
Computational
Thinking in PreK-5:

Empirical Evidence for
Integration and

Future Directions
Edited by:

Dr. Anne Ottenbreit-Leftwich
Indiana University

Dr. Aman Yadav
Michigan State University

A Special Research Publication

A Special Research Publication

Computational
Thinking in PreK-5:

Empirical Evidence for
Integration and

Future Directions
Edited by:

Dr. Anne Ottenbreit-Leftwich
Indiana University

Dr. Aman Yadav
Michigan State University

Association for Computing Machinery

1601 Broadway, 10th Floor

New York, NY 10019-7434

Copyright © 2021 by the Association for Computing Machinery, Inc. (ACM).
Permission to make digital or hard copies of portions of this work for personal
or research use is granted without fee provided that the copies are not
made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the the following page. Copyrights
for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post
on servers or to redistribute to lists, requires prior specific permission and/
or a fee. Request permission to republish from: Publications Dept. ACM, Inc.
Fax +1-212-869-0481 or E-mail permissions@acm.org.

ISBN: 978-1-4503-9615-8
DOI: 10.1145/3507951
Web link: https://dl.acm.org/citation.cfm?id=3507951

Recommended citation:
Ottenbreit-Leftwich, A., & Yadav, A. (2021). Computational Thinking in PreK-5:
Empirical Evidence for Integration and Future Directions. ACM and the Robin
Hood Learning + Technology Fund, New York, NY

Acknowledgements:
The authors thank ACM and the Robin Hood Learning + Technology Fund
for supporting this publication. All opinions reflected in the papers in this
publication are those of the authors and not necessarily those of ACM
and the Robin Hood Learning + Technology Fund.

https://dl.acm.org/citation.cfm?id=3507951

www.acm.org/education i

INTRODUCTION
Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions

by Anne Ottenbreit-Leftwich and Aman Yadav � iii

Investigating Pre-Service Teachers' Computational Thinking Through Lesson Design
Using Digital Technologies

by Scott Sheridan, Bataul Alkhateeb, Chrystalla Mouza and Hui Yang �1

Computational Thinking Integration in Elementary Teachers' Science Lesson Plans
by Merijke Coenraad, Laurtaro Cabrera, Heather Killen, Dr. Jan Plane, and

Dr. Diane Jass Ketelhut �11

The Effect of Play and Worked Examples on First and Third Graders’ Creating and
Debugging of Programming Algorithms

by Laura Bofferding, Sezai Kocabas, Mahtob Aqazade, Ana-Maria Haiduc, and
Lizhen Chen .19

Coding as Another Language: Computational Thinking, Robotics and Literacy in
First and Second Grade

by Marina Umaschi Bers, Madhu Govind and Emily Relkin �30

Sphero�Math: A Computational Thinking-Enhanced Fourth Grade Mathematics Curriculum
by David Weintrop, Janet Walkoe, Margaret Walton, Janet Bih, Peter Moon,

Andrew Elby, Bianca Bennett, and Madison Kantzer �39

Improving Teacher Use of Educational Robotics To Teach Computer Science in
K-5 Mathematics

by Theodore J. Kopcha, Cheryl Y. Wilson and Dayae Yang �47

Integration of Computational Thinking Into English Language Arts
by Sharin Rawhiya Jacob, Miranda C. Parker and Mark Warschauer �55

Understanding Barriers to School-Wide Computational Thinking Integration at the
Elementary Grades: Lessons From Three Schools

by Maya Israel, Ruohan Liu, Wei Yan, Heather Sherwood, Wendy Martin,
Cheri Fancsali and Edgar Rivera-Cash �64

Strengthening Early STEM Learning by Integrating CT into Science and
Math Activities at Home

by Shuchi Grover, Ximena Dominguez, Tiffany Leones, Danae Kamdar, Phil Vahey and
Sara Gracely �72

Author Biographies �85

c o n t e n t s

http://www.acm.org/education

Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directionsii

www.acm.org/education iii

S ince Wing’s (2006) article regarding computational
thinking, there has been a dramatic increase in the focus

on computational thinking (CT) in K-12 education. Compu-
tational thinking has permeated across K-12 classrooms,
particularly at the elementary level. In a review of the state
of the field of computational thinking in K-12, Grover and
Pea (2013) described the research on CT as mainly focused
on definitional issues, descriptions of environments and
tools that foster CT, and assessment of CT. They called for
a need to address large gaps in our knowledge around CT,
including the cognitive aspects of CT and how CT can be
integrated into other subjects. Several articles have provid-
ed suggestions on how to integrate CT (e.g., Yadav, Hong,
& Stephenson, 2016). In a meta-review of 120 studies on CT
published between 2006 to 2017, Hsu, Chang, and Hung
(2018) found that most of these studies were situated within
programming (n=31) or computer science (n=26) contexts.
The other contexts where CT was studied included math
(n=11), biology (n=9), and robotics (n=8). Many of these
studies usually focused on students at the secondary and
post-secondary levels.

Although research on CT within K-12 has been
emerging over the past few years, few studies have
investigated the teaching of CT at the younger ages. The
ACM and the Robin Hood Learning + Technology Fund
co-funded this special research publication to examine
empirically-based studies that focused on the integration
of computational thinking at the elementary levels into a
variety of learning disciplines including math, ELA, science,
and computer science.

We received 48 submitted abstracts after the call for
proposal. We prioritized studies that provided empirical
data and invited 19 authors to submit full papers. We then
selected nine of the submitted final papers that clearly
focused on K-5 CT from a range of subject areas (CS
specific=1; all subjects=2; literacy=2; science=2; math=3).
Five of these papers included PreK-5 student data,
six included inservice teacher data, and one included

preservice teacher data. This introduction highlights the
themes that cut across the nine papers. In addition, we
discuss the gaps that need to be investigated and provide
directions for future work.

Defining Computational Thinking
The papers in this issue generally define CT based
on Jeanette Wing’s influential article, which stated:
“Computational thinking involves solving problems,
designing systems, and understanding human behavior by
drawing on the concepts fundamental to computer science”
(Wing, 2006, p. 33). Some papers use state or national CS
standards to define CT, while others include more refined
descriptions, such as the common framework PRADA (Dong
et al., 2019) which includes pattern recognition, abstraction,
decomposition, and algorithms. While the authors include
common CT practices (such as algorithms, debugging,
pattern recognition, etc.), how the authors use these CT
terms manifest differently depending on their viewpoints.
For example, Weintrop et al. uses PRADA for integration
of CT into fourth grade mathematics, but includes iterative
development and debugging practices that are associated
with programming. Sheridan et al. focuses on how preservice
teachers represented five CT practices (abstraction,
algorithmic thinking, data, decomposition, and simulation) in
their two lessons using a concept mapping tool and Scratch.

Although all papers conceptualize CT and associated
practices in different ways, all provide clear examples
of what the CT looked like as it was integrated into their
preK-5 classroom context. The multiple ways CT plays
out in the papers suggest that CT is still in its infancy and
very much contextualized by researchers and teachers. As
Denning (2017) argued, there are still challenges in how CT
is defined and how to measure students’ abilities to think
computationally. The idea of CT as “algorithmic thinking”
has been around since the 1950s (Caeli & Yadav, 2010;
Denning, 2017; Grover, 2018) and, as evidenced by papers

Anne Ottenbreit-Leftwich, Indiana University

Aman Yadav, Michigan State University

Computational Thinking in PreK-5:
Empirical Evidence for Integration
and Future Directions

i n t r o d u c t i o n

http://www.acm.org/education

Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directionsiv

This use of levels to describe how teachers incorporate
CT is similar to that used to classify technology integration
and teachers’ uses of technology (e.g., Jonassen, 1996;
Sandholtz et al., 1997). In this issue, Israel et al. also describe
how CT integration could range “from using academic
language that crosses disciplinary areas (e.g., the term
decomposition across CS and math instruction) to using
complex integrated computer-based activities” (p. 65). These
levels or ranges of CT integration are important distinctions
that need to be investigated further. Such investigations could
involve questions such as “Are all levels of CT integration
impactful?” and “Do these all lead to similar results?”

While the descriptive approaches that identify levels
of CT integration are valuable, future research also needs
to examine whether and how teachers move between
integration ranges or levels. Throughout the nine papers
in this issue, we found that CT integration at the lower
elementary levels tended to focus on the use of the language,
whereas upper elementary levels tended to connect these
ideas to computer-based activities and tasks. More specifically,
we want to challenge future researchers to examine how the
use of CT language supports disciplinary learning, as well
as whether it prepares learners for salient computationally
rich applications. In other words, when we have younger
students searching for patterns in language or science, or
decomposing playdough art into parts, will they be able to
transfer this knowledge to computer-relevant applications
later? Are these appropriate tasks that we are designing and
will they provide students’ with strong conceptions of CT/
CS later? In addition, future research should examine how
CT integration supports disciplinary learning?

Furthermore, what support is needed for teachers
to move from one integration approach to another and
translate it into their practices? We need to examine how
teachers move from unplugged CT to plugged CT, and
how they implement those approaches to support their
disciplinary learning goals. For example, practitioners could
incorporate CT practices when teaching about the water
cycle. They could do so by having students decompose
the water cycle (breaking the cycle into smaller parts),
discover the patterns and looping of the cycle, and write
out the algorithm for the water cycle. This is a good starting
place for teachers to connect CT practice in a science
disciplinary context. Taking this approach one step further,
however, they could have students create a model of the
water cycle using computational tools (such as Scratch and
SageModeler), thus providing a deeper understanding of
CT concepts and practices.

Some of the papers in this issue did focus on using CT
to teach core subject areas, such as mathematics, and found
that teachers or students had stronger conceptions of the

in this special issue, it continues to play out in multiple
ways in K-12 classrooms. As it is important to contextualize
CT for particular contexts to support disciplinary learning,
we want to encourage scholars in this area to clearly
define CT. Perhaps even more important is the use of
specific curricular examples that showcase how CT was
implemented in classroom contexts. This way, readers can
visualize how the authors are defining CT.

The Integration of Computational Thinking
Our K-12 curriculum is a zero-sum game, where adding a
subject means something else needs to be removed. At the
elementary level, the discussion of how to cover the new
subject area of CT/CS has led to different implementation
designs. While some suggest that CT/CS can be taught as
a separate stand-alone course, such as math, reading, or
science, others have suggested that elementary teachers
do not have the time to teach CT or CS as its own discipline.
To accommodate for these time struggles, many suggest
that CT could be integrated into other core content areas
(e.g., Sherwood et al., 2021). In fact, Fofang et al. (2020)
indicated that the three justifications for the integration of
CT include practical (e.g., lack of time), pedagogical (e.g.,
integration provides richer problem-solving contexts), and
equity (e.g., ensuring all learners would have access). These
are solid rationales for the integration of CT, and ones that
other studies have shown as critical to teachers’ integration
of CT (Israel et al., 2015; Rich, Yadav, and Larmore, 2020).

Levels of Computational Thinking Integration
Beyond the rationale to integrate CT, however, there is a
range of types of CT integration. In this issue, Coenraad et
al. describes four different levels of integrating CT that were
present across 22 CT-integrated science lessons created by
36 elementary teachers. These levels are

• exist (labeling already present CT),
• enhance (using CT to support science learning),
• extend (extend science learning by integrating CT tools

and practices), and
• exhibit level (using programming to show science

learning).

Coenraad et al. used these levels to examine how
elementary teachers’ science lesson plans incorporated CT
and found that of the 16 lessons:

• three lessons (18.75%) integrated CT at an exist level,
• eight (50%) integrated CT at an enhance level,
• two lessons (12.5%) extended science learning, and
• three lessons (18.75%) integrated science and CT on

an exhibit level.

i n t r o d u c t i o n

www.acm.org/education v

Systemic Change for CT integration
In this special issue, the study by Israel et al. describes
different approaches to implementing CT focused
curriculum across an elementary school. The authors
articulate a number of challenges for CT integration:

A� limited CT teaching expertise,
B� limited time for CT integration, lack of CT-specific

assessment knowledge and tools,
C� limited pedagogical understanding for meeting

students’ diverse instructional needs, and
D� low teacher-buy-in for teaching CT.

These findings suggest the need for a system-wide
implementation of CT to ensure that all students are
introduced to CT and not only the students of teachers who
decide to participate in professional learning around CT.
Given that teachers face a number of challenges such as
standardized testing requirements and constraints of the
curriculum, it is critical for schools to have a vision for CT
integration combined with support for teachers. Computer
science education researchers must develop researcher
practitioner partnerships that take a holistic approach to
bringing CT across the curriculum in schools. Furthermore,
these partnerships should extend beyond schools to include
the community and family involvement. One study in this
issue by Grover et al. focuses on examining how CT could
be integrated into preschool math and science instruction.
The authors found that involving parents/caregivers in
the design of CT learning activities could be productive
to engage young learners in CT practices. This provides
additional evidence of the importance of engaging multiple
stakeholders to ensure a successful implementation and
diffusion of CT/CS at the elementary levels.

Measuring Computational Thinking
It is important to note that the papers in this issue used
different approaches to measuring teachers and/or
students’ knowledge, skills, and attitudes towards CT. For
example, Grover et al. observed preschool students in their
homes, noting where they placed specific manipulatives,
or whether they pointed or verbally described something.
Weintrop et al. vignettes that not only described the activity
the students participated in, but also provided a clear
discussion of how student words and actions represented
CT concepts. Jacob et al. provided a complete audio
transcript of conversations between the teacher and
students, demonstrating how the teacher used the popular
book, The Most Magnificent Thing, to teach her students
about debugging and iterating. Bofferding et al. used
worked examples to measure students’ CT understandings,

other subject area content based on the integration of CT.
For example, Weintrop et al. describes fourth grade students’
experiences using Sphero during math lessons. The authors
described how students engaged in CT practices (such
as decomposition, debugging, pattern recognition, and
algorithms) as well as mathematical practices (precision
and proportional reasoning). Kopcha et al. also detailed a
study of how elementary teachers used robotics to teach
math concepts (e.g., fractions, angles, addition, perimeter
and area). The authors found that, as a result of professional
development on CT integration, elementary teachers’
confidence in using robotics to teach math and facilitating
productive math discourse was significantly higher. In Jacob
et al.’s study, students showcased their storytelling and
narrative skills while discussing CT concepts and dispositions
in The Most Magnificent Thing book. The researchers
found that these narrative skills were demonstrated by
teaching computational thinking through literacy. Bers and
colleagues also embedded CT in literacy in first and second
grade classrooms using KIBO robotics. The results from
this study suggest that the curriculum improved students’
coding and CT skills, however students’ baseline literacy
skills predicted their CT skills.

Visualization of CT Integration
Regardless of how the CT was integrated, the strength of
these nine papers lies in their commitment to providing
detailed descriptions of the curricula. This was sometimes
done using tables to outline activities and content (e.g.,
Jacob et al., Sheridan et al.), or through pictures of student
work (e.g., Weintrop et al., Grover et al.). For example,
Grover et al. showcases examples of a playdough activity
whereby students were tasked with decomposing
creations to identify its smaller parts. Jacob et al. provide
a table showcasing the teacher activities and depict how
these activities aligned with more English Language
Arts standards and CSTA standards. Sheridan et al. even
provides an outline of the programming module, with
examples of the assignments and discussion questions.
Bofferding et al. (this issue) also include all three sets of the
worked examples used in their study, thus providing the
pedagogical design choices within the table that illustrates
the CT learning connections.

These thick descriptions help readers understand how
CT is being integrated. Similar to the concerns associated
with the CT definitions above, the thick descriptions also
help orient the readers and allow us to view CT through
the authors’ lenses. This is an important concept as we
work together to better understand CT, how learners
conceptualize CT, and how CT can be integrated into the
elementary curriculum.

http://www.acm.org/education

Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directionsvi

Fofang, J. S., Weintrop, D., Walton, M., Elby, A., & Walkoe, J.
(2020). Mutually supportive mathematics and computational
thinking in a fourth-grade classroom. In Gresalfi, M. and
Horn, I. S. (Eds.), The Interdisciplinarity of the Learning
Sciences, 14th International Conference of the Learning
Sciences (ICLS) 2020, Volume 3 (pp. 1389-1396). Nashville,
Tennessee: International Society of the Learning Sciences.

Grover, S. (2018, November 5). A tale of two CTS (and a revised
timeline for computational thinking). ACM. Retrieved
November 13, 2021, from https://cacm.acm.org/blogs/blog-
cacm/232488-a-tale-of-two-cts-and-a-revised-timeline-for-
computational-thinking/fulltext.

Grover, S., & Pea, R. (2013). Computational Thinking in K-12:
A Review of the State of the Field. Educational Researcher,
42(1), 38–43. https://doi.org/10.3102/0013189X12463051

Hsu, T. C., Chang, S. C., & Hung, Y. T. (2018). How to learn and
how to teach computational thinking: Suggestions based
on a review of the literature. Computers and Education.
https://doi.org/10.1016/j.compedu.2018.07.004

Israel, M., Pearson, J. N., Tapia, T., Wherfel, Q. M., & Reese, G.
(2015). Supporting all learners in school-wide computational
thinking: A cross-case qualitative analysis. Computers &
Education, 82, 263-279.

Jonassen, D. H. (1996). Computers in the classroom: Mindtools
for critical thinking. Prentice-Hall, Inc..

Rich, K. M., Yadav, A., & Larimore, R. (2020). Teacher
implementation profiles for integrating computational
thinking into elementary mathematics and science
instruction. Education and Information Technologies.
DOI: 10.1007/s10639-020-10115-5

Sandholtz, J. H., Ringstaff, C., & Swyer, D.C. (1997). Teaching with
technology: Creating student-centered classrooms. Teachers
College Press.

Yadav, A., Hong, H., & Stephenson, C. (2016). Computational
thinking for all: Pedagogical approaches to embedding a
21st century problem solving in K-12 classrooms. TechTrends
60, 565-568. DOI: 10.1007/s11528-016-0087-7.

which was represented by a success score (did they achieve
the objective), as well as an in-depth investigation of
students’ coded programs. The creative approaches used
to capture and explain how CT could be represented is
another addition to our conversations around this topic.

Conclusion
Overall, the nine papers included in this special issue
provide a diverse overview of computational thinking at
the elementary level. They showcase how to teach CT
at the elementary level through a range of the following:

• Approaches: integrated and stand-alone
• Activities: unplugged manipulatives, computational

toys, software applications and services
• Areas of focus: pattern recognition, algorithms,

decomposition, debugging, etc.
• Instructional strategies: worked examples, hands-on

practice, graphic organizers, cooperative learning;
• Grades levels: PreK-5; and
• Subject areas: math, science, language arts, CS.

The field still needs to identify developmentally
appropriate practices and learning goals for elementary
students. In addition, there is still a great deal of research
needed to examine how to integrate CT into other subject
areas, benefiting both the subject areas and CT/CS.

References
Caeli, E. N., & Yadav, A. (2020). Unplugged approaches to

computational thinking: A historical perspective. TechTrends,
64(1). https://doi.org/10.1007/s11528-019-00410-5

Denning, P. J. (2017). Remaining trouble spots with
computational thinking. Communications of the ACM, 60(6),
33–39. https://doi.org/10.1145/2998438

Dong, Y., Catete, V., Jocius, R., Lytle, N., Barnes, T., Albert, J., ...
& Andrews, A. (2019, February). PRADA: A practical model
for integrating computational thinking in K-12 education.
In Proceedings of the 50th ACM Technical Symposium on
Computer Science Education (pp. 906-912).

i n t r o d u c t i o n

https://cacm.acm.org/blogs/blog-cacm/232488-a-tale-of-two-cts-and-a-revised-timeline-for-computational-thinking/fulltext
https://cacm.acm.org/blogs/blog-cacm/232488-a-tale-of-two-cts-and-a-revised-timeline-for-computational-thinking/fulltext
https://cacm.acm.org/blogs/blog-cacm/232488-a-tale-of-two-cts-and-a-revised-timeline-for-computational-thinking/fulltext
https://doi.org/10.3102/0013189X12463051
https://doi.org/10.1016/j.compedu.2018.07.004
https://doi.org/10.1007/s11528-019-00410-5
https://doi.org/10.1145/2998438

www.acm.org/education 1

Investigating Pre-Service Teachers’
Computational Thinking Through Lesson
Design Using Digital Technologies
Scott Sheridan, Bataul Alkhateeb, Chrystalla Mouza, School of Education, University of Delaware,

and Hui Yang, SRI International

Corresponding Author: Chrystalla Mouza, cmouza@udel.edu

Abstract

In this chapter, we describe a pedagogical approach aimed at preparing pre-service teachers to integrate (CT)
into K-8 contexts� Specifically, we present a standalone educational technology course with explicit attention

on connecting CT to disciplinary content and pedagogy while introducing a range of digital tools� Data were
collected from 34 pre-service teachers over the period of one semester� Specifically, a total of 68 lesson plans
developed by pre-service teachers through two distinct lesson planning tasks using concept mapping and
programming tools were collected and analyzed using both quantitative and qualitative techniques� The
analysis utilized a coding scheme that focused on identifying specific CT practices illustrated in each lesson� It
also examined differences in the CT practices exhibited in each lesson planning task� Findings indicated that
the CT practice of data was most prevalent in pre-service teachers’ lesson plans� Outside of data, however, there
was greater variation in the CT practices represented in programming lesson plans compared to the concept
mapping lesson plans� Implications for teacher educators are discussed based on the findings�

Introduction
In recent years there has been a renewed focus on the
development of computational thinking (CT) among all
students. CT has its origins in the work of Seymour Papert
(1980) who aspired to engage all students in computer
programming. Augmented by innovative low-floor high-
ceiling programming languages (e.g., Scratch), CT has
resurfaced as a critical 21st century skill for all students
(Wing, 2006). As such, it has been incorporated in a variety
of content area standards, including the Common Core
State Standards in the United States (CCSS, 2010), the
Next Generation Science standards (NGSS, 2013), and the
National Education Technology standards (ISTE, 2016).

While CT has emerged as an area of growing
significance, definitions of CT continue to vary in the
literature. The most popular definition was provided by
Wing (2006), indicating that CT “involves solving problems,
designing systems, and understanding human behavior,
by drawing on the concepts fundamental to computer
science” (p. 33). In the context of K-12 education, however,
Barr and Stephenson (2011) defined CT as a problem-
solving methodology that can be transferred and applied
across subjects, which is important for K-12 as it points out
the connection of CT to various subject areas. Indeed, CT
has been suggested as a set of practices (e.g., algorithmic

thinking, decomposition, abstraction, data, simulation) that
are more than just programming and can be integrated in
disciplines outside of computer science (CS) to support
disciplinary learning (Barr & Stephenson, 2011; Yadav
et al., 2021). Further, it can be integrated using digital
tools beyond programming (e.g., concept mapping,
data collection tools) beginning at the elementary level
(Kotsopoulos et al., 2017; Lambrou & Reppenning, 2018).

