; information storage and retrieval; legal issues of
copyright and intellectual property rights

Prerequisites: First year standing
Credit Hours: 3; Lecture Hours: 42; Lab Hours: 14
BoK Coverage: CE-NWK 1-3, CE-CAL 1-3, CE-SPE 1-4, CE-SRM 1-3

CSCE201: Analysis and Design of Algorithms
Elementary ideas and results on discrete probability; mathematical foundations needed to support measures of
complexity and performance; basic concepts from counting; concepts of graphs and trees; basic strategies that
underpin the design of algorithms; fundamental algorithms for counting, searching, sorting, manipulation of hash
tables, symbol tables, queues, trees, and graphs; distributed algorithms for certain simple tasks; fundamentals of
computability theory; relevance to security; relevance of design and analysis of algorithms to software design and
implementation

Prerequisites: MTHE101, SWEE101
Credit Hours: 3; Lecture Hours: 28; Lab Hours: 28
BoK Coverage: CE-CAL 1-10

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 140 of 149

CSCE202: Operating Systems and Net-Centric Computing

The functionality and role of an operating system; major components; design considerations; layered approach to
the design of an operating system, including the major influences on design; high-level languages, real-time issues,
networking, security, multimedia; file systems, hierarchical design; process management, scheduling strategies;
resource allocation strategies; concurrency, synchronization principles, deadlock avoidance; device drivers and
interfacing; net centric computing; considerations about different platforms and mobility

Prerequisites: CSCE101
Credit Hours: 3; Lecture Hours: 42; Lab Hours: 14
BoK Coverage: CE-NWK 1-3, CE-SEC 1-4, CE-SRM 1-6

CSCE301: Programming Languages and Syntax-Directed Tools
History of the development of languages; different flavors of languages, programming, scripting, mark-up,
specification; language role, characteristics, comparisons; different programming paradigms, significance, main areas
of application, imperative, functional, logic, object-oriented languages; concurrency; aims and objectives of language
design; principles of language design, including limitations; interaction between language design and the translation
process; basic approaches to translation; aims and objectives of translation; major components of translation and
their implementation; library design, separate compilation, design considerations, and implementation

Prerequisites: Two courses in calculus and two courses in physics (achieved before entering the program)
Credit Hours: 3; Lecture Hours: 28; Lab Hours: 28
BoK Coverage: CE-SWD 4-10, 12

ELEE101: Foundations of Electronics
Introduction to basic electrical quantities such as charge, current, voltage, energy, and power; introduction to
classical dynamics, electrostatics, and magnetism; basic laws such as Kirchoff’s law, Ohm’s law, Thevenin’s theorem,
Norton’s theorem; resistive circuits and networks, reactive circuits and networks; capacitance, inductance, damping,
transformers; electrical properties of materials; diodes and diode circuits; MOS transistors and biasing, MOS logic
families

Prerequisites: Two courses in calculus and two courses in physics (achieved before entering the program)
Credit Hours: 3; Lecture Hours: 42; Lab Hours: 14
BoK Coverage: CE-CAE 1-6

ELEE102: Digital Circuits I
Basic switching theory, combinational logic circuits; modular design of combinational circuits; memory elements;
sequential logic circuits; digital systems design; understanding and analysis of the basic types of circuits and electrical
networks as used in electronics, communications, and power applications

Prerequisites: Two courses in calculus and two courses in physics (achieved before entering the program)
Credit Hours: 3; Lecture Hours: 42; Lab Hours: 14
BoK Coverage: CE-DIG 1-7

ELEE201: Digital Circuits II
Review of MOS families and circuits; bipolar transistors and logic families; digital parameters and issues; storage
elements; interfacing logic families and standard busses; fundamentals of digital systems design including state
diagrams; modeling and simulation, use of relevant tools; use of CAD tools; design carried out for testability and for
other such characteristics; problems of verification and validation; formal verification

