

Semi-automatic generation of device-adapted user
interfaces

Stina Nylander
Swedish Institute of Computer Science

Box 1263
16429 Kista, SWEDEN
Tel: +46-70-353-0369

E-mail: stina.nylander@sics.se

ABSTRACT
I am exploring an approach to developing services with
multiple user interfaces based on a high level description of
the service. The description is made using interaction acts,
which are primitives for describing user-service interaction
in a device independent way. Device-adapted user
interfaces are generated based on interaction acts in
combination with device and service-specific presentation
information. As a proof of concept, the approach is
implemented in a working prototype that handles graphical
user interfaces, web user interfaces, and speech user
interfaces for our sample services. Future work will mainly
focus on how users experience and make use of services
with multiple user interfaces.

KEYWORDS: User interfaces, multiple user interfaces,
mobile services, device independence

INTRODUCTION
Services need to be able to present themselves on different
devices to face the growing number of computing devices
that are available to users. In many cases, services only
work with a specific device or a family of devices (e.g.
PDAs), constraining users’ choice and sometimes forcing
them to use several different services for the same purpose
(e.g., one calendar for the cell phone and another for the
desktop) [9]. To avoid this, services need to be able to
adapt their presentation to various modalities and devices.

I am working with an approach that separates the user-
service interaction from the service presentation. The user-
service interaction is described using interaction acts [5],
that are units of description free from information about
presentation, device, or modality. This way the service
description can be used for many different devices without

changes in the service logic, and services can be developed
for an open set of devices. The general description can be
complemented by service and device specific presentation
information enclosed in customization forms [5]. Based on
the interaction acts and customization forms, each device
can generate a suitable user interface for a service.

The approach has been implemented and proved feasible in
the Ubiquitous Interactor system (UBI) [4, 5], which
handles generation of user interfaces for different devices
based on interaction acts and customization forms. User
interface generators for Java Swing, Java Awt, Tcl/Tk, web
user interfaces, and speech user interfaces have been
implemented.

RELATED WORK
Much of the inspiration for the Ubiquitous Interactor (UBI)
comes from early attempts to achieve device independence
or in other ways simplify development work by working on
a higher level than device details. Mike [6] and ITS [11]
were among the first systems that made it possible to
specify presentation information separately from the
application, and thus change the presentation without
changes in the application. However, they only handled
graphical user interfaces.

In more recent times, the issue of developing services for
many different devices has gained renewed attention with
the emergence of mobile and ubiquitous computing, see for
example [1, 2]. The PUC system [3] uses state variables to
automatically generate user interfaces to home appliances
such as stereos and VCRs. The XWeb system [7] uses a
description based on data types that is interpreted
differently by different clients. PUC and XWeb handle both
graphical user interfaces and speech user interfaces, but
none of them provides a mechanism to allow service
providers to control the presentation of the user interface
that compares to the customization forms of UBI. Other
differences from UBI are that they use a lower level of
abstraction (state variables and data types), and they target
a narrow range of applications (home appliances and other
control applications) with predefined user input. In UBI, we

Copyright is held by the author/owner.
UIST'05, October 23-27, 2005, Seattle, Washington, USA.
ACM 1-59593-023-X/05/0010...$5.00.

have chosen to work with user-service interaction as level
of abstraction to target a wider range of applications and to
be able to handle free user input, for example notes.

THE UBIQUITOUS INTERACTOR SYSTEM
The contribution of the Ubiquitous Interactor (UBI) is
twofold: a conceptual part where the concepts of interaction
acts, customization forms, and interaction engines are used
for the development of services with multiple user
interfaces; and a practical part where the concepts are
implemented in a working prototype that serves as proof of
concept. Two sample services have been created to show
the functionality of the system; a calendar service and a
stock brokering notification service.

Interaction Acts
An interaction act is an abstract unit of user-service
interaction that contains no presentation information at all.
My approach builds on the assumption that user-service
interaction for a wide range of services and devices can be
captured with a small set of interaction acts in different
combinations. UBI supports a set of eight interaction acts:
Start and stop refer to the starting and stopping of services.
Create, destroy, and modify refer to creation, deletion, and
modification of service-specific objects, for example
meetings in a calendar, or avatars in a game. Output is
output to the user, input is input to the service, and select is
selection from a set of alternatives. The last two are mainly
used for data not stored in the service, such as data for
navigation operations.

The current set of interaction acts is not intended to be
exhaustive, but has proved sufficient for the information
services that we have worked with. New types of services
may require new interaction acts.

Customization Forms
Presentation control is an important issue in commercial
development [2], for example to brand applications.

Customization forms are a means for service providers and
service developers to specify how a service should be
presented to end-users. By providing a detailed
customization form, service providers have full control over
how the user interface will be generated. Customization
forms are optional. If no customization form is provided, or
if the form is not exhaustive, defaults are used to generate
the user interface. The main categories of presentation
information in a customization form are directives and
resources. Directives are mappings between interaction acts
and widgets or other user interface components. Resources
are links to pictures, sound, text, or other media resources
that a particular user interface might need to present an
interaction act.