A key challenge in the introduction of CT in K-8
education is the preparation of pre-service teachers.
Yadav et al. (2017) have argued that in order for pre-
service teachers to teach CT, they need to develop a
deep understanding of both their content area and of CT.
Indeed, research indicates that effective integration of CT
necessitates that pre-service teachers build knowledge
of new computing content (CK), knowledge of good
pedagogical practices (PK), and knowledge of technology
tools (TK) inherent in CT instruction (Mouza et al., 2017).
The interactions among these knowledge domains form the
core of what has been called Technological Pedagogical
Content Knowledge (TPACK; Mishra and Koehler, 2006),
CS-related TPACK (Vivian & Falkner, 2019) or TPACK-
CT (Mouza et al., 2017). As the interest in computing
is growing, teachers need support to navigate these
knowledge domains (Vivian & Falkner, 2019). Yet limited

http://www.acm.org/education
mailto:cmouza@udel.edu

Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions2

content and pedagogy when incorporating concept
mapping tools and Scratch programming in lesson
planning? Are there significant differences across the
two lesson planning tasks?

METHODS

Participants
Participants for this study included 34 pre-service teachers
(N=34) enrolled in a four-year elementary teacher education
program in a Mid-Atlantic University in the United States.
Graduates of the program are eligible for an elementary
(K-5) teacher certification as well as a certification in special
education, English as a second language (ESL) or a middle
school (6-8) content area. All participants were in their
sophomore, junior, or senior year and were enrolled in a
required course titled, Integrating Technology in Education
during the period of one semester. All participants were
females between the age of 18-22 except for one participant
who was in the age group of 27-32. Baseline data collected at
the beginning of the course indicated that although pre-service
teachers were not able to expressly define CT in a way it might
appear in the literature, many recognized that it was a thought
process used in problem solving. All but one pre-service
teacher believed that CT could be integrated into the classroom
though generating examples was challenging for participants.

Description of the Course: Integrating
Technology in Education
Integrating Technology in Education is a required 3-credit
hour course for all pre-service teachers, typically taken
during sophomore or junior year. The course spans over 14
weeks and introduces pre-service teachers to technologies
available for use in classroom content areas, pedagogical
considerations with these technologies, and teaching and
learning practices that combine the use of technologies with
content and pedagogy (Mouza & Karchmer-Klein, 2015).
Although the course is usually offered in a hybrid format,
due to COVID-19, the course was held asynchronously
online with synchronous help sessions offered via Zoom.

Given the growing attention on CS education and the
need to prepare pre-service teachers to integrate CT across
the curriculum, the course was previously redesigned to
support the development of pre-service teachers’ knowledge
of CT (see Mouza et al., 2017). Towards this goal, we
introduced CT practices (e.g., decomposition, abstraction)
and tools appropriate for elementary instruction using
relevant theoretical and empirical articles, CT resources
developed by various organizations, and hands-on activities.
In this work, we view CT as an interdisciplinary set of practices
that can help support existing content area instruction. Our
goal was to help pre-service teachers recognize, highlight,

research has focused on building pre-service teacher‘
knowledge for CT integration across content areas.

One way to advance pre-service teacher knowledge
of CT is through standalone educational technology
courses required in most teacher education programs
around the U.S. (Yadav et al., 2017). Yadav et al. (2011), for
instance, integrated introductory CT learning modules in
an educational psychology course for pre-service teachers
focusing on examples of CT application in both science and
humanities. Similarly Bean et al. (2015) introduced pre-
service teachers to coding in three subject areas: music,
language arts, and mathematics. Results indicated that
pre-service teachers’ knowledge and self-efficacy of CT
improved. Here, we discuss one approach to integrating
CT in an educational technology course. The course that
served as the foundation of this work introduces computing
tools and practices specific to incorporating CT with
content and pedagogical knowledge in K-8 settings.

As part of their participation in the course, pre-
service teachers completed lesson planning tasks and
sample products (i.e., an example of what they expected
students to produce) that asked them to integrate CT
with disciplinary content and pedagogy using digital
tools that can support the development of CT practices
among K-8 students. Such tools include, among others,
concept mapping software (i.e., software that allows the
development of conceptual diagrams or figures illustrating
suggested relationships among concepts in a domain;
see also Malallah & Weese, 2020) and visual oriented
programming software (i.e., Scratch). For instance, pre-
service teachers could engage students in the CT practice
of decomposition by asking them to visually illustrate the
process of breaking down and solving a mathematics
problem using a concept mapping tool. Through these
lesson design tasks we sought to identify the CT practices
most frequently represented by pre-service teachers and
the extent in which they connected CT with content and
pedagogy in the spirit of the TPACK framework.

In prior work, we have found that pre-service teachers
were able to develop CT-integrated lesson plans aligned
with content and pedagogy more successfully when using
concept mapping tools compared to Scratch programming
(Sheridan et al., 2020; Yang et al., 2018). We attributed
this difference to pre-service teachers’ greater familiarity
with concept mapping software compared to Scratch
programming (Zinth, 2016). As a result, we have redesigned
a module focusing on programming in ways that allowed
pre-service teachers to build greater familiarity with both
the technology and its potential to support CT development
across content areas. Following the redesign of the module,
we investigated the following research question:

A� What CT practices are represented in pre-service
teachers’ lesson planning tasks when using concept
mapping tools and Scratch programming?

B� To what extent do pre-service teachers connect CT to

www.acm.org/education 3

design of their own lesson plans by responding to a series
of prompts following the Harris & Hofer (2009) framework
which asked them to provide: (a) specific learning goals
using disciplinary standards, (b) a description of how to
introduce concept mapping to students, (c) a description
of activities to engage students in the learning process of
disciplinary content, and (d) a description of how concept
mapping could be used to help students achieve the
learning goals. Each lesson plan was accompanied by a
copy of a sample concept map similar to what they were
expecting from their students to produce (e.g., a concept
map representing the plant cycle in science to illustrate
abstraction or a concept map demonstrating place value in
mathematics to illustrate decomposition; see also Figure 1).

Lesson Planning Task 2: Programming
The programming lesson-planning task asked pre-service
teachers to design a lesson plan that incorporated Scratch
programming within a curriculum content area. Prior to
designing their lesson, pre-service teachers (a) engaged
with a scenario-based digital simulation where they
reflected and enacted conversations related to the role
of CT in elementary education, (b) reviewed readings and
videos, (c) reflected on the readings, and (d) practiced
using Scratch programming. They also examined existing
lessons on the integration of programming in elementary
instruction. Table 1 presents an overview of the module.

and design CT-integrated instruction utilizing digital tools
which are usable in a broad variety of content areas (e.g.,
concept mapping software, programming) and widely
available in mainstream classrooms (Mouza et al., 2017). This
approach is different from teaching CT as part of a standalone
course independent of disciplinary applications (Weintrop
et al., 2016). To support pre-service teachers’ instructional
design, we provided a series of scaffolding questions that
allowed for CT-integrated lesson planning in the spirit of the
TPACK framework. Specifically, pre-service teachers engaged
in the design of two lesson planning tasks following the 5-step
approach presented by Harris and Hofer (2009). This approach
helps pre-service teachers consider the content and pedagogy
of a lesson and then identify technology tools and practices,
including CT practices, that could support students’ learning.

Lesson Planning Task 1: Concept Mapping
The concept mapping lesson planning task asked pre-
service teachers to design a lesson plan that incorporated
a concept mapping in a content area. Pre-service teachers
first read and reflected on a series of articles focusing
on the role and importance of concept mapping to
build their knowledge of technology and pedagogy.
Subsequently, they were introduced to concept mapping
tools (e.g., Popplet), practiced how to use such tools, and
examined existing lessons integrating concept mapping for
instruction. Finally, pre-service teachers engaged with the

Table 1� Description of Programming Module

Week Description of Course Activities

Week 1 Scenario-Based Simulation Exercise: CS is not my job
Pre-Service teachers engage in a practice space: https://teacher-moments.herokuapp.com/
scenarios/, which provides a space to practice ideas and consider how to respond to challenging
teacher situations around CT integration.

Read & Watch
Describe the importance of CT integration
Videos explaining CT Integration (e.g., ISTE, 2012)

Reflect: 3-2-1
(1) Identify 3 new insights or take-aways from your readings on computational thinking.
(2) Discuss 2 more ways in which you can integrate computational thinking in your future

classroom and the ways in which students could benefit from such integration (these examples
could be very brief, e.g., use an algorithm to model the exit routine from the classroom).

(3) Identify any remaining questions about computational thinking.

Table continued on next page

http://www.acm.org/education
https://teacher-moments.herokuapp.com/scenarios/
https://teacher-moments.herokuapp.com/scenarios/

Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions4

Table 1� Description of Programming Module (continued)

Week Description of Course Activities

Week 2 Hour of Code: Watch, Practice & Discuss (http://code.org)
Discussion Questions
(1) Which programming course did you try out in Code. org?
(2) What did you like/did not like about it?
(3) What suggestions do you have for improving the course and what is your rationale?

Scratch Tutorial: Let’s Dance

Reflect
(1) Identify 3 new insights or take-aways from your experience programming with Scratch.
(2) How would you describe your experience with Scratch? Did anything surprise you?

Week 3 Lesson Planning Review & Design
(1) Review CT-Integrated lessons on ScratchEd. Examples in Storytelling, Math, Science, and Music.
(2) Lesson Design (Parallels concept mapping lesson design)

• Select a content area of your choice: What is the learning goal? What standards does it address?
• Describe the pedagogical knowledge.
• Consider how you will introduce Scratch to your students.
• Describe the activity types used in the lesson.
• Describe the assessment strategies used in this lesson.
• How does the use of programming support the learning goals and pedagogical knowledge

identified in the lesson?

Data Collection
This study specifically focuses on the two lesson planning
tasks to examine the integration of CT within various
content areas. Each participant (N=34) completed the two
lesson planning tasks described above, which resulted in a
total of 68 lesson plans (N=68).

Data Analysis
All lesson plans (N=68) were analyzed qualitatively in three
phases. First, a descriptive analysis was conducted by
the first author to identify the content areas represented
in each lesson. Second, each lesson plan was analyzed
again by the first author to determine the presence or
absence of specific CT practices using the coding scheme
presented in Table 2. Third, each lesson was assessed
using a rubric adapted from Harris et al. (2010) and used in
prior work by authors (Mouza et al., 2017; Sheridan et al.,
2020). The rubric provides a valid and reliable instrument
that can be used to evaluate pre-service teachers’ lesson
plans for content, pedagogy, and technology in relation
to CT. It incorporates four evaluation criteria including:
(a) Fit: alignment of content, pedagogy, and digital tools
to foster CT knowledge and skills; (b) Curriculum Goals

and Technologies: (e.g., digital tools and practices that
support the development of CT knowledge and skills); (c)
Instructional Strategies and Technology: using computing
tools to support teaching and learning that fosters
students’ CT knowledge and skills; and (d) Technology
Activities: activities’ compatibility with curriculum goals and
instructional strategies.

Each criterion is scored on a numerical scale from
1 to 4, allowing each lesson plan to receive an aggregate
score between 4-16. A score of 1 in any of the criteria
indicates failure to meet the necessary requirements of
the criterion, while a score of 4 indicates full success in
meeting the requirements of the criterion. The first and
second authors scored the lesson plans independently
before coming together to review initial inter-rater
reliability for CT practices present and scores for each
criterion. Any inconsistencies were due to varying
interpretations of the rubric and were discussed between
the coders until an agreement was reached to ensure
internal consistency. Subsequently, one quarter of the
data were re-coded by both coders to determine inter-
rater reliability for individual evaluation criteria, aggregate
scores, and identifiable CT (Cohen, 1960). Pooled kappa
scores were K=0.80 for Fit, K=0.88 for Curriculum Goals

http://code.org

www.acm.org/education 5

Within the concept mapping lesson plans, five teachers
created social studies lessons, and within the Scratch
programming lessons, two teachers created music lessons.
Nearly half of the programming lessons were created for
ELA content (47%). This finding is noteworthy because many
efforts to introduce CT in K-8 curricula focus primarily on
mathematics and science (Lye & Koh, 2014), thereby limiting
opportunities for students to consider new and diverse
computing pathways through other content areas.

CT Practices Represented in Lesson Plans
Examination of the lesson plans uncovered a wide range
of CT practices represented in pre-service teachers’
lessons. However, there were seven instances where CT
was not discernable in the programming lesson plans in
contrast to the concept mapping lesson plans which all
contained discernable CT practices. An overview of the CT

and Technology, K=0.80 for Instructional Strategies
and Technology, K=0.88 for Tech Activities, K=0.86 for
aggregate scores, and K=0.85 for identifiable CT; all
scores ranged from K=0.80 to K=0.90 which indicate
strong agreement (McHugh, 2012). Finally, numerical
data from the rubric were analyzed quantitatively using
multiple dependent paired sample t-tests to identify
potential differences among the concept mapping and
Scratch programming lesson plans. Scores from each
individual criterion of the rubric as well as aggregate
scores for each lesson planning task were used as
dependent variables.

RESULTS

Subject Areas Represented in Lesson Plans
In the context of the lesson planning tasks, pre-service
teachers were given autonomy for choosing the content
area and disciplinary standard(s) their lesson plans
addressed. An overview of the lesson plans by subject area
is presented in Table 3.

Results demonstrate that pre-service teachers’ lesson
plans were primarily focused on the core subjects of English
Language Arts (ELA) and mathematics and to a lesser extent
science. Traditionally, elementary school teachers spend
most of their instructional time on core academic subjects
such as literacy and mathematics. Therefore, the focus
on these two areas among participants is not surprising.

Table 2. Coding Scheme with Definitions and Examples of CT Practices from Lesson Plans

CT Concept Definition Examples from Data

Abstraction Reducing complexity to define main ideas Students used a concept mapping tool to
represent the characteristics of 2D shapes
categorized by defining attributes (e.g., triangles
are closed and have three sides).

Algorithms A series of ordered steps taken to solve a
problem or achieve some end.

Students utilized Scratch to draw polygons
after given the coordinates for the vertices in a
coordinate plane.

Data (Collection,
Analysis and
Representation)

The process of gathering appropriate information

Making sense of data, finding patterns, and
drawing conclusions

Depicting and organizing data in appropriate
graphs, charts, words, or images

Students used Scratch to program events from a
story and extracted context clues from the story to
organize events in chronological order.

Problem
Decomposition

Breaking down tasks into smaller, manageable
parts.

Students created their own Scratch projects
breaking down three-digit numbers into tens,
ones, and hundreds.

Simulation Representation of models of a process.
Simulation also involves running experiments
using models.

Students developed a model to represent the
various stages of Earth’s minerals and rocks as
influenced by the flow of energy that drives the
cycle. (e.g. melting, crystallization, weathering,
deformation, and sedimentation).

(Definitions of CT from CSTA & ISTE, 2011)

Table 3. Lesson Plans by Subject Area

 Concept
Mapping

Scratch
Programming

ELA 8 16

Math 14 9

Science 7 7

Social Studies 5 0

Music 0 2

http://www.acm.org/education

Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions6

Despite receiving higher aggregate scores and higher
scores on all four criteria of the rubric, t-test results indicated
that there was a statistically significant difference in concept
mapping and programming lesson plan scores only on
the criterion of Fit (MD = 0.47, t(33) = 2.14, p = 0.04). This
finding indicates that participants were more likely to
design lessons that illustrated alignment between content,
pedagogical strategies, and use of concept mapping
software in ways that fostered the development of CT
knowledge and skills. There were no statistically significant
differences on the criteria of Curriculum Goals & Technology
(MD = 0.32, t(33) = 1.48, p = 0.15), Instructional Strategies &
Technology (MD = 0.24 , t(33) = 1.14 , p = 0.26), Technology
Activities (MD = 0.29, t(33) = 1.20, p = 0.24), and Aggregate
Scores (MD = 1.32, t(33) = 1.53, p = 0.14).

Although there were no statistically significant differences
across most of the individual criteria or aggregate scores,
data indicate that a greater number of pre-service teachers
developed concept mapping lesson plans which received
scores in a range from 9-12. A lesson plan with a high score (13-
16), for instance, illustrated the CT practice of decomposition
by having students use concept mapping to demonstrate
their understanding of place values in mathematics and
represent three-digit values in multiple formats (see Figure
1a). On the other hand, a lesson plan with a low score (4-8)
used concept mapping for strict teacher guided instruction
rather than for CT-integrated student production. In contrast,
Scratch programming lessons tended to receive either
high scores (13-16) or low scores (4-8) with fewer tending
towards the mean. A lesson plan with a high score, for instance,
addressed ELA standards in which students programmed
an animation simulating components needed for storytelling

practices incorporated into lesson plans is presented in
Table 4. As shown on Table 4, the CT practice of data was
prevalent in both lesson planning tasks. Outside of data,
however, there was greater variation in the CT practices
represented in programming lesson plans compared to
the concept mapping lesson plans.

Technology, CT, and Pedagogy across
Lesson Plans
On average, pre-service teachers’ concept mapping lesson
plans received higher scores on all four criteria of the rubric
(Fit, Curriculum Goals & Technology, Instructional Strategies
& Technology, and Technology Activities) compared to
their programming lesson plans. Average total scores for
concept mapping lesson plans were also higher (10.9 vs.
9.54). Descriptive statistics based on the application of the
rubric for both lesson plans are presented in Table 5.

Table 4. CT Practices Represented in Each Lesson Planning Task

 Concept
Mapping

Lesson

Scratch
Programming

Lesson*

Abstraction 6 3

Algorithmic
Thinking

1 6

Data 19 7

Decomposition 6 4

Simulation 1 8

* Seven of the Scratch lesson plans contained no discernable CT
concepts

Table 5. Descriptive Statistics of Rubric Scores

Lesson Plan Fit Instructional
Strategies & Tech

Curriculum
Goals & Tech

Tech
Activities Total

M SD M SD M SD M SD M SD

Concept Mapping (N= 34) 2.79 0.73 2.68 0.77 2.74 0.75 2.65 0.85 10.9 2.96

Scratch (N = 34) 2.32 1.34 2.44 1.21 2.41 1.28 2.35 1.37 9.53 5.12

Table 6. Statistical Analysis (t-Test) Results

Rubric
M

(Concept
Mapping)

M
(Scratch) M diff SD t df

p
(two-

tailed)
Effect size

(d)

Fit 2.79 2.32 0.47 1.28 2.14 33 0.04* 0.42

Instructional
Strategies & Tech

2.68 2.44 0.24 1.21 1.14 33 0.26 0.23

Curriculum Goals
& Tech

2.74 2.41 0.32 1.27 1.48 33 0.15 0.30

Tech Activities 2.65 2.35 0.29 1.43 1.20 33 0.24 0.25

Total 10.85 9.53 1.32 5.04 1.53 33 0.14 0.31

*p < .05 and effect size <0.3 is small, 0.3-0.5 is medium, and >0.5 is large (Cohen, 1988). (N=34)

www.acm.org/education 7

(see Figure 1b). However, a lesson plan with a low score, used a
premade Scratch program as a digital worksheet, disconnected
from CT-integrated standards specified in the lesson plan.
Figures 2 and 3 show histograms with distributions of the
scores for concept mapping and programming lesson plans.

A closer examination of the Scratch programming
lessons revealed that the majority of high scoring lesson
plans focused on the CT practice of simulation (n=8). The
lowest scoring group of lessons were those that had no
discernable CT (n=7). Lessons which had CT practices other
than simulation (n=19) had scores ranging from 4 to 16.
Figure 4 shows a histogram with distributions of scores for
Scratch lesson plans grouped by CT practice.

Figure 2. Score Distribution of Concept Mapping Lesson Plans
Based on Rubric

Figure 3. Score Distribution of Programming Lesson Plans
Based on Rubric

Figure 4. Distribution of Programming Lesson Plan Scores
by CT Practice

Figure 1. Decomposition with Concept Mapping (1a) and Programming Simulation in Scratch (1b) Lesson Plans

1A 1b

http://www.acm.org/education

Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions8

to offer different affordances such as creating animations,
games, and simulations. The results from this work offer
some evidence that when pre-service teachers take such
affordances into account, even when they have limited
technological knowledge, they can create lessons that
use digital tools to create CT rich learning experiences.
Nonetheless, it appears that distinct modules within
educational technology coursework are not adequately
building pre-service teachers’ knowledge of CT in the
spirit of the TPACK framework. As a result, there are three
implications for educational researchers and practitioners:

A� Different tools may be able to support different types
of CT practices (e.g., concept mapping software may
be well suited for supporting the CT practice of data
while programming may be best suited for supporting
CT practices associated with algorithmic thinking or
simulations). Hence, teacher educators need to help
pre-service teachers leverage tool affordances in ways
that optimize CT instruction and student development
of associated CT practices.

B� Pre-service teachers could benefit from a greater range
of CT-infused examples in relation to content and
pedagogy. The ScratchEd online community (https://
scratched.gse.harvard.edu/) could serve as a helpful
resource, since pre-service teachers do not yet have
adequate opportunities to observe the implementation
of CT-infused lessons in their field placements (Mouza
et al., 2017). This may help pre-service teachers
envision uses of CT in content areas beyond ELA
and mathematics. Further, scenario-based digital
simulations, such as the one used in this work (https://
teacher-moments.herokuapp.com/scenarios/), could
also help pre-service teachers practice pedagogical
ideas around CT. Teacher educators should incorporate
such opportunities across pre-service curricula to more
clearly illustrate the integration and role of CT across
different content areas.

C� While designing lesson plans is beneficial for helping
pre-service teachers connect CT to content and
pedagogy, it is important that teacher educators also
provide opportunities for implementing and reflecting
on CT lessons in authentic settings to help bridge
theory and practice.

Discussion
In this work we examined the ways in which pre-service
teachers represented CT in two different lesson planning
tasks. We also examined the ways they integrated CT with
content and pedagogy when using different digital tools.
Findings indicated the prevalent use of data across lesson
plans, particularly lessons using concept mapping (55.9%).
This finding is consistent with prior work and is largely
attributed to pre-service teachers’ familiarity with data
through other disciplines (McGinnis et al., 2019). Concept
mapping tools are primarily designed for analyzing the
connections between different types of data and concepts,
which are fundamental CT skills that can be used across
disciplines (Psycharis, 2018). Scratch lesson plans were
more likely to utilize simulations and incorporate a wider
range of CT practices. These findings indicate that widely
available computing tools for K-8 teachers have different
affordances that could be leveraged to support distinct
CT concepts. For instance, the affordances of concept
mapping software make it more difficult to utilize such
tools for simulations. In contrast, the dynamic nature of
programming tools facilitates the design of simulations
that illustrate emergent phenomena across various fields
(Weintrop et al., 2016).

Examining the ways in which pre-service teachers
integrated CT with content and pedagogy, findings
indicated that there were no significant differences
across the two types of lesson plans. In prior work, we
have documented significant differences between the
concept mapping and Scratch lesson plans with concept
mapping lessons receiving higher scores, indicating a
stronger alignment among CT, technology, content, and
pedagogy (Sheridan et al., 2020). Findings from this work
indicated that greater exposure to Scratch programming,
as provided in the redesigned programming module, and
more examples showcasing the integration of Scratch
programming across subject areas may have contributed
to pre-service teachers’ lesson designs. Nonetheless,
findings also indicated that CT was absent in some Scratch
programming lessons and that lessons tended to receive
either high or low scores. This indicates that pre-service
teachers continued to struggle integrating programming
in ways that supported both specific learning goals and
pedagogy. Lessons receiving high scores typically utilized
Scratch for simulation – a key affordance of programming.