Prerequisites: ELEE102
Credit Hours: 3; Lecture Hours: 28; Lab Hours: 28
BoK Coverage: CE-DIG 8-10, CE-CAE 7-10

ELEE202: Analog Circuits
Data conversion issues, A/D and D/A circuits; electronic voltage and current sources; low and high pass filters,
Chebyshev and Butterworth approximations, Sallen-Key; negative feedback; operational amplifier circuits;
introduction to bipolar junction transistors

Prerequisites: ELEE201
Credit Hours: 3; Lecture Hours: 42; Lab Hours: 14
BoK Coverage: CE-CAE 4-8

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 141 of 149

ELEE301: Signals and Systems
The concept of signals and systems, both continuous and discrete-time; signal manipulation; signal symmetry and
orthogonality; system linearity and time invariants; system impulse response and step response; frequency response,
sinusoidal analysis, convolution, and correlation; sampling in time and quantizing in amplitude; Laplace transform;
Fourier analysis, filters; analysis of discrete time signals and systems using z-transforms; inverse transformation
procedures

Prerequisites: ELEE201, ELEE202
Credit Hours: 3; Lecture Hours: 42; Lab Hours: 14
BoK Coverage: CE-SGP 1-6

ELEE302: System Control

Review of complex numbers, superposition, compound systems; frequency domain representation; Laplace transform
representation; system representation in time domain; first and second order systems; damping

Prerequisites: ELEE301
Credit Hours: 3; Lecture Hours: 42; Lab Hours: 14
BoK Coverage: CE-DIG 7-10

ELEE303: Digital Signal Processing
Purpose of digital signal processing (DSP), theories and concepts, role of DSP in the context of computer engineering;
analysis of digital spectra; application of discrete Fourier transforms, convolution types; filtering, digital filtering;
transforms; discrete time signals; sampling issues; applications to include image processing, audio processing; use of
relevant software tools

Prerequisites: ELEE301
Credit Hours: 3; Lecture Hours: 42; Lab Hours: 14
BoK Coverage: CE-SGP 7-8

MTHE101: Discrete Structures for Computing

Basic mathematical notions of sets, relations, and functions, and operations involving the same; logic and its role,
propositional logic, truth tables, issues of equivalence, limitations; predicate logic, its power and its limitations,
relevance in the context of computer engineering; proof techniques; commonly occurring mathematical concepts
such as graphs, trees; representational issues; relevance of these to computer engineering; recursion; counting;
combinatorics; relevance of these ideas to computer engineering

Prerequisites: One course in calculus (achieved before entering the program)
Credit Hours: 3; Lecture Hours: 42; Lab Hours: 0
BoK Coverage: CE-DSC 1-9

MTHE102: Applied Probability and Statistics
Randomness, finite probability space, probability measure, events; conditional probability, independence, Bayes’
theorem; discrete random variables; binomial and Poisson distributions; concepts of mean and variance; continuous
random variables; exponential and normal distribution, probability density functions, calculation of mean and
variance; central limit theorem and the implications for the normal distribution; purpose and the nature of sampling;
nature of estimates, point estimates, interval estimates; maximum likelihood principle approach, least squares
approach; confidence intervals; estimates for one or two samples; development of models and associated
hypotheses; nature of hypothesis formulation, null and alternate hypotheses, testing hypotheses; criteria for
acceptance of hypothesis t-test, chi-squared test; correlation and regression; Markov processes, discrete time
systems and continuous time systems; packages supporting data analysis

Prerequisites: Two courses in calculus (achieved before entering the program)
Credit Hours: 3; Lecture Hours: 42; Lab Hours: 14
BoK Coverage: CE-PRS 1-9

MTHE103: Calculus and Geometry

Review of basic differential and integral calculus; techniques and approaches; single and double integrals; simple
differential equations and their solutions; complex numbers; vector calculus; graphical concepts supported by
appropriate graphics packages

