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Neural Modeling of Flow Rendering Effectiveness
DANIEL PINEO and COLIN WARE, University of New Hampshire
SEAN FOGARTY, University of Illinois at Urbana-Champaign

It has been previously proposed that understanding the mechanisms of contour perception can provide a theory for why some

flow-rendering methods allow for better judgments of advection pathways than others. In the present article, we develop this
theory through a numerical model of the primary visual cortex of the brain (Visual Area 1) where contour enhancement is

understood to occur according to most neurological theories. We apply a two-stage model of contour perception to various visual

representations of flow fields evaluated using the advection task of Laidlaw et al. [2001]. In the first stage, contour enhancement
is modeled based on Li’s cortical model [Li 1998]. In the second stage, a model of streamline tracing is proposed, designed to

support the advection task. We examine the predictive power of the model by comparing its performance to that of human

subjects on the advection task with four different visualizations. The results show the same overall pattern for humans and the
model. In both cases, the best performance was obtained with an aligned streamline-based method, which tied with a LIC-based

method. Using a regular or jittered grid of arrows produced worse results. The model yields insights into the relative strengths

of different flow visualization methods for the task of visualizing advection pathways.
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1. INTRODUCTION

Many techniques for 2D flow visualization have been developed and applied. These include grids of lit-
tle arrows, still the most common for many applications, equally spaced streamlines [Turk and Banks
1996; Jobard and Lefer 1997], and line integral convolution (LIC) [Cabral and Leedom 1993]. But
which is best and why? Laidlaw et al. [2001] showed that the “which is best” question can be answered
by means of user studies in which participants are asked to carry out tasks such as tracing advec-
tion pathways or finding critical points in the flow field. (Note: An advection pathway is the same as
a streamline in a steady flow field.) Ware [2008] proposed that the “why” question may be answered
through the application of recent theories of the way contours in the environment are processed in the
visual cortex of the brain. But Ware only provided a descriptive sketch with minimal detail and no
formal expression. In the present paper, we show, through a numerical model of neural processing in
the cortex, how the theory predicts which methods will be best for an advection path tracing task.
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Table I. Multivariate Changes in Image Quality Attributes, the Relationship of Psychometric and
Objective Image Quality Estimations and the IBQ Approach

PROBLEM Estimating the performance when image quality changes are multivariate
APPROACH Objective measurements Subjective measurements

IBQ approach Psychometric approach
GOAL Objective and computa-

tional measures for de-
scribing the changes in
the images

Definition of subjectively
crucial image quality
characteristics

The amount of change in either the
overall quality or a single attribute

QUESTION What changes physically? What matters for the ob-
server?

How big is the perceived change?

The IBQ approach can help to determine the subjectively crucial characteristics of an image and therefore to give weights to objective
and computational measures.

1.1 The IBQ Approach in Image Quality Estimation

The IBQ approach combined with psychometric methods has proven suitable, especially for testing
the performance of imaging devices or their components and then returning this quality information
to the product development or evaluation stages. When the subjective changes in image quality are
multivariate, the technical parameters changing in the test image are unknown or difficult to compute.
However, the IBQ approach can be used to determine the subjectively important quality dimensions
with a wide range of natural image material related to changes caused by different devices or their
components. In order to tune the image-processing components for optimal performance, it is important
to know what the subjectively crucial characteristics that change in the perceived image quality are as
a function of the tuning parameters, or simply for different components. Table I describes the problems
caused by multivariate changes in image quality and offers suggestions of how to approach them by
using different measurement methods that complement each other. The IBQ approach can complement
the psychometric approaches and objective measurements by defining the subjective meaning of image
quality attributes and characteristics; in other words, it reveals how important they are for the overall
perceived quality. This information can then be used as guidance in tuning, and no complex models are
needed in order to understand the relation between objective measures and subjective quality ratings.