Implications
This study demonstrates that developing successful CT-
integrated lessons using different digital tools may be
closely tied to the affordances they offer. Concept mapping
tools offer affordances for connecting concepts, ideas,
names, dates and other forms of data with one another,
making them a good candidate for promoting use of data.
Programming tools, such as Scratch, have been developed

https://scratched.gse.harvard.edu/
https://scratched.gse.harvard.edu/
https://teacher-moments.herokuapp.com/scenarios/
https://teacher-moments.herokuapp.com/scenarios/

www.acm.org/education 9

Malallah, S., & Weese, J.L. (2020). The effects of mind maps on
computational thinking. ASEE’s Virtual Conference, June
22-26, Paper ID#28329. American Society for Engineering
Education.

McGinnis, R.J., Jass Ketelhut, D., Mills,K., Hestness, E., Jeong,
H., Cabrera, L. (2019). Preservice science teachers’ intentions
and avoidances to integrate computational thinking into
their science lesson plans for young learners. Annual
International Conference of the National Association of
Research in Science Teaching (NARST), Baltimore, Maryland,
April 3, 2019.

McHugh, M. L. (2012). Interrater reliability: The kappa statistic.
Biochemia Medica, 22(3), 276-282.

Mishra, P., & Koehler, M. (2006). Technological pedagogical
content knowledge: A framework for teacher knowledge.
Teachers College Record, 108 (6), 1017-1054. https://doi.
org/10.1111/j.1467-9620.2006.00684.x

Mouza, C., & Karchmer-Klein, R. (2015). Designing effective
technology preparation opportunities for preservice
teachers. In C. Angeli and N. Valanides (Eds.), Technological
Pedagogical Content Knowledge: Exploring, developing, and
assessing TPCK (pp. 115-136). Springer.

Mouza, C., Yang, H., Pan, Y., Yilmaz Ozden, S., & Pollock, L.
(2017). Resetting educational technology coursework for
pre-service teachers: A computational thinking approach
to TPACK development. Australasian Journal of Educational
Technology, 33(3), 61-76.

Next Generation Science Standards (2013). https://www.
nextgenscience.org/

Papert, S. (1980). Mindstorms: Children, computers, and
powerful ideas. Basic Books.

Psycharis, S. (2018). STEAM in education: A literature review
on the role of computational thinking, engineering
epistemology and computational science. Computational
STEAM pedagogy (CSP). Scientific Culture, 4(2), 51-72.

Sheridan, S., Alkhateeb, B., & Mouza, C. (2020). Examining
pre-service teachers’ ability to incorporate computational
thinking into lesson plans: A comparison of two digital
technologies. In D. Schmidt-Crawford (Ed.), Proceedings
of Society for Information Technology & Teacher Education
International Conference (pp. 95-103). Online: Association
for the Advancement of Computing in Education (AACE).

References
Barr, V., & Stephenson, C. (2011). Bringing computational

thinking to K–12: What is involved and what is the role of the
computer science education community? ACM Inroads, 2(1),
48–54.

Bean, N., Weese, J., Feldhausen, R., & Bell, R.S. (2015). Starting
from scratch: Developing a pre-service teacher training
program in computational thinking. Paper presented at the
2015 IEEE Frontiers in Education Conference.

Cohen, J. (1960). A coefficient of agreement for nominal scales.
Educational and Psychological Measurement, 20(1), 37-46.

Common Core State Standards Initiative (2010). http://www.
corestandards.org/

CSTA & ISTE (2011). CT vocabulary and progression chart.
Retrieved from: https://id.iste.org/docs/ct-documents/ct-
vocabulary-and-progression-chart.pdf?sfvrsn=2

Harris, J., Grandgenett, N., & Hofer, M. (2010). Testing a TPACK-
based technology integration assessment instrument. In C. D.
Maddux, D. Gibson, & B. Dodge (Eds.), Research highlights in
technology and teacher education (pp. 323–331). Society for
Information Technology and Teacher Education (SITE).

Harris, J., & Hofer, M. (2009). Grounded tech integration.
Learning and Leading with Technology, 37(2), 22-25.

ISTE. (2012, January 3rd). Computational thinking: A digital age
skill for everyone. [Video File]. Retrieved from: https://www.
youtube.com/watch?v=VFcUgSYyRPg

International Society for Technology in Education (2016).
National educational technology standards for students.
Retrieved from http://www.iste.org

Kotsopoulos, D., Floyd, L., Khan, S., Namukasa, I. K., Somanath,
S., Weber, J., & Yiu, C. (2017). A pedagogical framework for
computational thinking. Digital Experiences in Mathematics
Education, 3(2), 154-171.

Lamprou, A., & Reppenning, A. (2018). Teaching how to teach
computational thinking. ITiCSE '18, July 2–4, 2018, Larnaca,
Cyprus.

Lye, S.Y. & Koh, J.S.L. (2014). Review on teaching and learning of
computational thinking through programming: What is next
for K-12? Computers in Human Behavior, 41, 51-61.

http://www.acm.org/education
https://doi.org/10.1111/j.1467-9620.2006.00684.x
https://doi.org/10.1111/j.1467-9620.2006.00684.x
https://www.nextgenscience.org/
https://www.nextgenscience.org/
http://www.corestandards.org/
http://www.corestandards.org/
https://id.iste.org/docs/ct-documents/ct-vocabulary-and-progression-chart.pdf?sfvrsn=2
https://id.iste.org/docs/ct-documents/ct-vocabulary-and-progression-chart.pdf?sfvrsn=2
https://www.youtube.com/watch?v=VFcUgSYyRPg
https://www.youtube.com/watch?v=VFcUgSYyRPg
http://www.iste.org

Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions10

Yadav, A., Rich, K., Schwarz, C., & Larimore, R. (2021).
Developing elementary teachers’ competencies in
integrating computational thinking ideas in classrooms:
Using a toolkit as a scaffold. In C. Mouza, A. Ottenbreit-
Leftwich, & A. Yadav (Eds). Professional Development for
In-Service Teachers: Research and Practices in Computing
Education. Information Age: Charlotte, NC.

Yang, H., Mouza, C., & Pan, Y. (2018). Examining pre-service
teacher knowledge trajectories of computational thinking
through a redesigned educational technology course.
International Conference of the Learning Sciences, June 23-
27, London, UK.

Zinth, J. (2016). Computer Science in High School Graduation
Requirements. ECS Education Trends (Updated). Education
Commission of the States.

Vivian, R., & Falkner, K. (2019, July). Identifying teachers'
Technological Pedagogical Content Knowledge for
computer science in the primary years. In Proceedings of
the 2019 ACM Conference on International Computing
Education Research (pp. 147-155).

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille,
L., & Wilensky, U. (2016). Defining computational thinking
for mathematics and science classrooms. Journal of Science
Education and Technology, 25, 127-147.

Wing, J.M. (2006). Computational thinking. Communications of
the ACM, 49 (3), 33-35.

Yadav, A., Stephenson, C., & Hong, H. (2017). Computational
thinking for teacher education. Communications of the ACM,
80(4), 55–62.

Yadav A, Zhou N, Mayfield C, Hambrusch S & Korb J.T. (2011).
Introducing computational thinking in education courses.
In Proceedings of the 42nd ACM technical symposium on
Computer science education, ACM, pp 465–470.

www.acm.org/education 11

Introduction
As society becomes increasingly computational,
computational thinking (CT) instruction has taken on a
growing role in schools (Bocconi et al., 2016; National
Research Council, 2010). Beyond focusing on CT within
computer science (CS) courses, researchers and educational
standards encourage the integration of CT into disciplinary
subjects (Lee et al., 2020), particularly science (NGSS Lead
States, 2013). This shift towards CT integration has two goals:
to provide opportunities for all students to access computing
opportunities—a first step to broadening participation in
computing courses—and to enhance science learning by
making content more authentic to modern professional
science. However, to provide CT learning opportunities that
meet these two goals, it is imperative we equip teachers
with the necessary knowledge and skills to integrate CT
in ways that are both authentic to computing and prepare
students to engage in computing as a way to learn science.
It is important to prepare teachers for this task at the
elementary level, where children are beginning to explore
their academic and vocational identities and are impacted by
positive experiences in science and computing (Tran, 2019).

Prior research has focused on preparing both pre-service
and in-service teachers to integrate CT. Teacher educators
have integrated CT learning into pre-service technology
courses (e.g., Chang & Peterson, 2018; Mouza et al., 2017)
and science methods courses (e.g., Jaipal-Jamani & Angeli,
2017; McGinnis et al., 2020). Further, researchers have
encouraged focusing on both technology and disciplinary
teaching (Blikstein, 2018; Yadav et al., 2017). Studies have
built pre-service and in-service teacher knowledge using
CT tools such as robotics (e.g., Jaipal-Jamani & Angeli,
2017), block-based programming environments (e.g., Bean
et al., 2015; Bort & Brylow, 2013; Dodero et al., 2017), and
simulations (e.g., Ahamed et al., 2010).

Taken together, this research has had mixed results.
While both pre-service and in-service teachers showed
an improved understanding of CT following professional
development (PD) (Jaipal-Jamani & Angeli, 2017; Curzon et
al., 2014; Yadav et al., 2014) and increased self-efficacy and
attitudes about the importance of CT (Bower et al., 2017;
Simmonds et al., 2019), some still had misconceptions
about CT (Chang & Peterson, 2018; Lamprou & Repenning,
2018) and had difficulty writing lesson plans integrating

Merijke Coenraad, Lautaro Cabrera, Heather Killen, Dr. Jan Plane, and Dr. Diane Jass Ketelhut,
University of Maryland - College Park

Corresponding Author: Merijke Coenraad, mcoenraa@umd.edu

Abstract

Due to the increasingly computational nature of professions, computational thinking (CT) is of growing
importance to authentic science learning and the education of future scientists� To meet this need, CT

integration is expanding within classrooms� We provided professional development (PD) for pre-service and
in-service teachers focused on integrating CT into elementary science� At the PD culmination, 36 teachers
wrote and enacted 22 unique CT-integrated science lessons, individually or with teaching partners� Waterman
et al� (2020) suggested three levels of integrating CT within lesson plans: exist, labeling already present CT;
enhance, adding CT components; and extend, adding activities supporting science learning with CT� Using this
framework, we examined these lesson plans, their alignment to CT practices, and the level of CT integration�
Our results indicated 83�3% of teachers successfully integrated CT within their lessons, focusing on Using Data,
Computational Simulations, and Programming practices� Further, we found the level of integration differed
by CT practice� Data practices generally led to exist level integration, Computational Simulation practices to
enhance level integration, and Programming practices tended to extend science lessons or exhibit the science
topic with Programming� Our data demonstrated teachers can write CT-integrated lesson plans, but all levels of
integration are not equal opportunities for authentic scientific learning� As the field seeks to offer equitable and
quality CT experiences for all students integrated within disciplinary subjects, we must understand the level of
CT integration and consider how different levels of integration could affect opportunities for students�

Computational Thinking Integration in
Elementary Teachers' Science Lesson Plans

http://www.acm.org/education
mailto:mcoenraa@umd.edu

Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions12

Within the PD, we focused on supporting pre-service
and in-service teachers to write and enact CT-integrated
lesson plans within their elementary science classes. In this
paper, we will present the lesson plans teachers developed
and examine the CT practices integrated and the level of CT
integration achieved according to a framework designed by
Waterman et al. (2020). We aim to determine the level of CT
integration in the lessons and identify patterns of integration
to answer the research question: To what extent do pre-
service and in-service teachers integrate computational
thinking into elementary science lesson plans?

METHODS

We designed and implemented the Science Teaching
Computational Thinking Inquiry Group (STIGCT) to collaborate
with teachers around integrating CT in elementary science
lessons within a community of practice (Coenraad et al., 2021;
PD guide and activities at https://education.umd.edu/stigct).
STIGCT was a semester-long PD for both pre-service and in-
service teachers developed through Design-Based Research
(Brown, 1992; Barab, 2006). Teachers and researcher facilitators
met for four 165-minute sessions (February - May 2019; 11
hours total). Prior to participating in STIGCT, all teachers were
introduced to CT through their pre-service science methods
course or a workshop for in-service teachers. The course and
the workshop were designed to cover the same information
to ensure that both groups received equal grounding in CT.
This included an introduction to CT and the Next Generation
Science Standards, presentation of our CT framework, and
completing plugged and unplugged CT activities.

CT concepts and tools into disciplinary contexts (Bort &
Brylow, 2013; Mouza et al., 2017). Therefore, it is important
to investigate how best to support both pre-service and
in-service teachers in enacting their knowledge of CT when
designing integrated lessons and implementing them in
their classrooms.

Our work examined how pre-service and in-service
elementary teachers (herein referred to as “teachers”)
learned to integrate CT into elementary science teaching
through PD. We focused on supporting teachers to write
and enact CT-integrated lesson plans. To support our
instruction, we developed the Framework for Teachers’
Integration of Computational Thinking into Elementary
Science specifically focused on supporting elementary
teachers within a CT for science perspective (Ketelhut et
al., 2019). Based on Weintrop et al. (2016) and informed by
our prior work with teachers, the framework was designed
with three main considerations: eliminating computer
science jargon teachers found inaccessible, selecting
practices elementary-aged children could engage in,
and differentiating CT from scientific inquiry—a distinction
we found was blurry for teachers. The framework divides
CT into four sets of practices: Using Data, Programming,
Computational Simulations, and Systems Thinking from
a CT Perspective (Figure 1; for detailed definitions of
each practice, see Cabrera et al., 2021). We introduced
the framework to teachers early in their PD and used it
throughout the program as a definition of CT and a set
of concrete practices students should engage in during
science learning. Within this paper, we also used this
framework when analyzing teachers’ enactments of CT in
their classrooms.

Figure 1. Framework for Teachers’ Integration of Computational Thinking into Elementary Science

https://education.umd.edu/stigct

www.acm.org/education 13

of integration presented by Waterman et al. (2020), we
included a fourth category, exhibit, which was identified
inductively during our coding process. Lessons in this
category used a CT activity, typically programming, to
exhibit science knowledge students gained through other
means. For example, creating a Scratch animation about
an animal in its habitat based on book or online research.
This can be seen in Figure 2 where CT and science are both
present, but do not overlap.

During our analysis we first identified the CT practices
integrated into each lesson plan. Two researchers read
20% of the data and reached 85.7% interrater reliability. The
two researchers then discussed all disagreements to reach
100% agreement. One researcher then coded the remaining
lesson plans. In a second round of coding, we used
Waterman et al.’s (2020) framework to label each lesson plan
as exist, enhance, or extend. Two researchers coded a subset
of the lessons, discussed discrepancies in the coding, and
completed the coding after reaching agreement. Following
this coding, a portion of the lesson plans were identified
as not aligning to any of Waterman et al.’s categories. We
therefore added a fourth category for these lessons (exhibit)
and re-coded the lesson plans. The initial agreement
between the researchers was 90.9% (20 of 22 lessons),
which was elevated to 100% after discussing discrepancies.

RESULTS

Overall, teachers were able to effectively incorporate CT
into an elementary science lesson plan following their
participation in STIGCT. Thirty of the 36 teachers (83.33%)
submitted a lesson plan containing at least one CT practice
(16 of the 22 unique lesson plans; 73.73%). Within the 22
unique lesson plans, researchers identified the use of three
of the four CT practices (Figure 3): Using Data (9 lessons;
40.91%), Computational Simulations (8 lessons; 36.36%),
and Programming (7 lessons; 31.82%). No lesson plans
contained Systems Thinking from a CT Perspective. Six
lesson plans (27.27%) included no CT, despite teachers
self-identifying practices in the lesson. Some lesson
plans contained practices from multiple categories of
CT practices (Figure 3). This overlap was most common

Each STIGCT session focused on one of the four CT
practices and included three sections: presentation of the
CT practice, CT-integrated science activities from a student
lens, and development of a lesson seed (the beginning of a
lesson plan) with grade-similar peers and a facilitator. Each
teacher selected one lesson seed and developed it into a
full lesson plan they taught to their class. In the final session,
teachers shared and reflected upon their lesson plan and
teaching experience.

In total, 36 teachers participated in STIGCT and
submitted a lesson plan (20 pre-service, 16 in-service). They
taught in elementary schools in the Mid-Atlantic region of
the United States. Because some participating pre-service
and in-service teachers worked together as a mentor/
mentee pair or on a grade-level team at the same school,
the teachers developed 22 unique lesson plans. In this
paper, we analyze these lesson plans using Waterman et al.’s
framework (2020) to determine the level of CT integration.

To categorize the level of CT integration within lessons,
we modified Waterman et al’s. (2020) three-part framework:
exist, enhance, extend (Figure 2). In their framework, lessons
are considered to be at the exist level if the “CT concepts,
skills, and practices already exist in the lesson and can
simply be called out or elaborated upon” (Waterman et
al., 2020, p. 54). As seen in Figure 2, this is an instance of
CT within a science lesson, but additional science learning
is not supported by the CT. This level identifies ways CT
is already in the curriculum and can act as a base for
deeper integration. In their second level, enhance, CT is
integrated based on the “creation of additional tasks or
lessons to enhance the disciplinary concept and provide
clear connection to computing concepts that are present”
(Waterman et al., 2020, p. 55). In these lessons, students
go beyond what is already in the curriculum, utilizing CT
skills in service of their disciplinary learning. In Figure 2, this
is represented by multiple instances of CT expanding the
science lesson. In their final level, extend, teachers add CT
activities, typically programming (Waterman et al., 2020).
In our interpretation, we looked for teachers using CT to
promote science learning through computational activities,
extending students’ learning of a disciplinary concept.
As shown in Figure 2, the science lesson is expanded by
the CT focus within the lesson. In addition to the levels

Figure 2. Levels of CT Integration

http://www.acm.org/education

Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions14

(Figure 4). Two lessons (12.5%) extended science learning
through the integration of CT tools and practices. Finally,
three lessons (18.75%) integrated science and CT on an
exhibit level, using a relevant science concept as the topic
exhibited through the CT learning experience, but doing so
in a way that does not explicitly increase science learning
and could be replaced with a different disciplinary topic
without changing the activity.

We also found patterns between the CT practices within
lessons and the level of CT integration (Figure 4). Lessons
identified to include only Using Data practices were all at
an exist level of integration (3 of 3 lessons; Table 1 Example
A). Further, those that included Computational Simulation
practices integrated CT at the extend level (8 of 8 lessons;
Table 1 Example B). Lessons that integrated Programming
practices tended to reach the extend (2 of 2 lessons; Table
1 Example C) or exhibit (3 of 3 lessons; Table 1 Example
D) level of integration. These trends point to a relationship
between the CT practices enacted within a lesson and the
level of integration the lesson reached.

Discussion
Overall, teachers successfully integrated CT into their
elementary science lesson plans across most CT practices.
But integrations varied in level of integration and coverage
of CT practices. Our results show that no teachers
integrated Systems Thinking from a CT Perspective into
their lesson plans. This raises questions about whether
systems thinking around quantitative relationships is
developmentally appropriate for students at the elementary
level and whether further support is needed for teachers
to feel confident engaging their students in discussions
of systems thinking. It is common for elementary classes
to examine systems such as the food web or the water

between Using Data and Computational Simulations.
In these lessons, students typically collected data using
a computational simulation and analyzed that data for
patterns and trends to make conclusions (see Table 1
Example B below).

While teachers who participated in STIGCT were
able to integrate CT practices within their lesson plans
generally, prior research has demonstrated not all CT
integration within lesson plans provides students with equal
opportunities to deeply engage with CT (Bort & Brylow,
2013; Mouza et al., 2017). Of the 16 unique teacher lesson
plans containing at least one CT practice, three lessons
(18.75%) integrated CT at an exist level, identifying CT
already present within a typical science lesson plan. The
greatest number of lessons, eight (50%), integrated CT at
an enhance level, using CT to support science learning by
adding CT experiences with computing tools or practices

Figure 3. CT practices identified within teacher lesson plans

Figure 4. CT Integration levels in elementary science lesson plans

www.acm.org/education 15

to lead to instructional change and, therefore, new
computational learning opportunities.

All lessons at the enhance level of integration utilized
Computational Simulations (8 of 8 lessons). As the most
popular tool used by teachers within their lesson plans,
simulations appear to be a comfortable computational tool
for integration. Yet, while teachers seemed comfortable
integrating pre-made online simulations, they did not create
their own simulations. Our findings suggest that integrating
simulations can be an important starting point for teachers
to integrate CT that can enhance science learning and
inquiry. These integrations are particularly productive
when studying scientific phenomena that are temporally
too far away or spatially too small or large to see. However,
future research could examine how teachers who feel
comfortable integrating pre-made simulations could be
supported to integrate CT more deeply by assessing and
creating simulations with their students. While there is some
important work on how students can engage with these
practices (Basu et al., 2016; diSessa, 2000; Wilensky & Rand,
2015), the support that teachers need to venture into the
extend level with simulations is less clear.

cycle, but these investigations rarely reach the point of
interrogating the quantitative relationships within the
system or representing the system using a computational
tool. Future research could investigate whether elementary
students can engage in systems thinking practices and
develop strategies for teachers to integrate Systems
Thinking from a CT Perspective.

The relationships between integration levels and CT
practices we found provide insight into current gaps in
knowledge and possibilities for future research around
supporting teachers to write lessons with deeper levels
of integration. We found that teachers who included
only Using Data practices integrated CT and science at
the exist level (3 of 3 lessons). This finding can partially
be explained by the likeness between CT data practices
and scientific inquiry, where students collect and analyze
data. Further research could explore how PD can support
teachers in leveraging computational aspects of data
collection and analysis to move beyond exist level
integration and into the enhance and extend levels. This
effort is particularly important given that simply naming
existing activities aligned with CT practices is unlikely

Table 1. Example lesson plans at each level of integration

Example Level of
Integration

Grade and
Topic

CT Practices
Integrated Lesson Activities

A Exist 1st grade

Growing
Lima Beans

Using Data:
• Creating graphs or

charts

• Finding patterns
and relationships in
datasets

Students dissect a lima bean while making qualitative
observations. Then, students plant two lima beans and
place one in a lit environment (i.e., the window sill) and
one in a dark environment (i.e., a dark room). Every two
days, students measure and graph the height of their
plants. As a class, students draw conclusions about light
and plant growth based on their data.

B Enhance 4th grade

Energy
Transfer

Using Data:
• Collecting data

with computational
devices

Computational
Simulations:
• Using computational

simulations

The class reviews the vocabulary term collision and
discusses the types of energy involved in collisions.
Then, students use the PhET online simulation Collision
Lab to collect data about two objects colliding. Students
use the simulation to manipulate variables like the mass
of the objects and collect data about each collision for
analysis.

C Extend 5th grade

Water
Pollution

Programming:
• Coding

Using Data:
• Collecting data

with computational
devices

Students code a micro:bit to detect light levels. Then,
using their own water samples, students measure how
much light passes through water from a flashlight.
Students record their data and analyze it using guided
questions to make conclusions about pollution levels
within the body of water from which they took their
sample.