Prerequisites: Two courses in calculus (achieved before entering the program)
Credit Hours: 3; Lecture Hours: 42; Lab Hours: 14
BoK Coverage: CE-ACF 1-7

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 142 of 149

MTHE104: Linear Algebra
Bases, vector spaces and orthogonality; matrix representation of linear systems; matrix inversion; linear
transformations; solution of linear systems; solution of non-linear systems; determinants; eigenvectors and
eigenvalues; use of appropriate packages for linear algebra

Prerequisites: MTHE101
Credit Hours: 3; Lecture Hours: 42; Lab Hours: 14
BoK Coverage: CE-LAL 1-10

MTHE201: Mathematics for Engineers

Introduction to numerical methods and their uses in engineering; simulation and modeling: basic principles and
techniques; applications in engineering; use of tools in support of engineering simulation and modeling; queuing
theory including system simulation and modeling, queuing methods; use of appropriate statistical packages; complex
numbers; Fourier transforms

Prerequisites: MTHE102, MTHE103, MTHE104
Credit Hours: 3; Lecture Hours: 42; Lab Hours: 14
BoK Coverage: Not applicable

SWEE101: Programming Basics

Introduction to the concepts of requirements and specification; basic concepts associated with programming
languages and their translation; elementary programming, primitive data types, operations, simple language
constructs; simple algorithms and problem solving involving counting, scanning elements, selecting elements (such as
maxima and minima), iteration; use of arrays, strings and simple pre-defined classes; routines or methods as a
fundamental abstraction mechanism; principles associated with and the design and construction of these; use of
simple libraries, classes; simple aspects of quality of software; the related activities of software testing and validation

Prerequisites: First year standing
Credit Hours: 3; Lecture Hours: 28; Lab Hours: 28
BoK Coverage: CE-SWD 1-7

SWEE102: Programming Fundamentals
Concepts from predicate logic; ideas from object-oriented programming, methods, classes, information hiding, and
inheritance; fundamental algorithms, sorting and searching; fundamental data structures, linked data structures, user
defined classes; concept of recursion, benefits, and problems; exception handling; using APIs; simple graphics
programming; concept of software design

Prerequisites: SWEE101
Credit Hours: 3; Lecture Hours: 28; Lab Hours: 28
BoK Coverage: CE-CAL 1-8

SWEE301: Software Engineering
Software engineering, role of software engineers; evaluation of software and principles thereof, software lifecycle
models; notions of requirements, specification, design implementation; main techniques; important of maintenance;
quality concerns at all stages of the software development process; concept of process; software process maturity
models; software process improvement; aspects of software engineering, important benefits of and good practice in
software re-use; verification and validation; the use of metrics; selection of and use of tools; the nature and structure
of teams; human computer interface as a software engineering activity; related life cycles; standards; use of relevant
libraries; importance of practical activity; group activity as an important skill for these engineers

Prerequisites: SWEE101, SWEE102
Credit Hours: 3; Lecture Hours: 28; Lab Hours: 28
BoK Coverage: CE-SWD 8-12

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 143 of 149

Appendix C

Computer Engineering Laboratories

This appendix to the Computing Curricula - Computer Engineering (CE2016) report describes possible laboratory
configurations useful for developing modern student laboratory experiences for computer engineering programs.
This appendix reflects the discussion presented in sections 4.4 and 6.3.3 of this report. The steering committee
does not endorse any product or manufacturer. The items listed here only serve as a guide in developing student
experiences in a laboratory environment for computer engineering programs.

C.1 Circuits and Electronics

Typical Description: Experimental use of laboratory instruments; voltage, current, impedance, frequency, and
waveform measurements; elements of circuit modeling and design; design, construction, and simulation of filters;
components of periodic signals.