Our basic rational is as follows. Tracing an advection pathway for a particle dropped in a flow field
is a perceptual task that can be carried out with the aid of a visual representation of the flow. The task
requires that an individual attempts to trace a continuous contour from some designated starting point
in the flow until some terminating condition is realized. This terminating condition might be the edge
of the flow field or the crossing of some designated boundary. If we can produce a neurologically plau-
sible model of contour perception then this may be the basis of a rigorous theory of flow visualization
efficiency.

Identify. Characteristics of an object.
Locate. Absolute or relative position.
Distinguish. Recognize as the same or different.
Categorize. Classify according to some property (e.g., color, position, or shape).
Cluster. Group same or related objects together.
Distribution. Describe the overall pattern.
Rank. Order objects of like types.
Compare. Evaluate different objects with each other.
Associate. Join in a relationship.
Correlate. A direct connection.
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1.2 Conditions

The reproduction of the gestures was performed in the presence or absence of visual and auditory
feedback, resulting in four (2 × 2) conditions.

(1) Visual and auditory feedback (V+A).
(2) Visual feedback, no auditory feedback (V).
(3) Auditory feedback, no visual feedback (A).
(4) No visual or auditory feedback (None).

The order of the four conditions was randomized across participants.

—when + where⇒ what: State the properties of an object or objects at a certain time, or set of times,
and a certain place, or set of places.

—when + what⇒ where: State the location or set of locations.
—where + what⇒ when: State the time or set of times.

When conducting a user study, the goal for the study is to measure the suitability of the visualization
in some sense. What is actually measured is a fundamental question that we believe can be handled by
using the concepts of effectiveness, efficiency, and satisfaction. These three concepts are derived from
the ISO standard of usability 9241-11.

Extent to which a product can be used by specified users to achieve specified goals with
effectiveness, efficiency, and satisfaction in a specified context of use.

The mechanisms of contour perception have been studied by psychologists for at least 80 years,
starting with the Gestalt psychologists. A major breakthrough occurred with the work of Hubel and
Wiesel [1962; 1968] and from that time, neurological theories of contour perception developed. In this
article, we show that a model of neural processing in the visual cortex can be used to predict which flow
representation methods will be better. Our model has two stages. The first is a contour enhancement
model. Contour enhancement is achieved through lateral connections between nearby local edge detec-
tors. This produces a neural map in which continuous contours have an enhanced representation. The
model or cortical processing we chose to apply is adapted from Li [1998]. The second stage is a contour
integration model. This represents a higher level cognitive process whereby a pathway is traced.

THEOREM 1.1. For a video sequence of n frames, an optimal approach based on dynamic program-
ming can retrieve all levels of key frames together with their temporal boundaries in O(n4) times.

We apply the model to a set of 2D flow visualization methods that were previously studied by Laidlaw
et al. [2001]. This allows us to carry out a qualitative comparison between the model and how humans
actually performed. We evaluated the model against human performance in an experiment in which
humans and the model performed the same task.

Our article is organized as follows. First we summarize what is known about the cortical processing
of contours and introduce Li’s [1998] model of the cortex. Next we show how a slightly modified version
of Li’s model differentially enhances various flow rendering methods. Following this, we develop a
perceptual model of advection tracing and show how it predicts different outcomes for an advection
path-tracing task based on the prior work of Laidlaw et al. [2001]. Finally we discuss how this work
relates to other work that has applied perceptual modeling to data visualization and suggest other
uses of the general method.
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Fig. 1. Neurons are arranged in V1 in a column architecture. Neurons in a particular column respond preferentially to the
same edge orientation. Moving across the cortex (by a minute amount) yields columns responding to edges having different
orientations. A hypercolumn is a section of cortex that represents a complete set of orientations for a particular location in
space.