D Exhibit 3rd grade

Weather
Animation

All Programming
Practices

Students are introduced to extreme weather with an
introductory video and sharing their own experiences.
Then, students explore an extreme weather event by
conducting guided research. To present their research,
students create a Scratch animation “movie” telling
about their weather event.

http://www.acm.org/education

Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions16

Implications
Due to the nature of our study and the data we examine,
implications of our work are particularly relevant to teacher
educators as practitioners responsible for supporting
teachers as they learn to integrate CT into disciplinary
lessons. When planning and implementing PD, teacher
educators should:

• Focus on supporting teachers to integrate CT in service
of science learning rather than only building CT or CS
skills.

• Provide explicit discussions of the levels of CT
integration and moving beyond finding CT within the
existing science curriculum.

• Present examples of Programming activities integrating
CT at the exhibit and extend levels to demonstrate the
differences in CT and science integrated learning they
promote.

• Build teacher efficacy and confidence with
programming environments to build their own
simulations and lead students to use programming to
increase understanding of science phenomena.

• Examine the barriers to integration teachers are facing
and support them integrating CT at the enhance and
extend levels despite the barriers they might face to
provide more equitable learning experiences across CT
practices for all students.

References
Barab, S. (2006). Design-Based Research: A methodological

toolkit for the learning scientist. In R. K. Sawyer (Ed.), The
Cambridge Handbook of the Learning Sciences (Issue 10,
pp. 153–169). Cambridge University Press.

Basu, S., Biswas, G., Sengupta, P., Dickes, A., Kinnebrew, J.
S., & Clark, D. (2016). Identifying middle school students’
challenges in computational thinking-based science
learning. Research and Practice in Technology Enhanced
Learning, 11(1), 13. https://doi.org/10.1186/s41039-016-
0036-2

Bean, N., Weese, J., Feldhausen, R., & Bell, R. S. (2015). Starting
from scratch: Developing a pre-service teacher training
program in computational thinking. Proceedings of 2015
IEEE Frontiers in Education Conference (FIE). https://doi.
org/10.1109/FIE.2015.7344237

Blikstein, P. (2018). Pre-college computer science education: A
survey of the field. https://goo.gl/gmS1Vm.

Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., Engelhardt,
K., Kampylis, P., & Punie, Y. (2016). Developing computational
thinking in compulsory education: Implications for policy
and practice. In JRC Science for Policy Report. https://doi.
org/10.2791/792158

Regarding Programming practices, our findings
show teachers need support to differentiate between
programming activities that extend science learning
(2 lessons) and those that only integrate science on an
exhibit level (3 lessons). Although not included in the
original Waterman et al. (2020) framework, we found
exhibit to be a unique level of integration, representing
the integration of science as a thematic topic in CT
activities without learning-supportive integration. While
the creation of a Scratch animation about a science topic
is a valuable exercise to learn programming skills, the
activity does not support further science learning—it can
only serve as an assessment of content understanding.
The emergence of the exhibit category raises questions
about the integration of Scratch within CT lessons.
As a tool utilized during our PD, teachers had some
familiarity with Scratch. Because it is a programming
environment, demonstrating a clear connection to coding
and CS, the addition of Scratch was a clear-cut way for
teachers to ensure they were integrating CT practices.
Yet, the propensity to do so at a topic level rather than
using more advanced computing such as conditionals
or programming a simulation points to teachers
potentially lacking confidence or knowledge with either
programming tools, science, or both. To support teachers
in making the differentiation between extend and exhibit,
PD opportunities could include demonstrating examples
of each and the differences in CT and science integrated
learning they promote and providing further examples of
programming that supports scientific learning.

The varied levels of CT integration highlight a need
to examine the implications of different integration levels
for equal and inclusive CT opportunities for students.
As our findings demonstrate, even with PD focused on
integrating CT in science, teachers have varied success
writing CT-integrated science lesson plans. This has
implications for the students in their classrooms, particularly
because focusing on providing greater access to CT
within classrooms is not enough to ensure equitable CT
experiences for all students (Coenraad et al., 2020). If
some teachers integrate at the exist level and others at
the enhance or extend level, students are getting different
levels of integration and thus different levels of preparation
for the use of computing in jobs both within and outside
of CS. Future research should consider the connections
between school environment and teachers’ level of CT
integration to further understand the inequalities that
could be perpetuated by different levels of CT integration.
Integrating CT into science provides opportunities for more
students to experience CT than if students only received
instruction in elective or after school programs. However,
as the field works toward providing equitable computing
opportunities for all students, paying attention to the level
of integration and the practices teachers are integrating will
ensure quality opportunities for students.

https://doi.org/10.1186/s41039-016-0036-2
https://doi.org/10.1186/s41039-016-0036-2
https://doi.org/10.1109/FIE.2015.7344237
https://doi.org/10.1109/FIE.2015.7344237
https://goo.gl/gmS1Vm
https://doi.org/10.2791/792158
https://doi.org/10.2791/792158

www.acm.org/education 17

Jaipal-Jamani, K., & Angeli, C. (2017). Effect of robotics on
elementary preservice teachers’ self-efficacy, science
learning, and computational thinking. Journal of Science
Education and Technology, 26, 175–192. https://doi.
org/10.1007/s10956-016-9663-z

Ketelhut, D. J., Cabrera, L., McGinnis, R. J., Plane, J., Coenraad,
M., Killen, H., & Mills, K. M. (2019). Exploring the Integration
of computational Thinking into Preservice Elementary
Science Teacher Education. National Science Foundation
STEM+C PI Meeting. http://stemcsummit.edc.org/slides/
DianeJass.pdf

Lamprou, A., & Repenning, A. (2018). Teaching how to teach
computational thinking. Proceedings of the 23rd Annual
ACM Conference on Innovation and Technology in Computer
Science Education - ITiCSE 2018, 69–74. https://doi.
org/10.1145/3197091.3197120

Lee, I., Grover, S., Martin, F., Pillai, S., & Malyn-Smith, J. (2020).
Computational thinking from a disciplinary perspective:
Integrating computational thinking in K-12 science,
technology, engineering, and mathematics education.
Journal of Science Education and Technology, 29(1), 1–8.
https://doi.org/10.1007/s10956-019-09803-w

McGinnis, J. R., Hestness, E., Mills, K., Ketelhut, D., Cabrera, L., &
Jeong, H. (2020). Preservice science teachers’ beliefs about
computational thinking following a curricular module within
an elementary science methods course. Contemporary
Issues in Technology and Teacher Education, 20(1), 85-107.

Mouza, C., Yang, H., Pan, Y. C., Yilmaz Ozden, S., & Pollock, L.
(2017). Resetting educational technology coursework for
pre-service teachers: A computational thinking approach
to the development of technological pedagogical content
knowledge (TPACK). Australasian Journal of Educational
Technology, 33(3), 61–76. https://doi.org/10.14742/ajet.3521

National Research Council. (2010). Report of a workshop on the
scope and nature of computational thinking. http://www.nap.
edu/catalog/12840

NGSS Lead States. (2013). Next Generation Science Standards:
For States, By States. http://www.nextgenscience.org

Simmonds, J., Gutierrez, F. J., Casanova, C., Sotomayor, C., &
Hitschfeld, N. (2019). A teacher workshop for introducing
computational thinking in rural and vulnerable environments.
SIGCSE ’19 - Proceedings of the 50th ACM Technical
Symposium on Computer Science Education, 1143–1149.
https://doi.org/10.1145/3287324.3287456

Bort, H., & Brylow, D. (2013). CS4Impact: Measuring
computational thinking concepts present inCS4HS
participant lesson plans. Proceedings of the 44th ACM
Technical Symposium on Computer Science Education
(SIGCSE ’13), 427–432.

Bower, M., Wood, L., Lai, J., Howe, C., Lister, R., Mason, R.,
Highfield, K., & Veal, J. (2017). Improving the computational
thinking pedagogical capabilities of school teachers.
Australian Journal of Teacher Education, 42(3), 53–72.

Brown, A. L. (1992). Design experiments: Theoretical and
methodological challenges in creating complex interventions
in classroom settings. Journal of the Learning Sciences, 2(2),
141–178. https://doi.org/10.1207/s15327809jls0202_2

Cabrera, L., Ketelhut, D. J., Mills, K., Coenraad, M., Killen, H.,
& Plane, J. (2021). Designing a Framework for Teachers’
Integration of Computational Thinking into Elementary
Science. [Manuscript submitted for publication].

Chang, Y., & Peterson, L. (2018). Pre-service Teachers ’
Perceptions of Computational Thinking. Journal of
Technology and Teacher Education, 26(3), 353–374.

Coenraad, M., Cabrera, L., Byrne, V., Killen, H., Ketelhut, D.
J., Mills, K. M., & Plane, J. (2021). STIGCT: The Design of a
Science Teaching Computational Thinking Inquiry Group to
Promote CT Integration in Elementary Science. [Manuscript
submitted for publication].

Coenraad, M., Mills, K., Byrne, V. L., & Ketelhut, D. J. (2020).
Supporting teachers to integrate computational thinking
equitably. Proceedings of 2020 Research on Equity and
Sustained Participation in Engineering, Computing, and
Technology, RESPECT 2020. https://doi.org/https://doi.
org/10.1109/RESPECT49803.2020.9272488

Curzon, P., McOwan, P. W., Plant, N., & Meagher, L. R. (2014).
Introducing teachers to computational thinking using
unlugged storytelling. Proceedings of the 9th Workshop
in Primary and Secondary Computing Education
(WIPSCE 2014), 82–92. https://doi.org/https://doi.
org/10.1145/2670757.2670767

diSessa, A. A. (2000). Changing Minds: Computers, Learning,
and Literacy. MIT Press.

Dodero, J. M., Mota, J. M., & Ruiz-Rube, I. (2017). Bringing
computatonal thinking to teachers’ training: A workshop
review. Proceedings of the 5th International Conference on
Technological Ecosystems for Enhancing Multiculturality, 1–6.
https://doi.org/10.1145/3144826.3145352

http://www.acm.org/education
https://doi.org/10.1007/s10956-016-9663-z
https://doi.org/10.1007/s10956-016-9663-z
http://stemcsummit.edc.org/slides/DianeJass.pdf
http://stemcsummit.edc.org/slides/DianeJass.pdf
https://doi.org/10.1145/3197091.3197120
https://doi.org/10.1145/3197091.3197120
https://doi.org/10.1007/s10956-019-09803-w
https://doi.org/10.14742/ajet.3521
http://www.nap.edu/catalog/12840
http://www.nap.edu/catalog/12840
http://www.nextgenscience.org
https://doi.org/10.1145/3287324.3287456
https://doi.org/10.1207/s15327809jls0202_2
https://doi.org/https
http://doi.org/10.1109/RESPECT49803.2020.9272488
http://doi.org/10.1109/RESPECT49803.2020.9272488
https://doi.org/https
http://doi.org/10.1145/2670757.2670767
http://doi.org/10.1145/2670757.2670767
https://doi.org/10.1145/3144826.3145352

Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions18

Wilensky, U., & Rand, W. (2015). An Introduction to Agent-
Based Modeling: Modeling Natural, Social, and Engineered
Complex Systems with NetLogo. Cambridge, Massachusetts;
London, England: The MIT Press. doi:10.2307/j.ctt17kk851

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, J. T.
(2014). Computational thinking in elementary and secondary
teacher education. ACM Transactions on Computing
Education, 14(1), 1–16. https://doi.org/10.1145/2576872

Yadav, A., Stephenson, C., & Hong, H. (2017). Computational
thinking for teacher education. Communications of the ACM,
60(4), 55–62. https://doi.org/10.1145/2994591

Tran, Y. (2019). Computational Thinking Equity
in Elementary Classrooms: What Third-Grade
Students Know and Can Do. Journal of Educational
Computing Research, 073563311774391. https://doi.
org/10.1177/0735633117743918

Waterman, K. P., Goldsmith, L., & Pasquale, M. (2020).
Integrating computational thinking into elementary science
curriculum: an examination of activities that support
students’ computational thinking in the service of disciplinary
learning. Journal of Science Education and Technology, 29(1),
53–64. https://doi.org/10.1007/s10956-019-09801-y

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille,
L., & Wilensky, U. (2016). Defining computational thinking
for mathematics and science classrooms. Journal of Science
Education and Technology, 25(1), 127–147.

https://doi.org/10.1145/2576872
https://doi.org/10.1145/2994591
https://doi.org/10.1177/0735633117743918
https://doi.org/10.1177/0735633117743918
https://doi.org/10.1007/s10956-019-09801-y

www.acm.org/education 19

Introduction
Computational thinking (CT) is an important skill, even
at the elementary level (Wing, 2006), and has received
increased attention due to promotion of teaching computer
science in schools and the incorporation of standards
related to CT in science (NGSS Lead States, 2013) and
mathematics (Pérez, 2018). In particular, creating and
debugging algorithms are CT skills (K-12 Computer
Science Framework, 2016) that translate across all areas
of life (Yadav et al., 2016). Because the focus of most early
studies with young students was on whether they could
learn to program (e.g., Wyeth, 2008; Wyeth & Purchase,
2002), there has been less focus on investigating the
methods that best promote young students’ CT skills,
including their debugging practices. Such investigations
are needed to provide teachers with instructional activities
and methods that could best support students’ debugging
practices. When designing our study, we focused our
attention on two potentially impactful methods to support
young students’ programming and debugging: play and
worked examples.

Learning and Debugging Through Play
According to constructivist views of learning, play
provides a rich context in which children construct
knowledge by exploring concepts and building on prior
experiences (Ginsburg, 2006; Parks & Graue, 2015). In
a programming context, play could involve children
experimenting with sequencing blocks to see how
robots’ movements change (Highfield, 2015). One study
found that young children using KIBO tangible blocks
to program a robot to do dance moves improved their
sequencing ability; after playing, they scored high on
placing KIBO blocks in the correct order to match a story
of a robot’s movements (Sullivan & Bers, 2018). Children
may also naturally debug during their play. Preschoolers
playing with KIBO could identify and fix a program with a
missing block or incorrect sequence (McLemore & Wehry,
2016). Further, some students successfully used the step-
by-step debugging feature of the Robo-Blocks system
to help them find their code’s bugs (Sipitakiat & Nusen,
2012). This process of comparing the input with the output
step-by-step, tracing the code, is a common debugging

Laura Bofferding, Sezai Kocabas, Mahtob Aqazade, Ana-Maria Haiduc, and Lizhen Chen,
Purdue University

Corresponding Author: Laura Bofferding, LBofferd@purdue.edu

Abstract

A lthough learning to program can improve students’ computational thinking skills—specifically, creating
and debugging algorithms—we need to determine instructional strategies that foster such skills in young

students� We investigated the role of analyzing worked examples that focused on creating and debugging
programming algorithms with 28 first and 27 third graders� Students played a tangible, block-based programming
game, Coding Awbie, across six, 20-minute sessions and were randomly assigned to also analyze programming
worked examples during sessions one to three (immediate group) or sessions four to six (delayed group)� To
measure changes in creating and debugging algorithms before and after their worked example intervention,
students completed a pretest, midtest (after session three), and a posttest� By midtest, students who were in the
immediate group wrote significantly more accurate programs, although both groups had similar accuracy when
given the chance to debug their programs� By posttest, both groups made significant gains in accuracy of their
programs� Overall, analyzing worked examples proved to be a powerful support for students’ programming
skills in creating and debugging algorithms� However, students’ common bugs indicate that additional worked
examples should focus on double-counting errors�

The Effect of Play and Worked Examples
on First and Third Graders’ Creating and
Debugging of Programming Algorithms

http://www.acm.org/education
mailto:LBofferd@purdue.edu

Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions20

study, hypothesizing they could help students use an
understanding the code debugging strategy, which
involves reasoning about what the code is doing (Murphy
et al., 2008).

Current Study
Although worked examples can support older students’
programming, there is scant evidence (an exception is
Joentausta & Hellas, 2018) on whether a similar approach
could be fruitful for early elementary students as compared
to playing around with a programming game. Therefore, we
set up our study design to compare the effects of playing
a programming game with versus without the support
of analyzing worked examples. Given that some novices
have difficulty using worked examples (Ichinco et al.,
2017), we also investigated whether analyzing the worked
examples would be more productive for younger students’
programming and debugging as they were beginning to
play with the programming game versus after they had
played with the game for three sessions.

When choosing the programming environment to use
with the first and third graders in our study, we looked
toward prior studies. Algorithmic thinking and debugging
activities for younger children largely involve students
learning to use tangible, block-based programming tools
(e.g., KIBO blocks; Sullivan & Bers, 2018). These tangible
programming blocks typically control some type of robot
(tangible output) and have been used successfully with
students as young as preschool (Elkin et al., 2016). Closer to
traditional programming, studies with older students (ages
9-12) involve digital output, where tangible blocks control
a character on a screen (e.g., AlgoBlocks in Suzuki & Kato,
1995; see also Wang et al., 2013), and non-tangible block-
based programming environments with digital output
(e.g., ScratchJr). Given the success of tangible materials,
we chose to use the programming game, Coding AwbieTM,
which uses tangible blocks from the Osmo system and
involves a digital output that helped us provide a consistent
programming environment.

In summary, we explored how first- and third-grade
students’ programs and debugging changed on a
tangible, block-based programming task, depending on
if they analyzed worked examples during their first three
out of six play sessions (immediate group) or during their
last three play sessions (delayed group). Specifically, we
explored the following research questions: (1) What is
the effect of analyzing worked examples versus playing
on first and third graders’ programming accuracy?
(2) What are students’ common programming bugs?
How do students debug them? This study takes an
important step toward informing teachers about ways
to effectively support young learners’ creating and
debugging of algorithms by focusing on a potentially
impactful instructional tool: worked examples.

strategy (Murphy et al., 2008). Given the potential benefits
of play, we included opportunities for students to play
with programming in our study.

However, students may struggle to successfully debug
through play alone (McLemore & Wehry, 2016; Sipitakiat
& Nusen, 2012). Tinkering or randomly changing code,
which could arise during play, is usually unsuccessful as
a debugging strategy (Murphy et al., 2008). In one study,
third graders playing with tangible programming blocks
were not always successful in their debugging because
they were not sure how to evaluate whether the programs
produced a desired output (Wyeth, 2008). Moreover,
students navigating a robot with Robo-Blocks often thought
the last block was the bug, especially when an early bug
in the code was the cause of later problems (Sipitakiat &
Nusen, 2012).

Learning and Debugging with Worked
Examples
Another potential approach to helping students make
sense of programming code is using worked examples.
Worked examples present students with a set of steps
used to solve a problem and can highlight common
programming bugs (Griffin, 2016; Joentausta & Hellas,
2018; see also Atkinson et al., 2000; see Table 2 for
examples). Given worked examples’ step-by-step nature,
we hypothesized that they could help students use the
tracing the code debugging strategy (Murphy et al., 2008).
Further, studying incorrect worked examples has helped
older students program with fewer bugs and debug a
series of steps in an algorithm (Griffin, 2016). Therefore, we
chose to include opportunities for students to analyze both
correct and incorrect worked examples in our study.

Although worked examples are particularly helpful
for novices, if novices do not recognize what information
in worked examples is important to the problem-solving
task, analyzing worked examples could be misleading
(Margulieux et al., 2016) or unhelpful (Ichinco et al., 2017).
For example, Ichinco et al. (2017) hypothesized that
students in their study (ages 10-15) either did not know
what parts and commands to focus on in the examples or
did not know how to map them to the programming task.
Using subgoal labels (i.e., labels to help explain different
steps in the code) accompanied by explanation prompts
can help students overcome these issues (Joentausta
& Hellas, 2018; Margulieux et al., 2016; Yan & Lavigne,
2014). In a study with third graders using LightBot,
students who studied correct worked examples with
subgoal labels when they encountered programming
difficulties completed more levels of programming
challenges than students using worked examples without
subgoal labels (Joentausta & Hellas, 2018). We included
both subgoal labels and explanation prompts in our

www.acm.org/education 21

in a media room with multiple classes of students (both
participants and non-participants) attending with their
teachers at a time. Although several of the third graders
had tried Coding AwbieTM prior to the study, we presented
all materials assuming no knowledge of the game or
programming.

Analyzing Worked Examples
Students analyzed a set of two or three worked examples
(see Table 2) during sessions 1-3 for the immediate group
and sessions 4-6 for the delayed group (see Table 1). The
worked examples were modeled after those developed by
Julie Booth and her colleagues in TheAlgebraByExample
Team (n.d.) and ways of presenting worked examples in
programming (Griffin, 2016; Skudder & Luxton-Reilly, 2014).
We designed the worked examples to address common
challenges that students encountered during the first year
of our study. Based on literature showing the advantages
of incorrect worked examples, we included both a correct
worked example and an incorrect worked example in each
set. Further supporting good debugging practice, each
example included explanation prompts that asked student
pairs to identify why certain code was used, what it did,
or what the bug in the program was. Finally, students had
to apply ideas from the examples to a new task (i.e., Your

METHODS

Participants and Design
This paper uses data from the second year of a two-year
study on exploring factors for effective commenting
and debugging using the tangible programming game,
Coding AwbieTM. We worked with 28 first- and 27 third-
grade students from one public elementary school in the
midwestern US with approximately 45% qualifying for
free and reduced-price lunch and about 11% classified
as English-Language-Learners. Students first completed
a pretest, after which they were assigned to one of two
groups: students who analyzed worked examples during
their first three play sessions (immediate group) or students
who analyzed worked examples during their last three
play sessions (delayed group). By having two orders in
which students analyzed worked examples, we were
able to determine the effect of using worked examples
(WE) as an instructional tool for novices before they had
a chance to play versus after they had played with a
programming game (see Table 1 for the study design).
For example, students in the delayed group spent the first
three sessions in grade-level pairs only playing the game.
Almost all activities took place with the researchers at
tables outside of students’ classrooms; the only exception
was the programming presentation, which took place

Table 1. Study Design

Activity Format Immediate Group Time
(min.) Delayed Group Time

(min.)