Typical Configuration:
 A one- or two-student workstation includes:

x platform/breadboard for circuit construction
x triple-output DC power supply
x two-channel mixed-signal oscilloscope
x multimeter
x function/arbitrary waveform generator
x computer with circuit-level modeling and simulation tools and instrumentation control

The test instruments may be standalone, integrated into the platform/breadboard, or personal instrumentation
owned by the department or the students and used with personal computers.

Vendors for this equipment in 2016 include Agilent Technologies, National Instruments, Tektronix, Fluke, Hewlett-
Packard, and others.

Typical Offering: Lower level; one three-hour laboratory experience per week.

C.2 Computer Architecture Design

Typical Description: Techniques of design, simulation, and evaluation of a simple datapath and control using a
hardware description language (e.g., VHDL or Verilog); assembly language programming on an emulated 32- or 64-
bit microprocessor; implementation of an RTL model of an instruction set architecture in an FPGA.

Typical Configuration:

x computer with VHDL and/or Verilog modeling and simulation tools
x FPGA development board
x FPGA development suite to support the selected FPGA development board
x oscilloscope and logic analyzer to examine FPGA board outputs

Typical Offering: Lower level; one two-hour laboratory experience per week.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 144 of 149

C.3 Digital Logic Design

Typical Description: Experiments involving digital circuits of increasing complexity; combinational small-scale
integration (SSI) and medium-scale integration (MSI) circuits; arithmetic and sequential circuits; analysis and
synthesis of state machines.

Typical Configuration:

x breadboard for constructing digital circuits from SSI/MSI components
x oscilloscope and logic analyzer (separate instruments or integrated into the breadboard)
x FPGA development board
x computer with VHDL/Verilog modeling and simulation tools and FPGA development suite

Typical Offering: Lower level; one three-hour laboratory experience per week.

C.4 Digital Signal Processing

Typical Description: Engage in hardware and software experiments showing digital signal processing principles and
techniques; programming on DSP chips; real-time signal processing algorithms.

Typical Configuration:

x digital signal processor (DSP) development board/kit
x computer with DSP software development tools
x mixed-signal oscilloscope
x logic analyzer
x vector signal generator
x spectrum analyzer

Vendors for this equipment in 2016 include Texas Instruments, ARM, Tektronix, Agilent, Rhode & Schwarz, and
others.

Typical Offering: Upper level; one three-hour laboratory experience per week.

C.5 Digital Logic and System Design

Typical Description: Hierarchical, modular design of digital systems of increasing complexity; design, analysis, and
synthesis of state machines; computer-aided digital system modeling, simulation, analysis, and synthesis; design
implementation with programmable logic devices and/or FPGAs.

Typical Configuration:

x computer to host design tools
x VHDL and/or Verilog modeling and simulation tools
x FPGA development board
x proto board for interfacing peripheral components with the FPGA
x FPGA development suite to support the selected FPGA development board
x embedded processor soft core, or FPGA with an embedded processor hard core
x oscilloscope
x logic analyzer
x test pattern generator to provide FPGA inputs

Vendors for this equipment in 2016 include Digilent, Xilinx, Aldec, Altera, Tektronix, and others.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 145 of 149

Typical Offering: Upper level; one three-hour laboratory experience per week.

C.6 Embedded Systems

Typical Description: Experiments involving interfacing memory and peripheral devices to a microcomputer; design
of software to control peripheral devices; integration of computer hardware and software for system control.

Typical Configuration:

x microcontroller development board/kit
x computer for hosting software tools
x integrated development environment for the selected microcontroller
x libraries of software modules to support selected peripheral devices
x powered breadboard for interfacing peripheral devices to the microcontroller
x oscilloscope
x logic analyzer
x multimeter
x triple output DC power supply

Vendors for this equipment in 2016 include ST Microelectronics, Digilent, Keil, Agilent, and others.

Typical Offering: Lower level; one two-hour laboratory experience per week.