2. CORTICAL PROCESSING OF CONTOURS

Visual information passes along the optic nerve from the retina of the eye where it is relayed, via a
set of synaptic junctions in the midbrain lateral geniculate nucleus, to the primary visual cortex at the
back or the brain (Visual Area 1 or V1). It has been known since the Hubel and Wiesel’s work in the
60s that the visual cortex contains billions of neurons that are sensitive to oriented edges and contours
in the light falling on the retina. Such neurons have localized receptive fields each responding to the
orientation information contained within the light imaged in a small patch of retina. A widely used
mathematical model of a V1 neuron’s receptive field is the Gabor function [Daugman 1985]:

Gabor(u, v, λ, θ, φ, σ, γ) = e−
u′2+γ2v′2

2σ2 cos(2π
u′

λ
+ φ). (1)

Hubel and Wiesel [1962; 1968] found that neurons responding to similar orientations were clustered
together in a structure they called a column which extended from the surface of the visual cortex to
the white matter (see Figure 1). Later, they and other researchers discovered hypercolumn structures
consisting of thousands of neurons all responding to the same area of visual space and selecting for a
range of orientations. Overall, V1 contains a topographic map of the visual field having the property
that every part of the retinal image is processed in parallel for all orientations. These orientation
selective neurons have provided the basis for all subsequent theories of contour and edge detection.

There remains the problem of how the output of orientation sensitive neurons, each responding to
different parts of a visual contour, becomes combined to represent the whole contour. Part of the so-
lution appears to be a contour enhancement mechanism. Field et al. [1993] examined the human’s
ability to perceive a contour composed of discrete oriented elements. They placed a contour composed
of separated Gabor patches, among a field of randomly orientated Gabor patches. Contours were de-
tected when the patches were smoothly aligned. They were not detected when there was misalignment.
This work suggests that there is some manner of lateral coupling among the visual elements involved
in perceiving the Gabor patches in the contour. These researchers have suggested that similarly ori-
ented aligned contours mutually excite one another, while they inhibit other neurons that are nearby
(Figure 2).
ACM Transactions on Applied Perception, Vol. 2, No. 3, Article 1, Publication date: May 2010.
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Fig. 2. Neurons whose receptive fields are aligned along a continuous contour mutually reinforce each other. They inhibit
nearby neurons with a similar orientation sensitivity.

3. LI’S V1 MODEL

Based on the observed organization of the neurons in the visual cortex by Hubel and Wiesel [1962;
1968] and the experimental evidence by Field et al. [1993], Zhaoping Li constructed a simplified model
of the behavior of V1 neurons and examined the model’s ability to integrate contours across multiple
V1 neurons. The model is introduced briefly here, and described in more detail in Li [1998]. In Li’s
model, the cortex is approximated by a set of hypercolumns arranged in a hexagonal grid. Each hexag-
onal cell has 12 orientation-selective neuron pairs oriented in 15-degree increments. One of the main
simplifications embodied in Li’s model is that it fails to incorporate the way the mammalian visual
systems scales with respect to the fovea. Real neural architectures have much smaller receptive fields
near the fovea at the center of vision than at the edges of the visual field. The neurons in each hex
cell were grouped into excitatory and inhibitory pairs responding to an edge of a particular orientation
at that location. Thus there were a total of 24 neurons per cell. The firing rates of both the inhibitory
and excitatory neurons were modeled with real values. The neuron pairs affected neighboring neu-
ron pairs via a transfer function that depended on the alignment of the edge selectivity orientations.
Neuron pairs that were aligned with one another exhibited an excitatory effect on each other, while
pairs that were not aligned inhibited each other. Finally, Li’s model also contains feedback pathways
for higher-level visual areas to influence individual neurons.

In our implementation, the mapping of the hexagonal grid to the image space was such that the hex
centers were separated by 10 pixels. For the V1 neuron response, we used the Gabor function (Eq. (1))
with a wavelength, λ, of 21 pixels, a σ of 7 pixels, and an aspect ratio, γ, of 1.

4. STREAMLINE TRACING ALGORITHM

Laidlaw et al. [2001] compared the effectiveness of visualization techniques by presenting test subjects
with the task of estimating where a particle placed in the center of a flow field would exit a circle.
Six different flow-field visualization methods were assessed by comparing the difference between the
actual exit numerically calculated and the estimation of the exit by the human subjects. Laidlaw et al.’s
experiment was carried out on humans but, in our work, we apply this evaluation technique to humans
as well as to our model of the human visual system and use a streamline tracing algorithm to trace
the path of the particle.