Pretest Individual
Program commenting
and debugging tasks

varied
Program commenting
and debugging tasks

varied

Intervention
session 1

Grade-level pairs
Analyze WE set 1

Play Coding AwbieTM

~10

~10
Play Coding AwbieTM 20

Intervention
session 2

Grade-level pairs
Analyze WE set 2

Play Coding AwbieTM

~10

~10
Play Coding AwbieTM 20

Intervention
session 3

Grade-level pairs
Analyze WE set 3

Play Coding AwbieTM

~10

~10
Play Coding AwbieTM 20

Midtest Individual
Program commenting
and debugging tasks

varied
Program commenting
and debugging tasks

varied

Presentation Whole class Programming
applications 30 Programming

applications 30

Intervention
session 4

Grade-level pairs Play Coding AwbieTM 20
Analyze WE set 1

Play Coding AwbieTM

~10

~10

Intervention
session 5

Grade-level pairs Play Coding AwbieTM 20
Analyze WE set 2

Play Coding AwbieTM

~10

~10

Intervention
session 6

Grade-level pairs Play Coding AwbieTM 20
Analyze WE set 3

Play Coding AwbieTM

~10
~10

Posttest Individual
Program commenting
and debugging tasks

varied
Program commenting
and debugging tasks

varied

Note. WE stands for worked examples. The worked example sets are explained in Table 2.

http://www.acm.org/education

Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions22

Test Item
During all three video-recorded testing sessions, we met
with the students individually. Test items for the larger
study evaluated students’ programming conceptions
and debugging and commenting in programming and
mathematics. For this analysis, we focus on one, multi-
solution programming item, which was the same across the
pretest, midtest, and posttest. Students saw the image in
Figure 1, without the grid markings and wrote a program
using the Coding AwbieTM blocks to help Awbie collect the
last strawberry (5E in Figure 1). Students ran their initial
program and, if necessary, we gave them the opportunity
to debug it. The item required Awbie to change directions
and make jumps (two difficult practices identified in the
first year) and allowed for students to repeat code
(Figure 1, program C). This item provided rich data on
students’ algorithmic design accuracy as well as their
debugging practices.

Turn!, see Table 2, Set 1, Correct, for an example). Students
wrote down the answers and solutions (or researchers
wrote down their verbal answers) in response to these
questions. The researchers did not provide feedback on
whether students were correct or not, and sometimes the
pairs did not agree.

Playing Coding Awbie
When pairs played Coding AwbieTM, they started at the first
level of the game and continued playing until their session
time was up. If students finished a level, they moved on to
the next level. We recorded their last completed level at
the end of each session and started students on their next
uncompleted level at the beginning of their next session.
Therefore, students sometimes started over a level multiple
times if they did not finish it during one or more of their
sessions.

Table 2. The Complete Three Sets of Worked Examples Used in the Study

Set Type Worked Example Pedagogical Design Choices

1 Correct The first worked example in Set 1 showed color-
coded steps to help students map each step
of code with its corresponding movements in
the game (supporting a trace the code strategy,
see Table 3). This method of showing steps
was too complicated to carry over into future
examples, but it was important for helping
them trace the code initially. In the first year of
our study, we observed many students double-
counting a square when Awbie switched
directions (Kocabas et al., 2019). Therefore,
this first example showed numbers being used
correctly when Awbie switches directions. The
explanation prompt regarding Carlos’s method
was meant to support accurate counting and to
prompt students’ wonderings about why Awbie
might not be able to stop on a lilypad. Then
students had to try programming Awbie on
their own for a related situation.

1 Incorrect The incorrect example in Set 1 involved an
incorrect use of the jump, which drew students’
attention to consider how far Awbie would
move with each jump (i.e., jump over one
space). This was a common challenge that
students encountered in the first year of the
study: determining how far Awbie would move
when using the jump code (and realizing that
Awbie will not keep jumping if he falls into the
water). Then students had a chance to fix the
program. A correct program would be jump left
1, walk left 1, jump left 1, walk left 1.

Table continued on next page

www.acm.org/education 23

Table 2. The Complete Three Sets of Worked Examples Used in the Study (continued)

Set Type Worked Example Pedagogical Design Choices

2 Correct In the first year of the study, students expressed
frustration with not being able to continue a
program after using the loop command that
is part of the game. Therefore, Set 2 of the
worked examples first showed students how
to correctly program a subroutine command
to make a loop, as well as how to distinguish
between walk and grab pieces. To help students
understand that step 2 and step 3 were nested
within the subroutine button, we showed
this with the dotted box and arrow and also
numbered the steps of the program in the
picture to help students trace the code and see
that Awbie repeats steps 2 and 3 four times. We
also used subgoal labels in the form of a set
of questions students could ask themselves to
help explain the lines of code. The explanation
prompts also helped students focus on the
subroutine button and what the number on that
button might mean.

2 Incomplete To provide students with extra scaffolding
on how the subroutine command works, we
included an incomplete worked example in
Set 2 where students completed missing code
before and after a subroutine that operated
as a loop. Therefore, students saw how the
steps within the subroutine were repeated
using the numbered steps in the picture but
had to problem-solve to consider the missing
steps. The incomplete worked example is a
form of faded worked example, which is a
fruitful method to use with older students in
programming (Skudder & Luxton-Reilly, 2014)
that we thought could work well with younger
students as well.

2 Incorrect The incorrect worked example in Set 2 required
students to fix a double-counting bug within a
subroutine. This worked example challenged
students to combine their understanding of
double-counting bugs and the use of the
subroutine command. Further, the explanation
prompt focused students’ attention on the
double-counting bug and encouraged them
to consider another program that would get
Awbie to the bottom space but without having
him collect all of the strawberries (a goal of the
program). Finally, students had a chance to fix
the bugs.

Table continued on next page

http://www.acm.org/education

Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions24

Analysis
First, if students’ programs would get Awbie to 5E without
bugs, we assigned their programs an accuracy score
of 1; otherwise, we assigned them a score of 0. Second,
we used Friedman’s ANOVA to evaluate the effects of
being in the immediate versus delayed groups across
testing sessions on their initial programs’ accuracy and
used McNemar tests to further investigate the changes
between testing sessions. Third, we analyzed students’
programs for their types of initial bugs (e.g., wrong
direction, hitting a rock, double-counting). Fourth, we

Table 2. The Complete Three Sets of Worked Examples Used in the Study (continued)

Set Type Worked Example Pedagogical Design Choices

3 Correct Set 3 of worked examples started with a correct
example that showed students how to use
a warning (or conditional) command. In the
first year of the study, students struggled with
figuring out what the warning command does.
Often, they placed it without any alternate code
or in situations where it would not be needed.
In fact, prior studies also found that children
have difficulty learning the meaning of complex
combinations of logic blocks through play
alone (Wyeth, 2008), which further supported
our use of a worked example for the warning
command. Continuing to use the numbered
steps, we used an exclamation point with a
step number to show when the alternate,
warning command code was used. Further, the
explanation prompt encouraged students to
make sense of why Awbie changes his number
of steps he walks up.

3 Incorrect Given the difficulty involved in using the
warning command (and its relative infrequency
of use in the game), we chose instead to
include an additional incorrect worked example
in Set 3 that required students to think about
what was being repeated within a subroutine.
This example also gave students another
opportunity to consider how far Awbie would
move when given the jump command.

Figure 1. “Write a Program to Get Awbie to the
Last Strawberry” (Point to 5E)

www.acm.org/education 25

p = .021; delayed, gain of 36%, p = .012). However, only
students in the immediate group significantly improved
from pretest to midtest (gain of 35%, p = .022). Even more
promising, nearly three-fourths of students in each group
were able to correctly program Awbie on the posttest if
given the chance to debug (see Table 4).

Programming Bugs and Debugging
The most prevalent bug students experienced that
prevented them from getting Awbie to 5E was double-
counting a square (See Figure 1). On the pretest, this
happened in two ways. Six students double-counted the
initial square (1A) and moved Awbie “walk right 3 (or
miscounted 4)” in an attempt to get to 3A (or 4A) or “walk
down 4 (or 5)” to get to 1D. Across all three tests, students
also double-counted (see Table 5) by programming
Awbie to walk down 3 (instead of walk down 2) for step

identified students’ successful debugging strategies
using Murphy et al.’s (2008) categories (see Table 3)
along with one additional strategy we found. Lastly,
we compared how many students per group correctly
debugged their programs by creating accurate programs
as described above.

RESULTS

Programming Accuracy
Based on a Friedman’s ANOVA, the number of students
who programmed Awbie to reach 5E significantly
changed over the course of the study for students in the
immediate group, x2(2) = 8.933, p = .011, r = .32, and the
delayed group, x2(2) = 8.133, p = .017, r = .38. Based on
follow-up McNemar tests, both groups made significant
gains from pretest to posttest (immediate, gain of 26%,

Table 3. Debugging Strategies

Strategy Description

Tinkeringa Students appeared to randomly change out commands or numbers, or students changed
multiple parts of the code at one time.

Reprogramming Students removed all commands and numbers from their initial code and started over. Some
students ignored the coding pieces they had used and started over with new ones. In other
situations, students kept the coding pieces in the same order and moved them back into their
workspace one by one as the student put together their new program.

Understanding the codea Students tried to reason about what their code was doing and why there was a problem. For
example, one student asked himself if using walk right would move Awbie one space.

Tracing the codea Students moved their fingers along the path they expected Awbie to take to match each
line of code. For example, if their first line of code told Awbie to walk right 2, they moved
their finger two spaces to the right to trace where Awbie would move on the picture. On one
occasion, a student used reprogramming but kept the coding pieces in the same order and
used tracing at the same time to figure out where the bug was.

Pattern matchinga Students realized that something was not right or had a sense of where the problem was.
Like subitizing where students see five objects and recognize it as five, some students saw
the result of the code and just knew what needed to be changed. In many instances this
happened when students saw Awbie moving too many spaces.

a See Murphy et al., 2008 for additional descriptions.

Table 4. Students Who Correctly Programmed Awbie Across Testing Sessions

Group
Before Debugging After Debugging

Pretest Midtest Posttest Pretest Midtest Posttest

Immediate (n=28) 18% 50%a 46% 32% 65%a 71%

First Grade (n=14) 0% 43% 36% 14% 57% 57%

Third Grade (n=14) 36% 58%a 57% 50% 75%a 86%

Delayed (n=27) 22% 37% 56%b 37% 59% 72%b

First Grade (n=14) 21% 43% 54%b 29% 50% 69%b

Third Grade (n=13) 23% 31% 58%b 46% 69% 75%b

a Two third graders did not take the midtest, so their data were not included.
b Two students (one first grade, one third grade) left before the posttest, so their data were not included.

http://www.acm.org/education

Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions26

Discussion
Overall, this study adds to previous literature on the utility
of worked examples (Joentausta & Hellas, 2018; Margulieux
et al., 2016; Yan & Lavigne, 2014) and illustrates that
early elementary students, who have little programming
background, can benefit from analyzing correct and
incorrect worked examples. Although both groups made
significant gains after the six sessions in terms of accuracy
of their programs, only students in the immediate group
made significant gains from the pretest to the midtest. The
immediate group’s significant gains from pretest to midtest
were largely due to the first graders’ larger gains, providing
further evidence that novices, even young ones, benefit
from analyzing worked examples (Joentausta & Hellas,
2018), especially before playing.

Play Versus Worked Examples
More students (across both groups) double-counted after
spending three sessions freely playing, and fewer students
double-counted after analyzing worked examples. Students
may have lost track of where Awbie would be as they
put together the coding pieces when playing, increasing
their likelihood to double-count a square. In fact, double-
counting errors account for the immediate group’s slight
dip on the posttest in developing accurate programs
before debugging. Further, on the posttest, when the
immediate group was given the chance to debug and focus
on their code like they did with the worked examples, they
corrected their double-counting bugs (and third graders
excelled); over half of these students used code tracing and
pattern matching to debug, which are practices that were
highlighted in the worked examples. Overall, both groups’
accuracy increased when they were given the chance
to debug. Unlike the immediate group, students in the
delayed group made gains from just playing (from pretest
to midtest); however, their gains were half as large as their
peers in the immediate group. These results suggest that
playing can help students improve, but incorporating
worked examples with play provides added benefits,
especially in terms of helping students debug. Students
seemed to benefit from their playing the most initially
(between pretest and midtest), which could account for why

three in Figure 1, programs D-G. When successfully
debugging, students either used pattern matching and
recognized that their “walk down 3” should be “walk
down 2” or they traced the code, moving their finger
along the path to show where Awbie would move, and
noticed that they would only have to walk down 2.

Another common bug in students’ initial programs
occurred because they did not realize that Awbie could
not land on or walk through the rock in 3B. Ten students
either started their programs with “walk down 1, jump
right” or “walk right 2 (or jump right), walk down,”
which caused Awbie to bounce back to his previously
originating square (1B or 3A). Six students fixed the
bug when debugging, but one of these students made
the same bug again on the midtest and posttest. One
student’s program only had this bug because she put her
coding pieces together from bottom to top; she used
an understanding the code strategy to realize that she
needed to reorder her code.

Other less common bugs included moving Awbie in
the wrong direction (i.e., up or left for their first line of
code) or walking into water (e.g., moving Awbie from 1C
to 3C by walking right instead of jumping). Sometimes
students had a mismatch between what they said they
were having Awbie do and what they programmed (e.g.,
said Awbie would jump right but programmed jump up);
usually students caught these bugs when they saw the
program run. A few students also ended their programs
prematurely on 5D instead of 5E and were able to add on
to their code when debugging.

Overall, students who successfully debugged their
code primarily used pattern matching and tracing the
code strategies, strategies which were embedded in
the design of the worked examples and explanation
prompts. Interestingly, students from the delayed
group increasingly used a reprogramming strategy on
the posttest. Based on the accuracy of students’ initial
programs, fewer students had to debug their programs
from pretest to posttest, and for students who did debug,
their debugging success rate, as shown by their making
an accurate program, increased (i.e., more students
successfully put together accurate programs after
debugging on the posttest than on the pretest; see Table 6).
Students who were not successful when debugging
used a tinkering strategy and introduced a previously
discussed bug or fixed an initial bug but did not fix a bug
later in their code.

Table 5. Percent of Students Double-Counting by Programming
“Walk Down 3” Before Debugging

Group Pretest Midtest Posttest

Immediate 14% (n=28) 8% (n=26) 21% (n=28)

Delayed 11% (n=27) 22% (n=27) 8% (n=25)

Table 6. Students Who Correctly Debugged Their Programs Across
Testing Sessions

Correct for those who debugged

Group Pretest Midtest Posttest

Immediate 17% (n=23a) 31% (n=13a) 47% (n=15a)

Delayed 19% (n=21a) 35% (n=17a) 36% (n=11a)

a The number of students for each group and test who did not
initially program Awbie correctly.

www.acm.org/education 27

Implications for Teachers
As teachers work to incorporate CT skills into their
curriculum, our results suggest that having worked
examples together with play experiences would be more
advantageous than only having students play to learn basic
programming and debugging. We suggest two instructional
steps that teachers could leverage with students around
early programming and debugging across programming
environments: worked examples and code tracing.

Teachers could use worked examples as a pedagogical
tool to draw students’ attention to their own code, support
all learners by building on their needs and strengths, and
lessen performance gaps, as was the case for the first and
third graders in the immediate group (i.e., the difference
in their accuracy on the pretest was 36%, which reduced
to 15% on the midtest). The prevalence and persistence
of double-counting errors suggests that more worked
examples and instruction around early programming and
debugging should encourage discussing and exploring
issues around counting in programming. Specifically,
numbering or color-coding each step of the program in the
worked examples could help students focus on the results
of each movement and support students in tracing the code.
Teachers should be careful to watch how students are using
numbers and have discussions about programming for
funny effects versus when precision is important. Teachers
should use explanation prompts, such as the one posed
about Carlos’s method (see Table 2: Set 1, Correct), to help
students focus on key aspects of code in programs. Further,
teachers could present contrasting correct and incorrect
worked examples to help students see the differences in
coding with and without double-counting—which could
prompt students to trace the differences between the code—
and incorporate worked examples that target actions that
are difficult to make sense of through playing only (e.g.,
subroutines; Kocabas & Bofferding, 2021) or common bugs.

Teachers could encourage students to trace their code
by moving their finger along the path as they program
to try and identify the code where the first bug happens
and model this activity through whole group instruction.
Encouraging students to reprogram mentally, teachers could
then have students add each line of code while tracing the
movements with their eyes, perhaps marking the beginning
or ending points as needed for scaffolding. Over time, both
reprogramming and tracing could lead to a more intentional
pattern matching strategy. Before students reprogram or trace
the code, teachers could have students articulate what the
bug was and identify if it happened at the beginning, middle,
or end of their code. Teachers could encourage students to
become more precise about where the bug occurred within
the code by asking questions such as, “Did the bug occur
before or after Awbie jumped right?” Such questions, similar
to the explanation prompts, could help students picture their
code in parts and allow them to find a targeted spot in their
code without tracing or reprogramming.

the immediate group did not make gains between midtest
and posttest unless they were given the opportunity
to debug (which mimicked practices embedded in the
worked examples). The delayed group continued to make
gains when analyzing worked examples (from midtest to
posttest), especially in the case of third graders.

Double-Counting Difficulties and
Worked Examples
The results related to students’ double-counting difficulties
are a bit concerning, especially since the prevalence of
the double-counting errors increased after playing the
programming game. Game features may have contributed
to this. For example, when Awbie moved too far and hit
a tree in the game, he bounced back to the space he
occupied before hitting the tree. If students programmed
“jump right 2” to move Awbie in Figure 1 to 3A by
misinterpreting the jump’s movement, Awbie would hit
the tree in 5A and bounce back to 3A. Therefore, students
could reach their goal using these entertaining programs
and may have learned that using numbers that are too large
is not necessarily a problem, which could have contributed
to their lax use of numbers on the midtest (for the delayed
group) and on the posttest (for the immediate group). The
worked examples helped lessen the double-counting bugs
because the examples drew students’ attention to the use
of numbers and may have helped reorient their attention to
the numbers. This result is impressive given that only one
of the incorrect worked examples specifically focused on a
double-counting bug, and it occurred within a subroutine
(see Table 2: Set 2, Incorrect).

Worked Examples Supported Mental
Representation in Debugging
Another benefit of analyzing worked examples, incorrect
ones in particular, was helping students focus on
debugging. Students in the delayed group transitioned from
tracing their code, a popular strategy (Murphy et al., 2008),
on the pretest to reprogramming their code on the posttest,
but their reprogramming often involved them reusing
pieces from their initial program and changing other pieces
as needed. Thus, rather than focusing on following the
path of their code with their fingers and changing specific
lines of code, they followed the path mentally and rebuilt
their program. These results provide some initial evidence
that students may have made some progress in mentally
representing the actions of the coding pieces. Students in
the immediate group continued to use pattern matching,
and although they also continued to trace their code, they
did so with fewer hand movements, suggesting they were
also mentally representing some of the movements.

http://www.acm.org/education

Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions28

K-12 Computer Science Framework. (2016). Retrieved from
http://wwwk12cs.org.

Kocabas, S., & Bofferding, L. (2021). Supporting third
graders’ use of subroutines in programming through play
versus worked examples. In E. de Vries, Y. Hod, & J. Ahn,
Proceedings of the 15th International Conference of the
Learning Sciences – ICLS 2021 (pp. 637-640). International
Society of the Learning Sciences.

Kocabas, S., Bofferding, L., Aqazade, M., Haiduc, A., & Chen,
L. (2019). Students’ directional language and counting on
a grid. In S. Otten, A. G. Candela, Z. de Araujo, C. Haines, &
C. Munter (Eds.), Proceedings of the 41st annual meeting
of the North American Chapter of the International Group
for the Psychology of Mathematics Education (pp. 395-399).
University of Missouri.

Margulieux, L. E., Catrambone, R., & Guzdial, M. (2016).
Employing subgoals in computer programming education.
Computer Science Education, 26(1), 44-67. http://dx.doi.org/
10.1080/08993408.2016.1144429

McLemore, B., & Wehry, S. (2016). Robotics and programming
in prekindergarten (RAPP): An innovative approach to
introducing 4- and 5-year olds to robotics. Global Learn
2016. Association for the Advancement of Computing in
Education. https://www.learntechlib.org/primary/p/172724/

Murphy, L., Lewandowski, G., McCauley, R., Simon, B., Thomas,
L, & Zander, C. (2008). Debugging: The good, the bad, and
the quirky – a qualitative analysis of novices’ strategies.
SIGCSE ‘08 (pp. 163-167), Portland, OR: ACM. https://doi.
org/10.1145/1352322.1352191

NGSS Lead States. (2013). Next Generation Science Standards:
For States, By States. Washington, DC: The National
Academies Press.

Parks, A. N., & Graue, B. (2015). Exploring mathematics through
play in the early childhood classroom. Teachers College
Press; National Council of Teachers of Mathematics.

Pérez, A. (2018). A framework for computational thinking
dispositions in mathematics education. Journal for Research
in Mathematics Education, 49(4), 424-461. https://doi.
org/10.5951/jresematheduc.49.4.0424

Sipitakiat, A., & Nusen, N. (2012). Robo-blocks: Designing
debugging abilities in a tangible programming system
for early primary school children. IDC 2012, 98-105, ACM.
https://doi.org/10.1145/2307096.2307108

Acknowledgments
This research was supported by an NSF DRL ITEST Grant
#1759254.

Correspondence concerning this work should be
addressed to:

Laura Bofferding
Department of Curriculum and Instruction
100 N. University Street #4132
West Lafayette, IN, 47907
Email: LBofferd@purdue.edu

References
Atkinson, R. K., Derry, S. J., Renkl, A., & Wortham, D. (2000).

Learning from examples: Instructional principles
from the worked examples research. Review of
Educational Research, 70(2), 181-214. https://doi.
org/10.3102%2F00346543070002181

Elkin, M., Sullivan, A., & Bers, M. U. (2016). Programming with the
KIBO robotics kit in preschool classrooms. Computers in the
Schools, 33(3), 169-186. https://doi.org/10.1080/07380569.
2016.1216251

Ginsburg, H. P. (2006). Mathematical play and playful
mathematics: A guide for early education. In D. Singer, R. M.
Golinkoff, & K. Hirsh-Pasek (Eds.), Play = Learning: How play
motivates and enhances children’s cognitive and social-
emotional growth (pp. 145-165). Oxford University Press.

Griffin, J. M. (2016). Learning by taking apart: Deconstructing
code by reading, tracing, and debugging. In SIGITE ’16:
Proceedings of the 17th annual conference on information
technology education (pp.,148-153). https://doi.
org/10.1145/2978192.2978231

Highfield, K. (2015). Stepping into STEM with young children:
Simple robotics and programming as catalysts for early
learning. In C. Donohue, Technology and digital media in the
early years: Tools for teaching and learning (pp. 150-161).
Routledge and the National Association for the Education of
Young Children.