C.7 Engineering Introduction

Typical Description: Basic engineering skills and practice; students learn the basics of circuits, DC motors, and
wireless communication; a design project involving some aspect of computer engineering (e.g., a radio-controlled
car) culminates the experience; focus is on engineering design, teamwork, communication skills, and other related
activities. This is often taught as a multi-disciplinary course.

Typical Configuration: Varies, based on the design project and orientation of the course.

Typical Offering: Lower level; one two-hour laboratory experience per week.

C.8 Networking

Typical Description: Design and implementation of information networks based on requirements and devices such
as routers and switches; applications of information networks for data, audio, and video communications;
transmission media, modulation, error control, flow control, LANs, and Ethernet protocols; experiments on data
communication signaling and error control; data transfer and software aspects of networks common in computing;
implementation of servers and clients using various protocols.

Typical Configuration:

x multiple personal computers, to be integrated into a network
x network isolated from the institutional network
x configurable routers and/or switches
x network analyzer and/or software tools to measure network traffic and conditions

Vendors for this equipment in 2016 include Emona, Cisco, and others.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 146 of 149

Typical Offering: Upper level; one three-hour laboratory experience per week.

C.9 Software Design

Typical Description: Experience in software construction; testing, debugging, and associated tools; configuration
management; low-level file and device I/O; systems and event-driven programming; languages to include C, C++,
C#, Python, Ruby, Java and/or other appropriate languages in support of the computer engineering program.

Typical Configuration:

x modern computing platforms running widely-used modern operating systems
x IDE to manage project files and libraries
x compiler(s) and linker for language(s) used in the course
x source-level debugger
x documentation, presentation, file transfer, and other support tools
x mathematics package for analysis, simulation, and modeling
x database software

Typical Offering: Lower level; one two-hour laboratory experience per week.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 147 of 149

Appendix D

Acknowledgements and Dissemination

Throughout the development of this report, comments and suggestions were solicited from the global computer
engineering community. This was accomplished through two principal methods.

First, members of the steering committee and others associated with the development effort presented papers,
panel sessions, and workshops at numerous conferences. Workshop participants provided specific feedback, while
attendees in the other sessions were encouraged to provide feedback at that time or by contacting committee
members. It is estimated that collectively over five hundred people attended sessions at the events shown in
Table D.1 and many have provided input to the report.

Two draft versions of the report were posted online with a web-based form for individuals to provide comments.
Email invitations to review the document were sent to members of relevant professional societies, including ACM
SIGCSE, the IEEE Education Society, and other organization lists.

The steering committee is very appreciative of all comments and suggestions received during this process. When
providing comments and suggestions, the following individuals provided their names and so are specifically
acknowledged here.

Jose L. Aguilar C., Universidad de Los Andes, Venezuela and Ecuador
Xiaoying Bai, Tsinghua University, Beijing, China
Olga I. Bogoiavlenskaia, Petrozavodsk State University, Karelia, Russia
Iurii A. Bogoiavlenskii, Petrozavodsk State University, Karelia, Russia
Tarek El-Bawab, IEEE Communications Society, USA
Manuel Gericota, School of Engineering-Polytechnic of Porto, Portugal
Jorge Guerra, Universidad Nacional Mayor de San Marcos (UNMSM), Peru
Wilfrido Inchaustti, Universidad Nacional Mayor de San Marcos (UNMSM), Paraguay
Qin Leihua, Huazhong University of Science and Technology, Wuhan, China
Zhang Liang, Fudan University, Shanghai, China
Doug Lyon, Fairfield University, Fairfield, Connecticut, USA
Clive Maynard, Curtin University, Perth, Australia
Doug Myers, Curtin University, Perth, Australia
Richard Perry, Villanova University, Villanova, Pennsylvania, USA
Carlos Ribeiro, Instituto Superior Técnico, Universidade de Lisboa, Portugal
Cristian Rusu, Pontificia Universidad Catolica de Valparaiso, Chile
Mitch Thornton, Southern Methodist University, Dallas, Texas, USA
Murali Varanasi, University of North Texas, Denton, Texas, USA
Timothy Wilson, Embry-Riddle Aeronautical University, Daytona Beach, Florida, USA
Tang Yuhua, National University of Defense Technology, Changsha, China
Wang Zhiying, National University of Defense Technology, Changsha, China

The CE2016 steering committee thanks these individuals for their comments and suggestions in the development
of this report.