We use the term streamline tracing to describe the higher level process that must exist for people
to judge a streamline pathway. We call it streamline tracing because the task seems to require the
user to make a series of judgments, starting at the center, whereby the path of a particle dropped
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in the center is integrated in a stepwise pattern to the edge of the field. Though many algorithms
exist in the machine vision literature for contour tracing, we found these to be inappropriate for use
in this application. Contour tracing algorithms are generally designed to trace out the boundary of
some shape but a streamline tracing algorithm must also be able able to produce a streamline in a
field of disconnected contours, such as is the case with the regular arrows. The streamline to be traced
will often not follow a visible contour but instead be locate between contours, and will sometimes pass
through areas devoid of visual elements. Thus we developed a specialized algorithm that is capable
of tracing streamlines that do not necessarily correspond to the boundary of any shape but can pass
between visual contours.

Perception is a combination of top-down and bottom-up processes. Bottom-up processes are driven by
information on the retina and are what is simulated by Li’s model [1998]. Top-down processes are much
more varied and are driven in the brain by activation from regions in the frontal and temporal cortex
that are known to be involved in the control of pattern identification and attention [Lund 2001]. All of
the flow visualizations evaluated by Laidlaw et al. [2001], except for LIC, contain symbolic information
regarding the direction of flow along the contour elements (e.g. an arrowhead). In a perpetual/cognitive
process this would be regarded as a top-down influence. At present our model does not deal with
symbolic direction information but it does do streamline tracing once set in the right general direction.

Streamline tracing is a combination of top-down and bottom-up processes. Broadly speaking, top-
down processes reflect task demands and the bottom-up processes reflect environmental information.
In our case, the bottom-up information comes from the different types of visualization, while the top-
down information is an attempt to model the cognitive process of streamline pathway tracing. Contour
integration was modeled using the following iterative algorithm.

ALGORITHM 1: Iterative Algorithm
current position← center
current direction← up
current position is inside circle
while current position is inside circle, do

neighborhood← all grid hexes within two hexes from current position
for each hex in neighborhood, do

for each neuron in hex do
convert neuron orientation to vector
scale vector by neuron excitation
vector sum← vector sum+ vector

end
end
normalize vector sum
current position← current position+ vector sum
current direction← vector sum
return current position

end

The algorithm maintains a context that contains a current position and direction. Initially, the po-
sition is the center, and the direction set to upward. This context models the higher-order, top-down
influence on the algorithm that results from the task requirements (tracing from the center dot) and
the directionality which in our experiment was set to be always in an upwardly trending direction.

The algorithm traces the contour by repeatedly estimating the flow direction at the current position
and moving the position a small distance (.5 hex radii) in that direction. The flow direction is calculated
from the neural responses in the local neighborhood of the current position. The excitation of each
neuron is used to generate a vector whose length is proportional to the strength of the response and
ACM Transactions on Applied Perception, Vol. 2, No. 3, Article 1, Publication date: May 2010.



Neural Modeling of Flow Rendering Effectiveness • 1:7

Fig. 3. Regular arrows. Fig. 4. Jittered arrows.

whose orientation is given by the receptive field orientation. Because receptive field orientations are
ambiguous as to direction (for any vector aligned with the receptive field, its negative is similarly
aligned). The algorithm chose the vector most closely corresponding to the vector computed on the
previous iteration. Vectors are computed for all neurons in hypercolumns within a 2-hexes radius of
the current position; they are summed and normalized to generate the next current direction.