Ichinco, M., Harms, K. J., & Kelleher, C. (2017). Towards
understanding successful novice example user in blocks-
based programming. Journal of Visual Languages and
Sentient Systems, 3, 101-118. https://doi.org/10.18293/
vlss2017-012

Joentausta, J., & Hellas, A. (2018, February). Subgoal
labeled worked examples in K-3 education. In
Proceedings of the 49th ACM Technical Symposium on
Computer Science Education (pp. 616-621). https://doi.
org/10.1145/3159450.3159494

http://wwwk12cs.org
http://dx.doi.org/10.1080/08993408.2016.1144429
http://dx.doi.org/10.1080/08993408.2016.1144429
https://www.learntechlib.org/primary/p/172724/
https://doi.org/10.1145/1352322.1352191
https://doi.org/10.1145/1352322.1352191
https://doi.org/10.5951/jresematheduc.49.4.0424
https://doi.org/10.5951/jresematheduc.49.4.0424
https://doi.org/10.1145/2307096.2307108
mailto:LBofferd@purdue.edu
https://doi.org/10.3102%2F00346543070002181
https://doi.org/10.3102%2F00346543070002181
https://doi.org/10.1080/07380569.2016.1216251
https://doi.org/10.1080/07380569.2016.1216251
https://doi.org/10.1145/2978192.2978231
https://doi.org/10.1145/2978192.2978231
https://doi.org/10.18293/vlss2017-012
https://doi.org/10.18293/vlss2017-012
https://doi.org/10.1145/3159450.3159494
https://doi.org/10.1145/3159450.3159494

www.acm.org/education 29

Wing, J. M. (2006). Computational thinking.
Communications of the ACM, 49(3), 33-35. https://doi.
org/10.1145/1118178.1118215

Wyeth, P. (2008). How young children learn to program
with sensor, action, and logic blocks. The Journal of the
Learning Sciences, 17(4), 517-550. https://www.jstor.org/
stable/27736742

Wyeth, P., & Purchase, H. C. (2002). Tangible programming
elements for young children. In Proceedings of CHI 2002, p.
774-755. https://doi.org/10.1145/506443.506591

Yadav, A., Hong, H., & Stephenson, C. (2016). Computation
thinking for all: Pedagogical approaches to embedding 21st
century problem solving in K-12 classrooms. TechTrends, 60,
565-568. https://doi.org/10.1007/s11528-016-0087-7

Yan, J., & Lavigne, N. C. (2014). Promoting college students’
problem understanding using schema-emphasizing worked
examples. The Journal of Experimental Education, 82(1), 74-
102. DOI: 10.1080/00220973.2012.745466

Skudder, B., & Luxton-Reilly, A. (2014). Worked examples in
computer science. Proceedings of the Sixteenth Australasian
Computing Education Conference. Australian Computer
Society, Inc.

Sullivan, A. A., & Bers, M. U., & Mihm, C. (2018). Dancing robots:
integrating art, music, and robotics in Singapore’s early
childhood centers. International Journal of Technology and
Design Education, 28, 325-346. https://doi.org/10.1007/
s10798-017-9397-0.

Suzuki, H., & Kata, H. (1995). Interaction-level support for
collaborative learning: AlgoBlock—an open programming
language. In J. L. Schnase & E. L. Cunnius (Eds.), Proceedings
of CSCL '95: The first international conference on computer
support for collaborative learning. Bloomington, Indiana:
Lawrence Erlbaum Associates. https://repository.isls.org//
handle/1/4207

The AlgebraByExample Team. (n.d.) AlgebraByExample’s format.
SERP Institute. https://www.serpinstitute.org/algebra-by-
example/format

Wang, D., Zhang, Y., & Chen, S. (2013). E-Block: A tangible
programming tool with graphical blocks. Mathematical
Problems in Engineering. DOI: 10.1155/2013/598547

http://www.acm.org/education
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1145/1118178.1118215
https://www.jstor.org/stable/27736742
https://www.jstor.org/stable/27736742
https://doi.org/10.1145/506443.506591
https://doi.org/10.1007/s11528-016-0087-7
https://doi.org/10.1007/s10798-017-9397-0
https://doi.org/10.1007/s10798-017-9397-0
https://repository.isls.org//handle/1/4207
https://repository.isls.org//handle/1/4207
https://www.serpinstitute.org/algebra-by-example/format
https://www.serpinstitute.org/algebra-by-example/format

Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions30

Introduction
Educators, researchers, and policymakers are recognizing
the need to give children access to computer science
(CS) starting at an early age (Barron et al., 2011; Bers,
2018; Bers, 2019; Code.org, 2019; White House, 2016).
Recently, the focus has expanded from teaching computer
programming to also engaging with a set of underlying
cognitive abilities known as computational thinking
(CT) (Fayer, Lacey, & Watson, 2017; US Department of
Education, Office of Educational Technology, 2017; Wing,
2006, 2011).

In an influential article entitled “Computational
Thinking” that appeared in an issue of Communications of
the ACM, Wing (2006) defined CT as “solving problems,
designing systems, and understanding human behavior,
by drawing on the concepts fundamental to computer
science” (p. 33). Wing argued that CT should be part of
everyone’s analytical repertoire. This echoed earlier work by
Perlis (1962), who claimed that the “theory of computation”
is for everyone, not only computer scientists, and Papert
(1980), who proposed that through programming children
can form ideas not only about computation but about
thinking itself.

CT has received considerable attention over the past
several years. There is consensus that CT must be available
to thinkers of all disciplines, regardless of their ability to
program (Guzdial, 2008; Yadav, 2016). However, there
is little agreement on how to define it (Aho, 2012; Allan
et al., 2010; Barr & Stephenson, 2011; Cuny, Snyder, &
Wing, 2010; Grover & Pea, 2013; Lu & Fletcher, 2009;
National Academies of Science, 2010; Relkin, 2018; Relkin
& Bers, 2019; Shute, Sun, & Asbell-Clarke, 2017; Yadav,
Good, Voogt, & Fisser, 2017). It is widely agreed that CT
involves a broad set of analytic and problem-solving skills,
dispositions, and habits, rooted in computer science
but universally applicable. Examples include thinking
recursively, using abstraction to identify salient pieces of
a problem, and applying heuristic reasoning to discover a
solution and/or identify potential “bugs” or problems (CSTA
& ISTE, 2011; Kalelioğlu, Gülbahar, & Kukul, 2016). For
definitions that are specifically relevant to young children,
CT must also be framed in a developmentally appropriate
context (Bers, 2018).

This research builds on these findings and focuses
on the creative aspects of computer science for early
elementary school children 5-9 years of age. We describe

Marina Umaschi Bers, Madhu Govind, and Emily Relkin, DevTech Research Group, Tufts University

Corresponding Author: Marina Umaschi Bers, marina.bers@tufts.edu

Abstract

This paper explores the integration of coding, CT and literacy by describing a study conducted with first and
second grade classrooms in Norfolk, Virginia� A total of 667 students and 57 educators from eight elementary

schools, as well as 181 students from two comparison schools participated in a curriculum called Coding as
Another Language (CAL) that utilizes KIBO robotics, a developmentally appropriate kit which does not require
keyboards or screens� CAL positions the teaching of programming as a symbolic system of representation, a
tool for creative expression and communication� Thus, research questions regarding the relationship between
students’ coding and CT outcomes and their literacy skills were explored, as well as teachers' reactions to
the experience, in particular regarding the integrating of teaching computer science and literacy in the early
grades� Participation in the CAL-KIBO curriculum was associated with improvement in coding and unplugged
CT skills� Baseline literacy skills were related to students’ acquisition of CT skills� For example, students who had
higher literacy scores at the beginning of the term were more successful in CT tasks� Furthermore, although
teachers varied in their perceptions of integrating coding and CT with literacy, our findings suggest that these
disciplines may share some cognitive and pedagogical overlap that has yet to be extensively explored in the
early computing education field�

Coding as Another Language:
Computational Thinking, Robotics and
Literacy in First and Second Grade

http://Code.org
mailto:marina.bers@tufts.edu

www.acm.org/education 31

The CAL-KIBO Curriculum
The CAL-KIBO curriculum consists of 12-15 adaptable
lessons administered over a 6-8-week period. Throughout
the curriculum, children engage in activities, songs, games,
and open-ended projects CAL-KIBO integrates coding
and CT with the use of arts and crafts, reading and writing
activities that are commonly used in early elementary school.
For example, the final lessons involve a project based on
a children’s book, Where the Wild Things Are by Maurice
Sendak. Students are invited to write a creative composition
about what would happen in their own “Wild Rumpus” and
subsequently program their “Wild Rumpus” using KIBOs
(see Figure 2). The curriculum is aligned with the Common
Core English Language Arts (ELA)/Literacy Framework,
as well as Virginia CS Standards of Learning and other
nationally recognized CS frameworks (e.g., K-12 CS
Framework). Bers (2018) described seven powerful ideas
of CT from CS that are developmentally appropriate for
early childhood: hardware/software, algorithms, modularity,
control structures, representation, debugging, and
design process. Each CAL-KIBO lesson engages children
in multiple powerful ideas of CT and connects them to
foundational literacy and language concepts.

a curriculum called Coding as Another Language (CAL)
that focuses on the role of languages, both artificial
and natural, for expressive purposes. CAL integrates
the teaching of computer programming and literacy by
positioning the teaching of CS as another medium for
expression (Bers, 2019). In other words, the ultimate goal of
mastering a programming language is not only to provide
a means of problem-solving but also to allow creation of
personally meaningful artifacts that can be shared with
others. Ultimately, CAL is informed by the notion that both
natural and artificial languages are symbolic systems of
representation that can be used for creative expression and
communication (Vee, 2017).

Prior research has shown that learning to code
can enhance the acquisition of CT and related
thinking abilities. Román-González et al. (2018) found
improvements in CT in a study of middle school
students (ages 12–14) who engaged in the code.org
curriculum. Arfé et al. (2019) found improvements on
neuropsychological tests of response inhibition and
planning in first and second graders who received
coding instruction. These studies provide evidence
from randomized control trials that learning to code can
accelerate the development thinking abilities critical to
CT in children. Further studies are needed to evaluate the
impact of learning to code with an integrated curriculum
such as CAL on young children's CT skills and other
aspects of their cognitive development.

We examined three different research questions: 1)
How did the CAL curriculum promote students’ coding and
CT skills? 2) What was the relationship between students’
CT skills and their literacy skills? 3) How did teachers react
to the experience?

METHODS

Participants
A total of 667 first and second grade students and 57
educators from eight elementary schools (CAL group),
as well as 181 students from two comparison schools
(No-CAL group), participated in this study. All schools
were in the Norfolk Public School district, Norfolk, VA,
and participated in the CAL coding curriculum. The
curriculum utilizes KIBO robotics, a developmentally
appropriate kit designed for children 4 to 7 years old,
which does not require keyboards or screens (Bers, 2018;
Sullivan, Bers & Mihm, 2017; Sullivan, Elkin & Bers, 2015).
The KIBO-21 kit used in this study consists of the KIBO
robot, 21 colorful programming wood-based blocks, as
well as light, distance, and sound modules and sensors.
Children assemble the barcoded blocks, scan them using
the robot’s embedded barcode scanner, and press the
triangle-shaped button on the robot to run the sequence
of commands (see Figure 1).

Figure 1. KIBO-21 robotics kit

Figure 2. KIBO “Wild Rumpus” final projects created
by second grade students

http://www.acm.org/education
http://code.org

Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions32

general coding knowledge (e.g., “I know the definition
of an algorithm”), pedagogical content knowledge
surrounding how to teach coding (e.g., “I can teach lessons
that integrate coding and literacy”), general KIBO robotics
knowledge (e.g., “I can recognize common errors with
the KIBO programming language and troubleshoot these
errors”), knowledge of specific KIBO sensors and modules
(e.g., “I know how to use KIBO’s Sound Sensor”), attitudes
and self-efficacy surrounding the implementation of the
CAL-KIBO curriculum (e.g., “I am confident in my ability to
implement the CAL-KIBO curriculum in my classroom”) and
perceptions on literacy (e.g., “What are your priorities in
literacy instruction?”). T-tests were performed on pre and
post-training survey data obtained from n = 47 participating
first and second grade teachers.

Semi-structured interviews and focus groups with
teachers and instructional technologists were conducted at
various times (pre-training, during training, pre-curriculum,
mid-curriculum, and post-curriculum) and focused on their
reactions to KIBO and the CAL-KIBO curriculum. Examples
of interview questions included “What has been easy/
challenging? How do these activities fit into the rest of your
classroom curriculum? If you were to use KIBO again in
your classroom, how would you integrate it into your lesson
plans?” In each interview, teachers were asked to reflect on
their attitudes towards coding and robotics education, their
perspectives on teaching literacy and the strengths and
challenges of their experiences.

Measuring programming ability and CT skills in young
children can be challenging. Two different tools were
used to seek proof of learning of specific coding concepts
through robotics. First, KIBO Mastery Challenges (KMCs),
multiple-choice questions embedded in the curriculum,
were administered after specific lessons, and a composite
score was calculated from difficulty indices (Hassenfeld et
al., 2020). Second, TACTIC-KIBO, a summative assessment
of coding and CT skills, was administered after participation
in the curriculum. Because children worked in teams
throughout the curriculum, KMCs and TACTIC-KIBO
provided individualized data regarding learning outcomes
that would go unnoticed by just looking at students’
final projects. In addition to tool-specific assessments, a
validated “unplugged” CT assessment called TechCheck
was used, which focuses on problem-solving skills of

Procedure
Participating teachers received professional development
prior to curriculum implementation, as well as ongoing
professional learning consisting of virtual coaching and in-
person support in the classroom provided by the district’s
instructional technologists. Teachers implemented the
curriculum in their classrooms approximately twice a week
(two one-hour lessons). At the end of each lesson, teachers
completed a lesson log, a brief online survey that asked
questions such as “What were some successes/challenges
(if any) during this lesson?” and “Did you modify or adapt
the activities in this lesson in any way?”. Teachers were
observed by the on-site project coordinator or instructional
technologist at least two times over the course of the
curriculum. Observers used the Positive Technological
Development (PTD) Checklist (Bers, 2018) to examine how
teachers and students were engaging with KIBO and with
the CAL-KIBO lessons.

Measures
Over two years, multiple types of data were collected (see
Table 1). Robotics mastery and CT development in both
teachers and students were assessed before, during, and
after the experience. CT assessments were administered
to students who participated in the CAL-KIBO curriculum
and to an age and demographically matched comparison
group from two other schools in the same district. We
collected and analyzed students’ standardized literacy
scores (DRA and PALS) from the beginning and end of the
school year. DRA (Developmental Reading Assessment) is
a computerized assessment that evaluates changes in K-8
students’ reading level performance. PALS (Phonological
Awareness Literacy Screening) is a diagnostic tool that
measures children’s developing word knowledge, oral
reading in context, alphabetic, and phonemic awareness
and is used to identify struggling readers and provide
additional support.

To understand how teachers reacted to the experience
of integrating coding and CT with literacy skills, we
conducted surveys, interviews, and focus groups with
participating teachers. Surveys were conducted before
and after the professional development and consisted
of questions related to teachers’ self-perceptions of their

Table 1. Research Questions and Data Analysis Plan

Research Question Data Sources Data Analysis Method

RQ 1: How did the CAL curriculum promote
students’ coding and CT skills?

TACTIC-KIBO, KIBO Mastery
Challenges (KMCs), TechCheck

Descriptive, correlation, t-tests

RQ 2: What was the relationship between students’
coding and CT skills and their literacy skills?

KMCs, TechCheck, PALS, DRA
Descriptive and correlation
analyses

RQ3: How did teachers react to the experience?
Teacher interviews, surveys,
and lesson logs

Thematic analysis, t-tests

www.acm.org/education 33

participants representing those who completed pre and
post TechCheck as well as the DRA and PALS literacy
measures.

Teacher interviews and focus groups were transcribed
and then analyzed using Braun and Clarke’s (2006) six-
phase thematic analysis approach. This approach involved
reading through the data multiple times, generating
initial codes, combining codes into overarching themes,
exploring how the themes connected to our initial research
question, refining themes with greater detail, and drafting
our findings while referring to the data to ensure that our
findings provided an accurate representation of teachers’
experiences of the curriculum. Common trends derived
from this thematic analysis are presented in this paper.

RESULTS

This section organizes the findings based on the three
research questions addressed by the study: the CAL
curriculum impact on coding and CT skills, the relationship
between coding and CT with literacy, and teachers’
reactions.

the kind required to carry out computer programming
without requiring knowledge or experience with coding
(Relkin et al., 2020). TechCheck requires the transfer of
knowledge gained from coding into CT skills useful for
solving unplugged challenges that are not explicitly taught
in the CAL-KIBO curriculum. TechCheck was administered
before and after the curriculum in both intervention and
control groups (see Table 2). Only results from neurotypical
students are included in the analyses that follow since
the CT and coding assessment measures have yet to be
validated with a neuro-diverse population.

Data Analysis
Paired sample t-tests and generalized linear mixed
modeling were performed on assessment results from
students who received CAL-KIBO, as well as students
who participated in non-coding classroom activities, to
address how the curriculum impacted students’ CT skills.
To address the relationship between students’CT skills and
literacy, correlation, regression, and Bayesian mixed effect
modeling were conducted on data from a subgroup of
n = 191 students from among the total sample of N = 667

Table 2. Child Study Measures

Measure TechCheck TACTIC-KIBO KMCs

Reference Relkin, de Ruiter, & Bers (2020) Relkin (2018) Hassenfeld et al. (2020); Relkin &
Bers (2020)

Description Assessment using “unplugged”
(non-coding) tasks to measure CT
related problem-solving abilities

Assessment of platform-specific
coding and CT abilities in seven
sub-domains.

Formative assessment of
programming concepts specific
to the CAL-KIBO curriculum as
“checks of learning”. Assesses
understanding of semantics and
syntax of programming without
requiring them to solve problems

Example What comes next? What is the correct order to scan
program blocks?

Which block makes KIBO shake?

Specifications • 15 multiple-choice questions
• Designed for children ages 5-9
• 15 minutes to administer
• Score range 0-15
• Validated against expert

assessment of CT abilities

• 28 multiple-choice questions
• Designed for ages 5-9
• 30-40 minutes to administer
• Score range 0-28
• Validated against expert

assessment of CT abilities

• 4 assessments, 6 multiple-
choice questions each totaling
24 questions

• Multiple-choice format
• Designed for children ages 5-9
• High interrater reliability
• Difficulty index for each

question calculated with
more weight given to difficult
questions. Questions summed
into a weighted Difficulty
Composite Score

http://www.acm.org/education

Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions34

Relationships Among Students’ Coding,
CT, and Literacy Skills
The theoretical framework upon which the CAL curriculum
is designed proposes that learning computer programming
allows children to gain an alternative form of literacy
that permits self-expression in ways that are similar to
reading and writing (Bers, 2019; Vee, 2017). Thus, in this
study we examined the correlations between coding, CT,
and conventional measures of literacy. Specifically, we
wanted to know if students who scored higher on state-
wide assessments of literacy also performed higher in
coding and CT tasks after they completed the CAL-KIBO
curriculum. Our measure of coding ability was the student’s
KMC composite score, and our measure of CT was the
student’s TechCheck score post-curriculum. To estimate
students’ literacy skills before the intervention, we used
Fall standardized literacy scores (DRA and PALS) obtained
by the school. There was a moderate positive correlation
(Pearson) between baseline TechCheck scores and both
the DRA (r = 0.39, p < .0001) and PALS (r = 0.33, p < .0001).
We carried out linear regression to examine whether these
two baseline literacy measures predicted the endpoint
TechCheck scores when baseline TechCheck performance
was taken into account. A model containing baseline PALS
and TechCheck scores significantly predicted end point
TechCheck F(2, 190) = 38.47, p <.0001. A model containing
baseline DRA and TechCheck scores also significantly
predicted end point TechCheck F(2, 190) =36.18, p <.0001.
We conducted Bayesian mixed-effects modeling with
TechCheck scores as the outcome variable and PALS and
DRA literacy measures as well as baseline TechCheck
scores as predictors. The Bayes factor was >100 indicating
“decisive evidence” that baseline literacy measures (PALS
and DRA) were predictors of end point TechCheck score
when baseline TechCheck score was included in the model.
In summary, these analyses indicate a possible relationship

CAL Curriculum Impact on Students’
Coding and CT Skills
Descriptive statistics for all coding and CT assessments
are shown in Table 3. First and second grade students
who participated in the CAL-KIBO curriculum improved
significantly on the TechCheck assessment, t(666)= 10.55,
p < .001. A grade-matched control group that participated
in non-coding classroom activities, the control group,
did not significantly improve, t(180) = 1.81, p = .07. The
improvement after 6-8 weeks of CAL-KIBO instruction
is consistent with the estimated change in baseline
TechCheck scores in the absence of coding instruction
over approximately six months. A Generalized Linear
Mixed Model incorporating taking into account age,
grade, classroom, gender, and baseline score revealed
that exposure to the CAL-KIBO curriculum was a significant
predictor of the TechCheck outcome scores, p < .01 (Relkin
et al., 2021).

We conducted stratified analyses to look for effects
by grade. First grade students who received CAL-KIBO
improved significantly on TechCheck, t(270) = 9.21, p <
0.001, whereas the control group did not, t(358.31) = 1.07,
p = .95. Second graders in the CAL group also improved
significantly, t(395) = 6.11, p < 0.001 but not as much as first
graders possibly due to a ceiling effect on the TechCheck
assessment in which high baseline scores in second
graders reduced the window for observing change (Relkin
et al., 2020). A more challenging version of the assessment
for second graders has since been created to address
this issue (Relkin et al., 2021). A smaller but borderline
significant improvement was observed in the second grade
non-coding group, t(109) = 2.34, p = .05 possibly due to a
learning effect or chance. Results stratified by grade shows
that although first and second graders both improved on
TechCheck more than their non-coding counterparts, we
observed more of a difference in first graders.

Table 3. Descriptive Statistics for Coding and CT Variables

 n Mean (SD) Min Max

TechCheck Baseline CAL Groupa 667 10.09 (2.61) 3 15

TechCheck End Point CAL Group 667 11.03 (2.55) 2 15

TechCheck Baseline No-CAL Group 181 9.50 (2.38) 3 14

TechCheck End Point No-CAL Group 181 9.77 (2.55) 4 14

TACTIC-KIBO First Gradeb 214 13.10 (3.33) 2 20

TACTIC-KIBO Second Grade 398 18.28 (3.90) 4 26

KMCs Second Gradec 217 3.44(1.05) 1.59 6.25

Note.
a TechCheck assesses children’s unplugged problem solving and CT
b The Tufts Assessment of Computational Thinking in Children - KIBO version (TACTIC-KIBO) assesses children’s

platform specific coding and CT skills
c KMCs (KIBO Mastery Challenges) assesses children’s KIBO coding proficiency

www.acm.org/education 35

We present our qualitative findings from teachers in
Table 4, which summarizes teachers’ perceived successes
and challenges of their curriculum experience, reactions
to the coding-literacy integration, and overall factors that
impacted curricular implementation. In terms of the CAL
curriculum, teachers’ interviews and surveys showed that
teachers enjoyed KIBO and their students did as well.
However, the organization of robotics materials presented
its own set of challenges, particularly with shifting materials
between classrooms and managing clean-up time. Teachers
developed different strategies such as creating a rotational
system with fellow teachers, selecting students to be in
charge of robotics clean-up, and keeping a set of 3-4 KIBOs
in their classrooms at all times. Despite these logistical
challenges, during interviews, teachers described being
drawn to the hands-on, tangible nature of KIBO, especially
in comparison to other screen-based applications felt.
Teachers felt KIBO was engaging and developmentally
appropiorate for their students.

between the acquisition of CT skills and baseline literacy
skills. This could be a consequence of the measures
reflecting a child’s developmental stage or literacy skills
influencing assessment performance on TechCheck rather
than a specific effect on learning CT.