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 148 of 149

Table D.1. CE2016 Presentation Events

Year Dates Event Location

2012
February 29-

March 3
43rd ACM Technical Symposium on Computer Science
Education

Raleigh,
North Carolina, USA

2012 October 3-6 2012 Frontiers in Education (FIE) Conference
Seattle,

Washington USA

2013 June 23-26 2013 ASEE Annual Conference and exposition
Atlanta,

Georgia, USA

2013 October 23-26 2013 Frontiers in Education (FIE) Conference
Oklahoma City,
Oklahoma, USA

2014 June 15-18 2014 ASEE Annual Conference and exposition
Indianapolis,
Indiana, USA

2014 October 22-25 2014 Frontiers in Education (FIE) Conference
Madrid,

Spain

2014 November 3-7
IV Simpósio Brasileiro de Engenharia de Sistemas
Computacionais

Manaus,
AM, Brazil

2014 December 8-10
IEEE International Conference on Teaching, Assessment,
and Learning for Engineering (TALE 2014)

Wellington,
New Zealand

2015 March 18-20
IEEE EDUCON Global Engineering Education Conference
(EduCon 2015)

Tallinn,
Estonia

2015 April 23-24
13th China International Software Cooperation Conference
(CHINASOFT 2015)

Chengdu,
China

2015 April 25 Sichuan University
Chengdu,

China

2015 April 25-26 Beijing Computer Education Research Association
Beijing,
China

2015 June 14-17 2015 ASEE Annual Conference and exposition
Seattle,

Washington, USA

2015 October 21-24 2015 Frontiers in Education (FIE) Conference
El Paso,

Texas, USA

2015 November 27-29 University Fundamental Course Forum (UFCF)
Tianjin,
China

2015 December 1-2 Xi'an Jiaotong University
Xi'an,
China

2016 March 18-22
2016 Electrical and Computer Engineering Department
Heads Association (ECEDHA) Annual Conference

La Jolla,
California, USA

2016 October 12-15 2016 Frontiers in Education (FIE) Conference
Erie,

Pennsylvania USA

Computer Engineering 2016 Final Curriculum Report
CE2016 2016 December 15

Page 149 of 149

References

[ABET, 2016] ABET Evaluation Criteria; http://www.abet.org/accreditation/accreditation-criteria/criteria-for-accrediting-

engineering-programs-2016-2017/.
[ACM, 1992] ACM Code of Ethics and Professional Conduct, adopted 16 October 1992; https://www.acm.org/about-acm/acm-
code-of-ethics-and-professional-conduct.
[ACM/IEEECS, 1999] ACM and IEEE Computer Society, Software Engineering Code of Ethics and Professional Practice, 1999;

https://www.computer.org/cms/Publications/code-of-ethics.pdf.
[ACM/IEEECS, 2008a] Computer Science Curriculum 2008: An Interim Revision of CS2001;

http://www.acm.org/education/CS2008.pdf
[ACM/IEEECS, 2008b] Information Technology 2008: Curriculum Guidelines for Undergraduate Degree Programs in

Information Technology, November 2008; http://www.acm.org//education/curricula/IT2008%20Curriculum.pdf.
[ACM/IEEECS, 2013] Computer Science Curricula 2013: Curriculum Guidelines for Undergraduate Degree Programs in

Computer Science, December 20, 2013; http://www.acm.org/education/CS2013-final-report.pdf.
[ACM/IEEECS, 2015] Software Engineering 2014: Curriculum Guidelines for Undergraduate Degree Programs in Software