Some changes were made from the method published by Pineo and Ware [2008]. Previously, the al-
gorithm considered only a single hex cell at each iteration of the algorithm. We found that this would
occasionally cause unrealistically large errors in streamline tracing. For example, on visualizations
with arrowheads, the neural network might yield a very strong edge orthogonal to the flow field po-
sitioned at the back of an arrowhead. If the algorithm considered only the edges at this point, it may
make a significant error, despite the edges in nearby positions indicating the correct direction. We
felt that creating an average over neighborhood was the more correct approach, and we found closer
agreement with human performance with this change.

4.1 Qualitative Evaluation

Four different flow visualization methods were used in our evaluation of the theory. These were imple-
mentations of four of the six used by Laidlaw et al. [2001]. We chose to investigate a regular arrow grid
because it is still the most commonly used in practice and a jittered arrow grid because of the argu-
ments that have been made that this should improve perceptual aliasing problems [Turk and Banks
1996]. We added Line Integral Convolution (LIC) because of its widespread advocation by the visual-
ization community [Cabral and Leedom 1993] and head-to-tail aligned streaklets because of Laidlaw
et al.’s finding that is was the best and the theoretical arguments in support of this method [Ware
2008]. Note that Laidlaw et al. used Turk and Banks algorithm to achieve aligned arrows on equally
spaced streamlines while we used Jobard and Lefer’s [1997] method to achieve the same effect and we
used streaklets without an arrowhead [Fowler and Ware 1989].

V1 is known to have detectors at different scales. However, to make the problem computationally
tractable we chose only a single scale for the V1 and designed the data visualizations with elements
scaled such that they were effectively detected by the gabor filter used by the model. The widths of
the arrows and streaklets were chosen to be smaller than the central excitatory band of the gabor
filter. This allowed the edge to be detected even if not precisely centered on the receptive field of the
neuron. The spatial frequency of the LIC visualization is defined by the texture over which the vector
field is convoluted. Our texture was created by generating a texture of random white noise of one-
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Fig. 5. Closeup of neural response to arrowheads. Fig. 6. Closeup of neural response to aligned streaklets.

third the necessary size and scaling it up via. interpolation. The resulting spacial frequency of the LIC
visualization was of a scale that was effectively detected by the gabor filters of the model.

4.1.1 Regular Arrows (Figure 3). This visualization is produced by placing arrow glyphs at regular
spacings. The magnitude of the vector field is indicated by the arrow length, and the flow direction by
the arrow head. The grid underlying the regular arrows is apparent to humans, but the edge weights
of the model show no obvious signs of being negatively affected. In fact, the regularity ensures that
the arrows are well spaced, preventing any false edge responses that might be produced by the inter-
ference of multiple arrows. We can expect that nontangential edge responses will be produced by the
arrowheads and these will lead to errors in the streamline advection task.

4.1.1.1 Jittered arrows (Figure 4). This visualization is similar to the regular arrows, but the ar-
rows are moved a small random distance from the regular locations. While composed of the same basic
elements as the regular grid, we see instances where nearby arrows interfere with each other and pro-
duce edge responses nontangential to the flow direction. Also, as with gridded arrows, the arrowheads
will excite neurons with orientation selectivity nontangential to the flow. This can be seen in Figure 5.
In this figure, we can see orthogonal neural excitation to each side of the upper arrow, caused by the
back edge of the arrowhead (blue circles). We can also see excitation caused by the interference of two
arrows at the bottom right (green circle). These nontangential responses are much stronger than those
found in the aligned streaklets visualization (Figure 6).

5. DISCUSSION

The overall agreement between the pattern of results for human observers and the V1-based model
provides strong support of the perceptual theory we outlined in the introduction. The aligned arrows
style of visualization produced clear chains of mutually reinforcing neurons along the flow path in the
representation, making the flow pathway easy to trace as predicted by theory.