Interaction Engines
Interaction engines are service-independent but specific to a
device or a family of devices, and to a type of user
interface. For example, an interaction engine for HTML
user interfaces could be used on both desktop and laptop
computers, while handheld computers would need a special
engine. Each device used for accessing a UBI service needs
an interaction engine installed. In the ideal case, devices
would be delivered with interaction engines pre-installed.
Devices that can handle several types of user interfaces can
have several interaction engines installed. For example, a
desktop computer can have interaction engines for both
Java Swing user interfaces and web user interfaces. During
user-service interaction, interaction engines interpret
interaction acts and customization forms (when available)
and generate user interfaces for services. Interaction
engines are also responsible for interpreting user actions
and sending them back to services and for updating user
interfaces. User interfaces can be updated both on initiative
from services and as a result of user action.

Implementation
The Ubiquitous Interactor is a working prototype with
several interaction engines that handles the full set of

 b)

Figure 1: Example user interfaces to the stock brokering notification service generated with the Ubiquitous Interactor. All
user interfaces are generated from the same service description. UI a) and d) are generated with a Swing interaction
engine, UI b) is generated with a HTML interaction engine, and UI c) is generated with an AWT interaction engine.

a) c)

d)

interaction acts. Interaction acts are encoded using the
Interaction Specification Language (ISL) [5], which is
XML compliant. Each interaction act has a unique id, a
symbolic name, a life cycle value, a modality, an
information holder, and a possibility to carry metadata.
Customization forms are also encoded in XML. Each
interaction engine contains modules for parsing ISL and
customization forms, as well as generating responses to
services from user actions. Interaction engines have been
implemented for Java Swing, Java Awt, HTML, Tcl/Tk,
and speech user interfaces. A calendar service and a stock
brokering notification service [4] have been implemented
as sample services. The calendar service has customization
forms for a HTML user interface, a Tcl/Tk user interface
(presented on a PDA), a speech user interface, and two
different Java Swing user interfaces. The stock brokering
notification service has customization forms for HTML,
Java Swing (on a desktop computer), and Java Awt (on a
cell phone).

TAKING THE UBIQUITOUS INTERACTOR TO USERS
The main implementation phase of the Ubiquitous
Interactor is completed, and its main purpose, to serve as
proof of concept, is already achieved. The next phase is to
evaluate the generated user interfaces. I will also use the
knowledge that the implementation has given me about
what we can do, and look at how users experience the
concept of services with multiple user interfaces and benefit
from it.

User perception of UBI services– a pilot study
To find out how users were thinking about services with
multiple user interfaces, we designed a two part pilot study.
In the first part of the study, we used a variation on paper
prototyping [8] where participants were instructed to create
a GUI and a speech user interface for a calendar service
using paper and pens. We explained to them that they were
designing two user interfaces to the same service. In the
second part they performed a set of tasks using a working
GUI and speech user interface to a calendar service. We
had eight participants working in pairs to make them
communicate so that we could follow their thinking. The
purpose of the first part of the pilot study was to encourage
the participants to think and reason about services with
multiple user interfaces, and the purpose of the second part
was to give participants a sense of how a service like this
could work in reality. We were not interested in their
specific designs, the paper prototyping only served as a
“thinking tool” for the participants. We interviewed them
after each part of the study.

The paper prototyping really helped participants to think
more generally about services with multiple user interfaces.
They commented for example on information presentation
that has to be much more concise in speech user interfaces
since it is tedious and annoying to listen to long messages.

Most participants tried to make their two user interfaces as
similar as possible. I think that for this purpose, making
participants think and talk about services with multiple user
interfaces, it might be a good thing to instruct them to make

the user interfaces more different from each other. I also
believe that the use of context information would help
participants, both to understand the concept of services with
multiple user interfaces and to paper prototype their user
interfaces. In the pilot study, some participants had trouble
understanding the reasons for having multiple user
interfaces to services. Since their main computer experience
came from desktop computers, they first thought that they
were supposed to use the speech user interface with the
desktop computer, which they found strange. Context
information, maybe in the form of scenarios, could make it
easier to understand that the different user interfaces are
intended for use in different situations. The results from
Truong et al. [10] also suggest that it is easier for users to
talk about situations and tasks, than about devices and types
of user interfaces.

PROPOSED WORK
To complete my PhD, I will conduct a user study of
services with multiple user interfaces. The main purpose of
the study is to evaluate the user interfaces that I can
generate with UBI. Feedback on how customization forms
can be improved will be part of the result. A secondary
purpose of the study is to investigate users’ perceptions of,
and experience with services with multiple user interfaces.
A preliminary study plan is described below.

Device adaptation vs. one UI fits (almost) all devices
The primary purpose of the study is to investigate which
kind of adaptation of user interfaces that works best for
services that are used from different devices. The two types
of adaptation that will be investigated are the following.