Engineering, February 23, 2015; http://www.acm.org/binaries/content/assets/education/se2014.pdf.
[ACM/AIS, 2010] IS 2010: Curriculum Guidelines for Undergraduate Degree Programs in Information Systems, 2010;

http://www.acm.org/education/curricula/IS%202010%20ACM%20final.pdf.
[ACM/IEEECS, 2004] Software Engineering 2004, Curriculum Guidelines for Undergraduate Degree Programs in Software

Engineering, IEEE Computer Society Press and ACM Press, August 23, 2004.
[AITP] Association of Information Technology Professionals (AITP), Code of Ethics and Standards of Conduct;

http://c.ymcdn.com/sites/www.aitp.org/resource/resmgr/forms/code_of_ethics.pdf.
[AITP, 2002] Association of Information Technology Professionals, Code of Ethics, 2002;

http://www.aitp.org/?page=EthicsConduct.
[ALIBAB] Alibabaoglan; http://www.alibabaoglan.com/blog/gartners-top-predictions-till-2020/.
[Bloom 1956] B.S. Bloom, ed., Taxonomy of Educational Objectives: The Classification of Educational Goals: Handbook I,

Cognitive Domain, Longmans, 1956.
[BLS] Bureau of Labor Statistics; http://www.bls.gov/emp/ep_table_102.htm.
[CHIN] China Gorman; http://chinagorman.com/2013/04/16/you-think-we-have-skills-shortages-now-lets-talk-in-2020/.
[CC91] Computing Curricula 1991; http://dl.acm.org/citation.cfm?doid=103701.103710.
[DICT] Dictionary.com; http://dictionary.reference.com/browse/soft+skills.
[Dublin] Dublin Accord; http://www.ieagreements.org/dublin/.
[EHEA] European Commission/EACEA/Eurydice, The European Higher Education Area in 2015: Bologna Process

Implementation Report, Luxembourg: Publications Office of the European Union.
[EngC] Engineering Council; www.engc.org.uk.
[FEANI] FEANI-European Federation of National Engineering Associations; http://www.feani.org.
[IEEE] IEEE, Code of Ethics; http://www.ieee.org/about/corporate/governance/p7-8.html.
[IEEE, 1990] IEEE Code of Ethics, August 1990;

http://ewh.ieee.org/cmte/substations/posted_documents/ieee_codeofethics.pdf.
[IFIP, 1998] Harmonization of Professional Standards (Draft Version), October 1998;

http://www.ifip.org/minutes/C99/C99_harmonization.htm.
[IRPE] International Register of Professional Engineers, http://ncees.org/records/international-registry/.
[ITEEA] International Technology and Engineering Educators Association; http://www.iteea.org/.
[INVEST] Investopedia; http://www.investopedia.com/terms/s/soft-skills.asp.
[NSPE, 2003] National Society of Professional Engineers, NSPE Code of Ethics for Engineers, 2003;

https://www.nspe.org/resources/ethics/code-ethics.
[OVERVIEW] Computing Curricula 2005, The Overview Report; http://www.acm.org/education/education/curric_vols/CC2005-

March06Final.pdf
[SBS] Subject benchmark statement: Masters degrees in Computing 2011, The Quality Assurance Agency for Higher Education.
[SEEPP] Software Engineering Ethics and Professional Practices (SEEPP), Code of Ethics; https://www.acm.org/about/se-code.
[Seoul] Seoul Accord; http://www.seoulaccord.org/.
[SIGCAS] Special Interest Group on Computers and Society (SIGCAS); (ACM) http://www.sigcas.org/.
[SSIT] Society on Social Implications of Technology (SSIT) of IEEE; http://ieeessit.org/.
[Sydney] Sydney Accord; http://www.ieagreements.org/sydney/.
[Washington] Washington Accord; http://www.ieagreements.org/Washington-Accord.

http://www.feani.org/