Teachers’ Reactions
Most teachers expressed a high level of engagement when
first introduced to KIBO during the training and displayed
excitement while working on their own robotic projects.
Results of t-tests indicated statistically significant increases
in each of the 27 survey items assessing n = 47 teachers’
knowledge of general coding concepts, KIBO skills, and
CS pedagogy as well as their attitudes towards coding
and robotics education, t’s ranging from 5.19-22.40, p <
.001 across all t-tests. Across all survey items and domains,
neither race/ethnicity nor teaching experience impacted
participant responses.

Table 4. Teachers’ Reflections of the CAL-KIBO Curriculum Experience

Topic Theme Illustrative Quote

Successes and
challenges

Coding beyond the
screen

“I learned that coding doesn't just involve sitting in front of a computer
and typing things and that it actually involves just using your mind and
talking things out and stuff like that”

KIBO organization “Because I was sharing with [name omitted] and others that only did it
once a week, so [the KIBOs] were in and out, and things got mixed up, so I
color-coded mine”

Coding-literacy
integration

Resistant to integration “I almost think they should take the writing components out of it, and just
let us focus on the actual straight coding.”

Neither resistant nor
receptive

“I'm not reinforcing, ‘Oh, capitalization, grammar, this and that’, like that's
just not happening...I do feel like it hit, definitely, on oral communication...
They have to communicate with their buddy, whoever they're working
with”

Receptive to integration “Each day with each lesson the kids were writing...and reading different
things. They had to read [it] over. They had to read other people's
instructions.”

Factors impacting
curricular
implementation

Time spent preparing
for and implementing
lessons

“Most of the lessons are supposed to be an hour, I know, but mine were
probably two or more... I was able to tie [the Design Journals] in with the
writing more because I spent more time on it.”

Teacher collaboration
and utilization of
resources

“One of our teachers broke down the KIBO [lesson] for the day and made
a PowerPoint, so that we would be able to follow through and...check off
the steps as we did them.”

Competing priorities
of other lessons and
activities

“Teachers are always pressed with a pretty comprehensive curriculum, so
adding this in addition was a little overwhelming at times.”

Classroom
management

“I felt even groups of four would be too much of a chaotic ruckus. And
I felt like the kids would be most successful if they're just working in a
partnership.”

Flexibility in adapting
lesson activities

“I know everybody adapted and I adapted it by adding extra time. But I
stuck to the curriculum. I know some people kinda cut out certain things
and whatever, but I wanted to give them the full experience, so I pretty
much went by the book.”

http://www.acm.org/education

Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions36

a different number of robots available in each school. The
classroom dynamic differed when KIBO robots were shared
by pairs of students as opposed to larger groups of 5-6
students. Classroom size and space were other variables
that impacted the classroom experience. The CAL-KIBO
curriculum was successful in engaging teachers and
generating a high level of enthusiasm. Limitations on time
to implement the curriculum and difficulty in organizing
materials were common challenges reported by educators.

Implications
The key to successful educational initiatives is to make
authentic connections to the teaching that is already going
on in the classroom. In this study, we connected coding and
CT to literacy. Our findings indicate that first and second
grade students improved in their coding and CT skills
as a result of participating in the CAL-KIBO curriculum.
Although teachers varied in their perceptions of integrating
coding and CT with literacy, our findings suggest that these
disciplines may share some cognitive and pedagogical
overlap that has yet to be extensively explored in the early
computing education field. This integration can have a
positive impact regarding learning outcomes. In addition,
children who participated in the CAL-KIBO curriculum
did better on unplugged CT challenges (TechCheck) than
their counterparts. This improvement occurred despite
unplugged CT challenges not being an explicit part of
the CAL-KIBO curriculum, suggesting that a transfer of
knowledge took place.

Based on our study, we provide the following
recommendations for practitioners seeking to integrate CT
and coding in their classrooms:

• Time: Allocate enough time in the weekly schedule
to prepare for and implement the curriculum.
Implementing the curriculum in the winter or spring
enables teachers to utilize established classroom
routines and behavioral expectations, which are key to
maximizing young student’s engagement and learning.

• Curricular Alignment: Although the CAL-KIBO
curriculum focused primarily on the connections
between literacy and CS, and was taught during the
literacy block, teachers found ways to connect the
activities to other curricular domains such as science
and math. We recommend aligning with multiple
subject areas, not just literacy, while still framing the
teaching of coding as a form of creative expression and
communication. The more teachers could see how the
lesson aligned with other content instruction, the more
they felt comfortable teaching.

• Resources: Teachers benefitted from collaborating
with one another, using the virtual and face-to-face
support resources, having access to knowledgeable
support staff, and co-teaching lessons with instructional
technologists. These findings provide insight into the

Teachers varied in how they responded to the
integration of literacy in the CAL curriculum; however,
there was a distinct trend amongst second grade teachers.
During interviews and focus groups, it became clear that
teachers who understood literacy instruction as singularly
focused on discrete skills (e.g., phonics, punctuation, etc.)
were less open to the CAL curriculum and to the overall
integration of CT, robotics, and literacy. Conversely,
teachers who understood literacy in broader terms and
saw meta-cognitive ideas and concepts about reading
and writing as essential to the development of robust
literacy abilities (e.g., communication, creative expression,
awareness of audience and purpose, etc.) were more open
to the curriculum.

The analysis of teacher interviews and focus groups
revealed several factors that impacted teachers’ overall
experience: time spent preparing and implementing
lessons; collaboration and utilization of resources;
competing priorities of other lessons and activities;
classroom management; and flexibility in adapting lesson
activities. Individual classroom and school contexts played
an important role. For instance, teachers who were more
successful with the curriculum had manageable classroom
sizes, flexible schedules to accommodate CAL lessons, and
an adequate number of robotic kits for students to work in
small groups. Conversely, teachers who had a large number
of students with little floor space, taught in an open-
classroom setting, or had rigid grade-level schedules faced
more challenges.

Discussion
Participation in the CAL-KIBO curriculum was associated
with improvement in coding and unplugged CT skills. It is
noteworthy that the measure of unplugged CT (TechCheck)
showed improvement with exposure to CAL-KIBO even
though the curriculum did not explicitly include the types
of unplugged activities in TechCheck. This finding supports
the assertion that the problem-solving improvements
were a consequence of knowledge and skills gained while
learning to code and not a function of explicit instruction in
solving unplugged challenges.

Taken together, our analysis suggests that baseline
literacy skills were related to students’ acquisition of CT
skills. Students who had higher PALS or DRA scores at the
beginning of the term were more successful in CT tasks
measured by TechCheck. These findings may help us
develop effective integrated CS curricula and identify core
skills that need to be strengthened so that all students can
reap the benefits of early childhood computer education.

We encouraged teachers to adapt the curriculum
based upon their students’ needs and available time.
As a consequence, there was variability in the fidelity of
implementation of the CAL-KIBO curriculum across schools
and classrooms. Other sources of variation included having

www.acm.org/education 37

ISTE, CSTA (2011). Operational definition of computational
thinking for K–12 education. https://id.iste.org/docs/ct-
documents/computational-thinking-operational-definition-
flyer.pdf

Cuny, J., Snyder, L., & Wing, J. M. (2010). Demystifying
computational thinking for non-computer scientists.
Unpublished manuscript in progress, referenced in https://
www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf

Fayer, S., Lacey, A., & Watson, A. (2017). BLS spotlight on
statistics: STEM occupations-past, present, and future.
Washington, D.C.: U.S. Department of Labor, Bureau of Labor
Statistics. https://www.bls.gov

Grover, S., & Pea, R. (2013). Computational thinking in K–12: a
review of the state of the field. Educational Research, 42(1),
38–43. https://doi.org/10.3102/0013189X12463051

Hassenfeld, Z. R., Govind, M., de Ruiter, L. E., & Bers, M. U.
(2020). If You Can Program, You Can Write: Learning
Introductory Programming Across Literacy Levels. Journal
of Information Technology Education: Research, 19, 65-85.
https://doi.org/10.28945/4509

Hermans, F., & Aivaloglou, E. (2017). To Scratch or not to
Scratch? A controlled experiment comparing plugged first
and unplugged first programming lessons. WIPSCE 2017.
Proceedings of the 12th workshop in primary and secondary
computing education (pp. 49–56).

Kalelioğlu, F., Gülbahar, Y., & Kukul, V. (2016). A framework
for computational thinking based on a systematic
research review. https://www.researchgate.net/
publication/303943002_A_Framework_for_Computational_
Thinking_Based_ on_a_Systematic_Research_Review

Lu, J. J., & Fletcher, G. H. (2009). Thinking about computational
thinking. In ACM SIGCSE Bulletin (Vol. 41, No. 1, pp. 260-
264). ACM. https://doi.org/10.1145/1539024.1508959

Relkin, E. (2018). Assessing young children’s computational
thinking abilities (Master’s thesis). Retrieved from ProQuest
Dissertations and Theses database. (UMI No. 10813994).

Relkin, E. & Bers, M. U. (2019). Designing an Assessment of
Computational Thinking Abilities for Young Children. In
L.E. Cohen & S. Waite-Stupiansky (Eds.), STEM for Early
Childhood Learners: How Science, Technology, Engineering
and Mathematics Strengthen Learning (pp. 85-98). New York,
NY: Routledge.

types of professional learning that early elementary
teachers may require to feel comfortable and confident
when teaching coding and robotics.

The CAL-KIBO curriculum focused on a single robotics
coding platform, KIBO. We have also developed a version
of the CAL curriculum that utilizes the free ScratchJr
introductory programming language and are currently
conducting studies. Future work will address the relative
strengths and weaknesses of both curricula regarding
different coding platforms and develop collaborations with
other school districts in the U.S. and abroad. We will also
explore if the CT skills acquired through one programming
language transfers to another one.

References
Aho, A. V. (2012). Computation and computational thinking.

The Computer Journal, 55(7), 832–835. https://doi.
org/10.1093comjnl/bxs074

Barr, V., & Stephenson, C. (2011). Bringing computational
thinking to K-12: what is involved and what is the role of
the computer science education community? Inroads, 2(1),
48–54. https://doi.org/10.1145/1929887.1929905

Barron, B., Cayton-Hodges, G., Bofferding, L., Copple, C.,
Darling-Hammond, L., & Levine, M. (2011). Take a giant step:
a blueprint for teaching children in a digital age. New York:
The Joan Ganz Cooney Center at Sesame Workshop.
https://joanganzcooneycenter.org

Bell, T., & Vahrenhold, J. (2018). CS unplugged—how is it used,
and does it work?. In Adventures between lower bounds and
higher altitudes (pp. 497–521). Springer, Cham. https://doi.
org/10.1007/ 978-3-319-98355-4_29

Bers, M. U. (2018). Coding as a Playground: Programming and
Computational Thinking in the Early Childhood Classroom.
New York, NY: Routledge Press.

Bers, M. U. (2019). Coding as another language: a pedagogical
approach for teaching computer science in early childhood.
Journal of Computers in Education, 6(4), 499-528.

Braun, V., & Clarke, V. (2006). Using thematic analysis in
psychology. Qualitative Research in Psychology, 3(2), 77–101.
https://doi.org/10.1191/1478088706qp063oa

Code.org (2019). https://code.org/

Core Team, R. (2019). R: a language and environment for
statistical computing. Vienna: R Foundation for Statistical
Computing. https://www.R-project.org/

http://www.acm.org/education
https://id.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf
https://id.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf
https://id.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf
https://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf
https://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf
https://www.bls.gov
https://doi.org/10.3102/0013189X12463051
https://doi.org/10.28945/4509
https://www.researchgate.net/publication/303943002_A_Framework_for_Computational_Thinking_Based_
https://www.researchgate.net/publication/303943002_A_Framework_for_Computational_Thinking_Based_
https://www.researchgate.net/publication/303943002_A_Framework_for_Computational_Thinking_Based_
https://doi.org/10.1145/1539024.1508959
https://doi.org/10.1093/
https://doi.org/10.1093/
https://doi.org/10.1145/1929887.1929905
http://joanganzcooneycenter.org
https://doi.org/10.1007/
https://doi.org/10.1007/
https://doi.org/10.1191/1478088706qp063oa
http://Code.org
https://code.org/
https://www.R-project.org/

Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions38

U.S. Department of Education, Office of Educational Technology
(2017). Reimagining the role of technology in education:
2017 National Education Technology Plan update. https://
tech. ed.gov/teacherprep

Vee, A. (2017). Coding Literacy: How Computer Programming Is
Changing Writing. Cambridge, MA: The MIT Press. https://
mitpress.mit.edu/books/coding-literacy

Virginia Department of Education (2021). 2016 Virginia Acts
of Assembly Item 138, page 117. https://www.doe.virginia.
gov/instruction/computer-science/2016-acts-of-assembly-
page117.pdf

White House (2016). Educate to innovate. https://www.
whitehouse.gov/issues/education/k-12/educate-innovate

Wing, J. M. (2006). Computational thinking. CACM Viewpoint,
49(3), 33–35. https://doi.org/10.1145/1118178.1118215

Wing, J. (2011). Research notebook: computational thinking—
What and why? The Link Magazine, Spring. Carnegie
Mellon University, Pittsburgh. https://www.cs.cmu.edu/link/
researchnotebookcomputational-thinking-what-and-why

Yadav, A., Hong, H., & Stephenson, C. (2016). Computational
thinking for all: Pedagogical approaches to embedding a
21st century problem solving in K-12 classrooms. TechTrends
60, 565-568. DOI: 10.1007/s11528-016-0087-7.

Yadav, A., Good, J., Voogt, J., & Fisser, P. (2017). Computational
thinking as an emerging competence domain. In Technical
and vocational education and training (Vol. 23, pp. 1051–
1067). https://doi.org/10.1007/978-3-319-41713-4_49

Relkin, E., de Ruiter, L., & Bers, M. U. (2020). TechCheck:
Development and Validation of an Unplugged Assessment
of Computational Thinking in Early Childhood Education.
Journal of Science Education and Technology. https://doi.
org10.1007/s10956-020-09831-x

Relkin, E., de Ruiter, L., & Bers, M. U. (2021). Learning to Code
and the Acquisition of Computational Thinking by Young
Children. Computers & Education.

Rodriguez, B., Rader, C., & Camp, T. (2016). Using student
performance to assess CS unplugged activities in a
classroom environment. In Proceedings of the 2016 ACM
Conference on Innovation and Technology in Computer
Science Education (pp. 95-100). ACM. https://doi.
org/10.1145/2899415.2899465

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying
computational thinking. Educational Research Review, 22,
142–158. https://doi.org/10.1016/j.edurev.2017.09.003

Sullivan, A., Bers, M. U., & Mihm, C. (2017). Imagining, Playing,
& Coding with KIBO: Using KIBO Robotics to Foster
Computational Thinking in Young Children. Proceedings
of the International Conference on Computational Thinking
Education. Wanchai, Hong Kong.

Sullivan, A., Elkin, M., & Bers, M. U. (2015). KIBO Robot Demo:
Engaging young children in programming and engineering:
Proceedings of the 14th International Conference on
Interaction Design and Children (IDC ’15), Medford, MA,
June 21-25. New York, NY: ACM

Thies, R., & Vahrenhold, J. (2013). On plugging "unplugged"
into CS classes. Proceeding of the 44th ACM technical
symposium on Computer science education (SIGCSE '13).
Association for Computing Machinery, New York, NY, USA,
365–370. https://doi.org/10.1145/2445196.2445303

http://ed.gov/teacherprep
https://mitpress.mit.edu/books/coding-literacy
https://mitpress.mit.edu/books/coding-literacy
https://www.doe.virginia.gov/instruction/computer-science/2016-acts-of-assembly-page117.pdf
https://www.doe.virginia.gov/instruction/computer-science/2016-acts-of-assembly-page117.pdf
https://www.doe.virginia.gov/instruction/computer-science/2016-acts-of-assembly-page117.pdf
https://www.whitehouse.gov/issues/education/k-12/educate-innovate
https://www.whitehouse.gov/issues/education/k-12/educate-innovate
https://doi.org/10.1145/1118178.1118215
https://www.cs.cmu.edu/link/researchnotebookcomputational-thinking-what-and-why
https://www.cs.cmu.edu/link/researchnotebookcomputational-thinking-what-and-why
https://doi.org/10.1007/978-3-319-41713-4_49
https://doi.org10
https://doi.org10
https://doi.org/10.1145/2899415.2899465
https://doi.org/10.1145/2899415.2899465
https://doi.org/10.1016/j.edurev.2017.09.003
https://doi.org/10.1145/2445196.2445303

www.acm.org/education 39

Introduction
Computing, and the technologies it enables, are playing
an increasingly important role in society. As such, for
young learners growing up in this technological landscape,
being able to recognize the capabilities and limitations
of computing technologies, think critically about the
roles computing plays in society, and most crucially, to
be able to meaningfully participate in a technological
culture is essential. In response to the growing importance
of the skills associated with computing and the need to
broaden participation in the community, it is essential that
all students have the opportunity to learn the big ideas
of computing and develop foundational computational
thinking (CT) skills (National Research Council, 2010; Shute
et al., 2017; Wing, 2006).

To ensure equitable access to CT learning opportunities,
CT must be a part of all learners’ K-12 classroom
experiences. To accomplish this goal, we have developed
a curriculum, entitled Sphero.Math, in which learners
explore mathematical concepts and develop CT skills
by interacting with a spherical robot. The approach
embeds CT into existing 4th-grade math classrooms and

has both theoretical and practical motivations. From a
theoretical perspective, there is a long history of research
demonstrating the mutually-supportive potential of
computing and mathematics (e.g., Abelson & diSessa, 1986;
Kaput et al., 2002; Noss & Hoyles, 1996; Papert, 1972). This
research shows how computing can serve as a tool for deep
mathematical exploration and that mathematics as a subject
can provide a meaningful context to enact computational
ideas. From a practical perspective, taking this integrative
approach ensures that all learners will have access to CT
learning experiences as every school has resources to
teach mathematics (e.g., teachers, time, classrooms) and
every student takes mathematics in 4th-grade. Further, the
Sphero.Math curriculum was co-developed with teachers
and district curriculum experts as part of a research-practice
partnership (Coburn & Penuel, 2016), resulting in significant
institutional support and a curriculum that fits with the
technology, infrastructure, and professional development
resources available within the district.

The last decade has seen a flourishing of research
seeking to bring CT into STEM classrooms of all levels.
In their review of assessing CT, Tang and colleagues

David Weintrop, Janet Walkoe, Margaret Walton, Janet Bih, Peter Moon, Andrew Elby,
College of Education, University of Maryland,
Bianca Bennett, and Madison Kantzer, District of Columbia Public Schools

Corresponding Author: David Weintrop, weintrop@umd.edu

Abstract

Computational thinking (CT) constitutes an essential set of skills and practices that all students should learn
in order to effectively and meaningfully participate in an increasingly computational world� This paper

introduces Sphero�Math, a curriculum that integrates CT concepts and practices into 4th-grade mathematics
classrooms using the Sphero robot� Sphero�Math was co-designed with school district partners in such a way as
to achieve two central design goals� First, integrate CT and mathematics in a mutually-supportive way, meaning
that learners engage with CT as a means to deepen mathematics learning and that mathematics serves as
a context to learn CT� Second, create a CT-infused curriculum using existing school/district resources that is
designed to fit within the constraints of public school classrooms� Along with introducing Sphero�Math and
its design goals, this paper presents empirical evidence for the types of CT and math learning opportunities
that Sphero�Math can provide for students� In doing so, this work contributes to our understanding of ways to
productively integrate CT into elementary classrooms and advances our understanding of how to work within
existing educational infrastructure to provide effective and equitable CT learning opportunities for all students�

Sphero�Math:
A Computational Thinking-Enhanced
Fourth Grade Mathematics Curriculum

http://www.acm.org/education
mailto:weintrop@umd.edu

Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions40

work contributes an empirical example of how to integrate
CT into elementary classrooms in an equitable, sustainable,
mutually-supportive way.

METHODS

In this section, we first introduce the Sphero.Math curriculum,
providing a high-level description of the approach and
technology to help situate the specific examples provided
in the Results section. We then describe the study design
and data collection strategies followed by a presentation
of the setting in which this research occurred and the
characteristics of the participants.

Sphero.Math
The Sphero.Math curriculum consists of 14 lessons that
engage students in solving math tasks using a Sphero
(Figure 1a), which is a spherical robot that can be
programmatically controlled with a tablet or smartphone
(Figure 1b). Sphero programs take the form of block-based
scripts (Figure 1c) that can include basic programming
constructs (e.g., loops, conditionals), commands to control
the Sphero’s movement and appearance (e.g., roll,
strobe), and sensor data from the device (e.g., distance
traveled, speed). The basic movement command for the
Sphero is the roll command which takes three inputs:
heading, speed, and time, resulting in a command that
reads: roll 45° at 100 speed for 3s. The decision to
use the Sphero for this curriculum was made by the district,
which had classroom sets of Spheros and tablets available
for students. The Sphero robot and its accompanying
programming environment have a number of affordances
that lend it well to the exploration of mathematical concepts,
including defining distance as a product of rate and time
(thus supporting proportional reasoning), recording and
reporting distance traveled, speed, and acceleration for a
given program run that can then be recorded and analyzed,
and interactive input features for expressing mathematical
concepts, such as an interactive protractor to define angles
(Figure 1d). Additionally, the physical nature of the Sphero
supports younger learners in drawing on their bodies

(2020) identified 96 empirical studies of CT, with roughly
two-thirds of those studies (67.4%) focused on formal
education and 21.7% of those studies investigating CT
integrated with STEM content. The Sphero.Math project
adds to the growing body of research investigating CT in
elementary classrooms (e.g., Asbell-Clarke et al., 2020;
Israel & Lash, 2019; Miller et al., 2020) and adds to it in
a number of unique ways, including its explicit focus on
mutual-supportiveness (i.e., a focus on mathematical and
CT learning), its close collaboration with the school district
to ensure ease of adoption and continued district support,
and its focus on broadening participation and equity by
working in schools that historically have offered few CT
learning opportunities.

While there remains an active discussion as to what
exactly constitutes CT (Grover & Pea, 2013; Shute et al.,
2017), given our focus on CT in elementary mathematics
classrooms, our conceptualization of CT draws from the
CT in Math and Science Taxonomy (Weintrop et al., 2016)
and how it aligns CT to the unique characteristics of the
disciplines. More concretely, we operationalize CT using the
PRADA (pattern recognition, abstraction, decomposition,
and algorithms) model for integrated CT (Dong et al., 2019)
along with CT practices associated with programming,
including iterative development and debugging.

This paper continues with an introduction to the
Sphero.Math curriculum and a discussion of the context
in which the study took place and the methodological
approach used. After that, we present our results in the
form of two vignettes, showing what the Sphero.Math
curriculum can look like in practice and how learners have
opportunities to engage in both mathematics and CT in
mutually-supportive ways. These vignettes are intended to
serve as an existence proof that CT and mathematics can
co-exist and be embedded into elementary mathematics
classrooms in a way that is consistent with the goals of
the teacher and district while also engaging learners
with CT concepts historically absent from such learning
contexts. The paper concludes by summarizing the
significance and implications of this work. Collectively, this
work advances our understanding of how to work within
existing educational infrastructure to bring high-quality CT
instruction into urban elementary classrooms. Further, this

Figure 1. (a) The Sphero robot, (b) programming environment, (c) a sample program, and (d) interactive protractor for defining angles�

(c)(b)(a) (d)

www.acm.org/education 41

while not part of the 4th-grade math curriculum, students
gain insight into covariation (how variables affect each
other as they change) as they work to understand how
changing the speed and time variables affects distance. At
the same time, students develop CT skills, like developing
algorithms, as they write a program that commands Sphero
to roll at a certain speed for a certain amount of time, and
manipulate those variables in the program as necessary.