The fact that LIC produced results as good as the equally spaced streamlines was something of a
surprise, and this lends support to its popularity within the visualization community. While it did
not produce as much neuron excitation as the aligned arrows method, this was offset by the lack of
nontangential edge responses produced by glyph-based visualizations. However, its good performance
was achieved only because our evaluation method ignored the directional ambiguity inherent in this
method. Laidlaw et al. [2001] found this method to be the worst and there is little doubt that had we
allowed flow in any direction, up or down, human observers would have found pathways with close to
180 degrees of error half of the time.
ACM Transactions on Applied Perception, Vol. 2, No. 3, Article 1, Publication date: May 2010.
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The performance of both the model and the human test subjects is likely to be highly dependent
on the underlying vector field used. As described in Section 5.1.6, the vector field was generated by
interpolating between an 8x8 grid of random, but generally upward pointing vectors. A consequence of
this is that when adjacent vectors in this grid point somewhat toward each other, the vector field forms
an area of convergence. This convergence area tends to funnel neighboring streamline paths together,
reducing error in streamline tracing (Figure 3 is an example of this). Thus, the overall accuracies of
both the model and human subjects may be higher than might be might be observed using a vector
field without such convergence zones.

We were surprised that the computer algorithm actually did better at the task than human ob-
servers. One reason for this may have been that humans would have to make saccadic eye movements
to trace a path, whereas the computer did not. For the patterns we used, it is likely that the observers
had to make fixations on several successive parts of a path, and errors may have accumulated as they
resumed a trace from a previous fixation. Nevertheless, we feel that the algorithm could easily be ad-
justed to make it give results closer to human subjects. A more sophisticated approach would be to
simulate eye fixations.

The model we applied is a considerable simplification over what actually occurs. It only uses the
simplest model of the simplest orientation sensitive neurons, and fails to include cortical magnifica-
tion, among other shortcomings. Real cortical receptive fields are not arranged in a rigid hexagonal
grid as they are in Li’s model. Furthermore, the neurons of V1 respond to many frequencies, however
our model only uses one in its present form. In addition, besides the so-called simple cells modeled
by Li [1998], other neurons in V1 and V2 called complex and hypercomplex cells all have important
functions. For example, end-stopped cell respond best to a contour that terminates in the receptive
field and understanding these may be important in showing how the direction of flow along a contour
can be unambiguously shown. Moreover, visual information is processed through several stages fol-
lowing the primary cortex, including V2, V4 and the IT cortex. Each of these appears to abstract more
complex, less localized patterns. Researchers are far from having sufficient information to model the
operations of these stages all of which may have a role in tracing contours. Nevertheless, the results
are compelling and there are advantages in having a relatively simple model. We have plans to add
some of these more complex functions in future versions of the model.

6. TYPICAL REFERENCES IN NEW ACM REFERENCE FORMAT

A paginated journal article [Abril and Plant 2007], an enumerated journal article [Cohen et al. 2007], a
reference to an entire issue [Cohen 1996], a monograph (whole book) [Kosiur 2001], a monograph/whole
book in a series (see 2a in spec. document) [Harel 1979], a divisible-book such as an anthology or com-
pilation [Editor 2007] followed by the same example, however we only output the series if the volume
number is given [Editor 2008] (so Editor00a’s series should NOT be present since it has no vol. no.),
a chapter in a divisible book [Spector 1990], a chapter in a divisible book in a series [Douglass et al.
1998], a multi-volume work as book [Knuth 1997], an article in a proceedings (of a conference, sympo-
sium, workshop for example) (paginated proceedings article) [Andler 1979], a proceedings article with
all possible elements [Smith 2010], an example of an enumerated proceedings article [Gundy et al.
2007], an informally published work [Harel 1978], a doctoral dissertation [Clarkson 1985], a master’s
thesis: [Anisi 2003], an online document / world wide web resource [Thornburg 2001], [Ablamowicz
and Fauser 2007], [Poker-Edge.Com 2006], a video game (Case 1) [Obama 2008] and (Case 2) [Novak
2003] and [Lee 2005] and (Case 3) a patent [Scientist 2009], work accepted for publication [Rous 2008],
’YYYYb’-test for prolific author [Saeedi et al. 2010a] and [Saeedi et al. 2010b]. Other cites might con-
tain ’duplicate’ DOI and URLs (some SIAM articles) [Kirschmer and Voight 2010]. Boris / Barbara
Beeton: multi-volume works as books [Hörmander 1985b] and [Hörmander 1985a].
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APPENDIX