The similarity principle – keep the user interfaces as similar
as possible on all devices, even if it causes some trouble for
the user, for example by making the user interface very
small on a mobile device.

The device adapted principle – Adapt the user interface to
the capabilities of the device (screen size, hard buttons etc.)
but keep the structure and the capabilities of the service as
similar as possible.

There are arguments for both principles. To keep the user
interface similar, or even exactly the same, on all devices
gives learning effects since users recognize themselves
when they use a service on a new device. On the other
hand, interacting with the service can be less smooth and
practical, and some devices may be excluded. Adapting the
user interface forces users to learn several user interfaces,
but offers interaction that is well suited to the current access
device.

Study Setup
The study will be conducted in four steps. First a
background survey of the participants will be made,
checking their computer experience, their experience with
mobile devices, and their experience with speech user
interfaces. Second, participants will be asked to try out a
service in the lab, using both device adapted user interfaces
and similar user interfaces. Measures will be task

completion time, error rate, and subjective experience.
Third, participants will be using a service “in the wild” for
two weeks. They will be provided appropriate devices, and
be instructed to use the service as they please during the
trial period. After the two weeks, participants will be
interviewed on their subjective experience of the trial.
Forth, participants will be brought back to the lab to
perform another set of tasks where task completion time
and error rate will be measured, and they will be
interviewed on their subjective experience.

The service for the study remains to be chosen, but possible
alternatives are a calendar service or a game. It is important
to choose a service that participants find meaningful to use
during the “in the wild” trial, and both the calendar and a
game could fulfill that purpose. The calendar since it is not
difficult to find participants that need to do quite a lot of
planning, and a game since well designed games are self
motivating for interested participants.

SUMMARY
The Ubiquitous Interactor is a system that provides
concepts for developing services with multiple user
interfaces, as well as a proof of concept prototype. The
concepts are interaction acts that are used to describe the
user-service interaction, customization forms that are used
to provide service and device specific presentation
information, and interaction engines that generate device
specific user interfaces based on interaction acts and
customization forms. The prototype implements the
concepts and uses two sample services to show the
functionality of the system.

Future work will concentrate on the evaluation of the
device adapted user interfaces generated with the system,
more specifically comparing them to services that present
themselves with the same or similar user interfaces on
different devices.

ACKNOWLEDGMENTS
I would like to thank Markus Bylund, Annika Waern, and
Magnus Boman for invaluable help and supervision during
this work, as well as for co-authoring various publications
on the system. I also want to thank Anna Sandin and
Thomas Nyström for important help with the
implementation.

REFERENCES
1. Banavar, G., Beck, J., Gluzberg, E., Munson, J.,

Sussman, J. and Zukowski, D., Challenges: An
Application Model for Pervasive Computing. In
Proceedings of 7th International Conference on Mobile

Computing and Networking, (2000).

2. Myers, B.A., Hudson, S.E. and Pausch, R. Past,
Present and Future of User Interface Software Tools.
ACM Transactions on Computer-Human Interaction, 7
(1). 3-28.

3. Nichols, J., Myers, B.A., Higgins, M., Hughes, J.,
Harris, T.K., Rosenfeld, R. and Pignol, M., Generating
Remote Control Interfaces for Complex Appliances. In
Proceedings of 15th Annual ACM Symposium on User
Interface Software and Technology, (Paris, France,
2002), 161-170.

4. Nylander, S., Bylund, M. and Boman, M. Mobile
Access to Real-Time Information - The case of
Autonomous Stock Brokering. Personal and
Ubiquitous Computing, 8 (1). 42-46.

5. Nylander, S., Bylund, M. and Waern, A., The
Ubiquitous Interactor - Device Independent Access to
Mobile Services. In Proceedings of Computer Aided
Design of User Interfaces, (Funchal, Portugal, 2004),
274-287.

6. Olsen, D.J. MIKE: The Menu Interaction Kontrol
Environment. ACM Transactions on Graphics, 5 (4).
318-344.

7. Olsen, D.J., Jefferies, S., Nielsen, T., Moyes, W. and
Fredrickson, P., Cross-modal Interaction using XWeb.
In Proceedings of Symposium on User Interface
Software and Technology, UIST 2000, (2000), 191-
200.

8. Rettig, M. Prototyping for Tiny Fingers.
Communications of the ACM, 37 (4). 21-27.

9. Shneiderman, B. Leonardo's Laptop. MIT Press, 2002.

10. Truong, K.N., Huang, E.M., Stevens, M.M. and
Abowd, G., How Do Users Thing about Ubiquitous
Computing. In Proceedings of Human Factors in
Computing Systems (CHI), (2004), 1317-1320.

11. Wiecha, C., Bennett, W., Boies, S., Gould, J. and
Greene, S. ITS: a Tool for Rapidly Developing
Interactive Applications. ACM Transactions on
Information Systems, 8 (3). 204-236.