With closest point to a given set of lines we intend the point having the minimum Euclidean distance
with respect to those lines. Typically, this problem is formulated using Plücker coordinates. Instead,
here we compute this point by solving the problem in a closed form, since the resulting matrices are
not ill-conditioned in our case. More precisely, by indicating the set of n lines with

L =
{
li = Oi + t~di| t ∈ R

}
i = 1 . . . n, (2)

where Oi is the origin of the ith line and ~di is the corresponding direction (normalized), we found the
closest point by minimizing

p = argmin
x

n∑
i=1

d(x, li). (3)

The distance d(x, li) can be written as

d(x, li)
2 = (x−Oi)

[
I− ~di~di

T
]
(x−Oi). (4)

The minimization is obtained by substituting (4) in (3), and imposing the derivative to zero. After some
simple algebra, we obtain the final formulation:

p =

[
nI−

n∑
i=1

~di~di
T

]−1 n∑
i=1

[
I− ~di~di

T
]
Oi. (5)
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Lars Hörmander. 1985a. The analysis of linear partial differential operators. III. Grundlehren der Mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences], Vol. 275. Springer-Verlag, Berlin, Germany. viii+525 pages.
Pseudodifferential operators.
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DANIEL PINEO and COLIN WARE, University of New Hampshire
SEAN FOGARTY, University of Illinois at Urbana-Champaign

A. ANALYSIS OF INVALID TRIALS

A.1 Results

Invalid trials were previously defined as those trials in which the subject pressed the space bar to
end the trial without first bringing the virtual finger to a stop. The number of invalid trials for each
subject is presented by feedback condition in Figure 12. Due to the irregular distribution of the data,
no significance test was run. However, the figure shows two notable features. First, Subject 6 had more
invalid trials than any other subject. Second, more invalid trials occurred under the proprioceptive-
only (NV+P) feedback condition than any other.

A.2 Discussion

Although the number of invalid trials is not directly related to task performance, we now consider
any trends that may be seen in this information. No statistical tests were done with this data, but
some inferences can be drawn from the invalid trial counts in Figure 12. The only obvious trend is
that the NV+P condition appears to have the most invalid trials, which is the case for all but two
subjects. In the post-experiment survey, one subject commented on this trend, saying that with only
proprioceptive motion feedback it was hard to tell if the finger was moving or not. This might be a
result of a larger threshold for absolute motion detection for proprioceptive feedback than for visual
feedback. This difficulty in stopping the finger did not appear to affect the ease of use ratings provided
by subjects, as no correlation was observed with invalid trial counts.

It is interesting to note that the no-feedback condition (NV+NP) had fewer invalid trials than the
proprioceptive-only condition (NV+P), especially in light of the findings of Ghez et al. [1990] that
deafferented individuals tend to display endpoint drift in non-sighted targeted reaching movements
(equivalent to NV+NP condition) while neurologically normal individuals do not (equivalent to NV+P
condition). A notable difference between our study and the study by Ghez et al. is the availability of
kinesthetic feedback from the thumb pressing on the force sensor, which indicates the magnitude of
the applied force, that is, the movement command in our study. Thus, under the no-feedback condition,
subjects could use this information to learn to apply grasping forces within the dead zone to stop finger
movement. When motion feedback is available, subjects are likely focusing more on the feedback than
on the forces applied, since the feedback allows them to achieve better accuracy. Thus, at the end of a
trial, subjects are most likely using this feedback as an indicator of zero velocity rather than attending
to the applied force. When visual feedback is available, it is easy to determine whether the finger
is moving or not; however, when only proprioceptive feedback is available, the finger can be moving
slowly without the subject being aware of its motion. This explanation would result in a larger number
of failed trials for the NV+P condition than for any other, as observed.
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