Setting and Participants
This study took place over two years in 4th-grade
mathematics classrooms in an urban public school district
in the Mid-Atlantic region of the United States. The Sphero.
Math curriculum has been taught in schools across the
district that serve a range of student populations. In Year
2 (the 2020-21 school year), we focused on two schools,
one that serves a predominantly Black student population
(99% Black student body) and a second that serves a
predominantly Hispanic/Latino student population (74%
Hispanic/Latino; 12% White; 11% Black), with both schools
being designated as Title I by the district, meaning they
serve a significant number of students from economically
disadvantaged households. The vignettes presented below
are from a recorded session with a pair of students in Year
1, which is a more racially diverse school (51% White, 17%
Hispanic/Latinx, 15% Black/African American, 9% Asian, 8%
Mixed Race).

Data Collection
To understand the experiences of students working through
the Sphero.Math activities, we conducted a qualitative
classroom study that closely examined how a small group
of students engaged with the Sphero.Math curriculum. In
Year 1, we observed Sphero.Math lessons being taught in
person, and recorded video of students working through
Sphero.Math activities. For each classroom observation,
two focal pairs were identified by the classroom teacher.

and experiences moving through the world as a means of
translating their intentions into programming commands
(Bih et al., 2021).

Sphero.Math was developed collaboratively by
researchers from the project working closely with a
technology specialist, an instructional coach, and a 4th-
grade teacher from the partnering district. Lessons were
designed to fit within the time allotted for mathematics
instruction. Each lesson follows a three-part structure:
Engage - which situates the lesson’s central problem/
question, Code - during which students author, test, and
debug programs, and Debrief - during which student review
their programs, reflect on the process, and discuss the
mathematical and computing concepts encountered during
the lesson. Each lesson has both student and teacher-
facing materials, with the teacher-facing materials defining
a clear objective for the lesson and documenting how the
lesson aligns to the 4th-grade Common Core Mathematics
Standards (CCSS, 2010), which are the standards used by
the district. The lessons also detail what CT students will
engage with during the lesson, and, when possible, what
lessons from the district-mandated mathematics curriculum
the Sphero.Math lesson aligns with. In an effort to provide a
meaningful and engaging context, the curriculum situates
each activity in an amusement park theme.

Central to each lesson is the integration of both
mathematical and CT concepts. For example, in one lesson
entitled Roller Coaster Speed Test, students calculate the
expected distance that the Sphero should travel at speeds
of 10 and 100 for 1, 2, 3, and 4 seconds. The students then
compared their calculated distance to the actual distance
that the Sphero travels for the different speeds and times.
During the lesson, students examine relationships between
factors of 10, which is a 4th-grade Common Core Standard
(CCSS.Math.Content.4.NBTA.1). They also attend to issues
like mathematical precision, which is Practice 6 of the
Common Core Standards for Mathematical Practice (CCSS,
2010), and the various factors that can affect the Sphero’s
precision (like rolling on tile vs. rolling on carpet). Also,

Figure 2. Students working on a Sphero�Math activity as seen from (a) the stationary camera and (b) a head-mounted camera�

(a) (b)

http://www.acm.org/education

Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions42

identify the mathematical content and the types of CT and
programming skills exhibited by the students. As we were
interested in identifying features of the tools and tasks that
helped support these moments of mutually-supportive CT
and mathematics. The research team watched the video
selections together multiple times until consensus was
reached on the mathematical ideas and CT used by the
students. In analyzing these instances of co-expression,
we matched students’ mathematical skills to the Common
Core State Standards (CCSS, 2010). In terms of CT, we
used the PRADA framework (Dong et al., 2019) as a lens to
identify the different components of CT that students used
in conjunction with the mathematics. In addition, we looked
for several key programming skills, including iteratively
developing a solution and debugging, which are generally
considered to be important elements of CT (Shute et al.,
2017). Table 1 shows the CT components we focused on,
how they were operationalized for this work, and examples
of each from the Sphero.Math curriculum.

RESULTS

In this section, we present two vignettes of one pair of
students (shown in Figure 2) working through a summative
Sphero.Math activity. In the first year of the project, the
summative Sphero.Math activity asked students to program
their Sphero to navigate a maze (Figure 3a). However, unlike
a conventional maze-navigation challenge, students were

Each focal student wore a head-mounted video camera,
providing a first-person perspective on their experience
working with the Sphero and the Sphero programming
environment (Figure 2b). Additionally, a third, stationary
camera was used to provide a third-person perspective on
the pairs’ engagement with the materials (Figure 2a). This
resulted in three videos for each pair of students working
through the lesson. At the conclusion of the Sphero.Math
lessons, brief interviews were conducted with the students
asking them to reflect on their experiences going through
the lesson. We did not have the same opportunity to video
record students in Year 2 due to the COVID-19 pandemic.
Instead, Sphero.Math lessons were taught virtually by the
classroom teachers and observed by researchers.

Data Analysis
The data presented in this paper is from the video-
recorded sessions of student pairs in Year 1. Two members
of the research team watched and thematically coded
all three videos of each Sphero.Math lesson (Saldaña,
2015). In this initial viewing, researchers were specifically
looking for moments where CT and mathematics were
co-expressed and mutually-informing (i.e. CT was being
used to investigate a mathematical concept or mathematics
was being used to explain a CT idea or outcome). These
moments of co-expression were then transcribed and
analyzed by the full team using interaction analysis
techniques (Jordan & Henderson, 1995), looking to

Table 1. The definition of computational thinking used in this work�

CT Component Definition Sphero.Math Example

Pattern Recognition Identifying parts of a problem that repeat.
Repeating steps/concepts can often be
performed by a computer

Seeing that a series of steps are repeated to
measure a distance, so putting those steps
inside a looping block (e.g. repeat)

Abstraction Creating generalizations that are meaningful/
useful or identify the essential parts of a
problem and re-representing the problem
including only the relevant parts

Being given the challenge of finding the
perimeter of a specific rectangle but then
writing a program that can calculate the
perimeter of any rectangle

Decomposition Breaking a problem down into smaller parts
(either sub-problems or specific aspects of
a problem that can be easily mapped to a
computational solution)

Breaking down a complex shape into a series of
line segments and turns which map easily onto
programming commands far a Sphero

Algorithms Defining a sequence of steps that can be
followed to achieve some desired outcome

Defining a series of steps that can be executed
by the Sphero to find the area of your classroom

Programming Skills Definition Sphero.Math Example

Iterative
development

Developing a solution through incremental
steps, iteratively refining and revising aspects of
the solution

Manipulating the duration argument in the roll
command multiple times to “zero in” on a time
that will make Sphero roll the desired distance

Debugging A systematic approach to identifying the source
of undesired outcomes and correcting them to
achieve desired results

Reading through Sphero code line-by-line and
acting out the steps to identify the source of an
error

www.acm.org/education 43

to travel just 1 square length is in contrast to trying to
write a program that travels the full distance of the initial
segment (3.5 squares). This is significant as it demonstrates
the students setting out to solve the maze-navigation
problem by decomposing the maze into reusable
segments, creating a basic command that travels one
square, and then reusing it to navigate the maze

To get their Sphero to roll one carpet square length
(24 inches as defined by the map), the students start
by composing a program consisting of the following
command: roll 0° at 50 speed for.7s. They then
place their Sphero next to a yardstick and run the program
(shown in Figure 2a). After their first run, the Sphero
rolled 32 inches. Realizing their Sphero rolled too far, they
modify their program, instructing the Sphero to only roll
for .3 seconds. They re-run their program but this time the
Sphero only travels 6 inches. They next try .5 seconds and
re-run the program again, this time the Sphero travels 23.5
inches, prompting Student One to say “I think [the teacher]
would give us that”. Student Two replies, “No, because if it
kept going like that…” then trails off as his partner says, “Ok
then .573”. They modify the program, changing the third
argument in the roll command to .573 seconds, and run
the program for a fourth time. The Sphero travels exactly 24
inches, prompting Student Two to say, “Right on the dot.”

Decomposition, Iterative Development,
and Debugging: Discussion
In the first vignette, we see two 4th-grade students
decomposing the maze into segments (CT Practice:

not allowed to test out their program on the maze directly,
instead, they were provided a map of the maze (Figure 3b).
On the map, the path of the maze is overlaid onto a grid with
the dimensions of the grid provided. To navigate the maze,
students must calculate the length of maze segments based
on the provided grid-square dimensions and then program
their Sphero to travel that distance. Only after the students
had written the program to traverse the maze based on
their own measurements and calculations were they able
to try it out on the actual maze. The activity aligns with
4th-grade Common Core Mathematics Standards (CCMS)
asking learners to “Solve problems involving measurement
and conversion of measurements” and the CT practices of
Pattern Recognition, Algorithms, Decomposition, along with
foundational programming practices. These vignettes are
intended to demonstrate the ways that CT and mathematics
can be mutually-supportive and highlight the role of the
Sphero in mediating this co-expression. After each vignette,
we present a brief discussion highlighting the mathematics
and CT demonstrated by the students and how the two
practices are mutually-supportive.

Decomposition, Iterative Development,
and Debugging
At the outset of the activities, the two boys in our focal
pair identify the first segment of the maze as consisting
of three-and-a-half squares and initially develop a plan to
write a program that has their Sphero travel the length of
one carpet square and then plan to reuse that command
throughout the maze. The decision to program the Sphero

Figure 3. (a) The maze to be completed and (b) the map of the maze, include the
dimension so the carpet squares (provided inches and centimeters)�

(a) (b)

http://www.acm.org/education

Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions44

Proportional Reasoning, Pattern
Recognition, and Algorithms: Discussion
In this second vignette, the students start to build their
algorithm based on the command they authored in the
first vignette to travel a single map square. They identify
that their one-square program needs to be repeated
3.5 times to traverse the first segment of the maze (CT
Practice: Pattern Recognition). To do so, they develop an
algorithm that repeats the full square command three times
and then they devise a fourth command to travel half of
a map square by cutting the speed in half (CT Practice:
Algorithms). At the same time, students work with a unit
of measurement (a grid square) and determine how to
manipulate the measurement to solve a distance problem
(Standard: CCSS.MATH.CONTENT.4.MD.A.2). Additionally,
realizing that cutting the speed in half while keeping the
duration fixed will result in the Sphero traveling half-as-far
shows these 4th-grade students conducting multiplicative
comparisons to solve problems (Standard: CCSS.Math.
Content.4.OA.A.1) and employing proportional reasoning,
which is not expected of students until grade 6.

Discussion
Across these two brief vignettes, we see instances of
students engaging in mathematical thinking and CT
practices and also ways that two are mutually informing:
the mathematics task is serving as a context for employing
CT practices and that CT practices serve as a way
to support and enact mathematical reasoning. One
important thing to note across these vignettes is that the
CT practices and mathematical concepts demonstrated
in these vignettes were all enacted in service of solving a
specific problem. The assignment was not for students to
show an understanding of a particular concept, nor did
they receive direct instruction on how to use, for example,
proportional reasoning, to navigate the maze or iterative
development to refine the precision of their program.
Instead, these practices and concepts emerged in situ,
informed by the specific constraints of the program and
affordances of the technology.

The final noteworthy aspect of this work is to reiterate
the context in which it occurred - an urban elementary
mathematics classroom. As a result of the way the
curriculum was designed, through an RPP including input
from teachers and district administrators, the curriculum
relied only on materials available to teachers in the district
and aligned to mathematics standards the students are
evaluated against. Additionally, the district provided
time for teacher professional development and helped
recruit schools and teachers to participate in the project.
Collectively, the alignment of the goals of the teacher,
the district, and the researchers led to the creation
of a curriculum that attends to both CT learning and

Decomposition) and then attending to issues of precision
(CCSS Mathematical Practice 6). In their efforts to program
their Sphero to travel exactly one grid square, the students
employ a strategy of trying out a duration, recording the
resulting traveled distance, and then revising the duration
based on the outcome (CT Practice: Iterative Development).
While students used an iterative approach, they also
demonstrated an understanding of place value and
reasoned about the size of numbers expressed in decimal
form as they chose .573 for their duration that is both
greater than .5 and less than .7, the previously attempted
values. This decimal comparison is a 4th-grade Common
Core Standard (CCSS.Math.Content.4.NF.C.7) and aligns to
concepts the 4th-graders learned during their traditional
math lessons. Also, while not in the curriculum, this lesson
also allows students to explore covariation, as they change
the time the Sphero travels to achieve the desired distance.

A second instance of CT can be seen in the final
comments from this vignette. In debating whether a “close
enough” program would work, Student Two comments:
“No, because if it kept going like that…” This utterance
demonstrates rather sophisticated reasoning about the
implications of iteration, grounded in an understanding of
measurement and additive properties of length. Because
the pair plans to re-use this program for each square of
the maze, being off by a little will produce a compounding
error where their Sphero ends up increasingly off the more
times this command is executed. In this utterance, we can
see how the context of programming the Sphero serves as
a context to reason about and engage with various aspects
of measurement and precision, which are part of the 4th-
grade math standards.

Proportional Reasoning, Pattern
Recognition, and Algorithms
Having successfully authored a program to get their Sphero
to travel one square, the pair returns to the map to figure
out how to get the Sphero to travel the entirety of the first
maze segment. Pointing to the start position, Student One
says “alright, we’ve done one of them, so we’ll do one more”.
Student Two picks up this idea, “so then we need to go right
here and right here, and then we need to go half of one”
moving his finger along the line segment as he speaks.
After his finger reaches the end of the first segment, Student
Two says “So we'll just cut the speed in half”, proposing a
solution to traveling that last half-square. To implement this
plan, the pair repeats the command they figured out in the
previous vignette (roll 0° at 50 speed for.573s)
three times, once each for the full squares of the first maze
segment. For the final command, they cut the speed in half,
having the Sphero travel at speed 25 instead of speed 50.
The resulting program to navigate the first segment of the
maze is showing in Figure 1c.

www.acm.org/education 45

teaching CT in elementary schools that serve economically
disadvantaged student populations composed of learners
from populations historically excluded from computing. This
is a direct result of the close collaboration with the district
and reflects the district’s commitment to providing enriching
CT activities to all students across the district. The Sphero.
Math project was conceived through conversations with
district leadership and co-designed with teachers, enabling
the voices of both researchers and practitioners to be
present at each phase of the work. The result is a curriculum
that aligns with the district's mission of equitable and joyful
learning opportunities for all learners and delivers on the
overarching goals of bringing CT to all learners.

Acknowledgments
This work is supported by the Spencer Foundation
(#201900099). However, any opinions, findings,
conclusions, and/or recommendations are those of the
investigators and do not necessarily reflect the views of
the Foundation.

References
Abelson, H., & diSessa, A. A. (1986). Turtle geometry: The

computer as a medium for exploring mathematics. The MIT
Press.

Asbell-Clarke, J., Rowe, E., Almeda, V., Edwards, T., Bardar, E.,
Gasca, S., Baker, R. S., & Scruggs, R. (2020). The development
of students’ computational thinking practices in elementary-
and middle-school classes using the learning game,
Zoombinis. Computers in Human Behavior, 106587.

Barr, V., & Stephenson, C. (2011). Bringing computational
thinking to K-12: What is Involved and what is the role of the
computer science education community? ACM Inroads, 2(1),
48–54.

Bih, J., Weintrop, D., Moon, P., & Elby, A. (2021). Computational
Bodies: Grounding Computational Thinking Practices in
Embodied Gesture. Proceedings of the 15th International
Conference of the Learning Sciences, 171–178.

Coburn, C. E., & Penuel, W. R. (2016). Research–Practice
Partnerships in Education: Outcomes, Dynamics, and Open
Questions. Educational Researcher, 45(1), 48–54.

Dong, Y., Catete, V., Jocius, R., Lytle, N., Barnes, T., Albert, J.,
Joshi, D., Robinson, R., & Andrews, A. (2019). PRADA: A
Practical Model for Integrating Computational Thinking in
K-12 Education. Proceedings of the 50th ACM Technical
Symposium on Computer Science Education, 906–912.

mathematical learning and does so in a way that allows for
it to be taught in classrooms that historically have had little
CT or technological components.

Implications, Limitations & Future Work
There are several implications of this work for both
researchers and practitioners. Central among them is a
demonstration of the potential for mutually-supportiveness
between CT and disciplinary content - in this case, 4th-
grade mathematics. The vignettes above show that CT-
enhanced activities can provide a context for students
to engage in mathematical problem solving and that
math problems, like manipulating variables to achieve a
particular distance, can provide a context for CT learning.
This is significant as it directly addresses a central (and
valid) concern of many educators - that there is no room
for additional content in the already overpacked school
day (Barr & Stephenson, 2011). It is important to mention
that bringing a CT-infused curriculum into classrooms
still requires an investment of time and energy (e.g.,
professional development to train teachers, district logistics
support to ensure materials are present in each classroom).
However, when the commitment to bring CT to all students
is in place, a mutually-supportive curriculum can provide a
pathway to achieve this goal.

The second implication of this work is a reimagining
of what, how, and where students can engage with CT.
Historically, the concepts and practices associated with CT
(e.g., debugging, problem decomposition, programming)
have resided in high school computer science classes. With
this work, we show what it can look like for these same
ideas to reside in a very different educational context:
elementary mathematics classrooms. This serves as a
demonstration of how an expanded view of CT can be
integrated into existing subjects, opening new pathways for
learners, especially younger students, to be introduced to
the powerful ideas of computing.

The data presented in this study are intended to serve
as an existence proof that it is possible to work within the
constraints of urban, public schools to provide CT learning
opportunities to young students in a way that aligns with
the disciplinary goals of the class. Given the nature of the
data collected (multi-stream video of a small number of
students), this work cannot make claims about the impact
of this work across the full set of students or other schools
that were using the Sphero.Math curriculum. This larger-
scale analysis is a limitation of the present study and is the
planned course of future work. Our intention with this work
is to lay the qualitative foundations for the quantitative
evaluation work to follow.

In closing, this work shows how an integrated approach,
co-developed with district partners, can bring CT learning
opportunities to students who historically have had few
opportunities to engage with computing. In this case,

http://www.acm.org/education

Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions46

Noss, R., & Hoyles, C. (1996). Windows on mathematical
meanings: Learning cultures and computers. Kluwer.

Papert, S. (1972). Teaching Children to be Mathematicians
Versus Teaching About Mathematics. International Journal
of Mathematical Education in Science and Technology, 3(3),
249–262.

Saldaña, J. (2015). The coding manual for qualitative
researchers. Sage.

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying
computational thinking. Educational Research Review, 22,
142–158.

Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing
computational thinking: A systematic review of empirical
studies. Computers & Education, 103798.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille,
L., & Wilensky, U. (2016). Defining Computational Thinking
for Mathematics and Science Classrooms. Journal of Science
Education and Technology, 25(1), 127–147. https://doi.
org/10.1007/s10956-015-9581-5

Wing, J. M. (2006). Computational thinking. Communications of
the ACM, 49(3), 33–35.

Grover, S., & Pea, R. (2013). Computational Thinking in K-12:
A Review of the State of the Field. Educational Researcher,
42(1), 38–43.

Israel, M., & Lash, T. (2019). From classroom lessons to
exploratory learning progressions: Mathematics +
computational thinking. Interactive Learning Environments,
0(0), 1–21.

Jordan, B., & Henderson, A. (1995). Interaction analysis:
Foundations and practice. The Journal of the Learning
Sciences, 4(1), 39–103.

Kaput, J., Noss, R., & Hoyles, C. (2002). Developing new
notations for a learnable mathematics in the computational
era. Handbook of International Research in Mathematics
Education, 51–75.

Miller, E. C., Severance, S., & Krajcik, J. (2020). Connecting
Computational Thinking and Science in a US Elementary
Classroom. In J. Anderson & Y. Li (Eds.), Integrated
Approaches to STEM Education: An International Perspective
(pp. 185–204). Springer International Publishing.

National Governors Association Center for Best Practices,
Council of Chief State School Officers. (2010). Common
Core State Standards for Mathematics. National Governors
Association Center for Best Practices, Council of Chief State
School Officers.

National Research Council. (2010). Report of a Workshop on The
Scope and Nature of Computational Thinking. The National
Academies Press.

https://doi.org/10.1007/s10956-015-9581-5
https://doi.org/10.1007/s10956-015-9581-5

www.acm.org/education 47

Educational robotics is a popular way to introduce young
children to computer science and the mathematics inherent
in computer programming (Anwar et al., 2019; Bers, 2010).
Papert’s (1980) Mindstorms famously captures the inherent
potential of educational robotics that is present today —
when children work with robots, they are challenged to
think in ways that are analogous to the computer. They
must visualize the robot’s movements, program the robot
to make those movements, and continue to test and debug
until they achieve their goals (Anwar et al., 2019; Yuen et
al., 2015). These activities position educational robotics as
a way of meeting the current national priority of improving
CS education for all in the US.

The process of problem solving inherent in educational
robotics is commonly referred to as computational think-
ing. Computational thinking is a problem-solving process
associated with computer scientists in which children use
computational practices to solve problems (Wing, 2011).
It consists of skills like decomposing a larger task into sub-
goals, using and designing algorithms to achieve goals
with precision (i.e., algorithmic thinking), recognizing and
forming patterns, and iteratively developing a computa-
tional solution through trial and error (Grover & Pea, 2013;
Wing, 2006).

Codable robots provide opportunities to apply com-
putational thinking practices within the context of mathe-
matical instruction. For example, when children repeatedly
test and debug a computer program, they are making
sense of problems and showing perseverance in solving

them (Dunbar & Rich, 2020). Programming the robot
requires children to move between fractional and deci-
mal forms of numbers, including whole numbers, as they
determine the speed and time needed to move the robot
(i.e., algorithmic thinking). The robot’s movement can
support learning the relationship between different angle
measures (Dunbar & Rich, 2020), the fundamental compo-
nents of coordinate systems (Rich et al., 2020), and even
proportional reasoning between distance, speed, and
time (Rich et al., 2020; Yuen et al., 2015). Thus, educational
robots can provide opportunities to integrate CT within
K-12 classrooms and support children’s mathematical
learning (Grover & Pea, 2013; National Science & Technol-
ogy Council, 2018).

While educational robotics provides an opportunity
to integrate computer science into the math curriculum,
elementary teachers often lack the support needed to
do so successfully. Research has indicated an overall
lack of access to quality computer science activities and
the professional learning needed to develop teacher’s
knowledge and skills with activities like educational
robotics (Anwar et al., 2019; Yadav et al., 2016; Yuan et
al., 2019). This often leads teachers to view educational
robotics as an additional burden that detracts from
meeting the standards to which they are held accountable
(Ketelhut et al., 2020). Thus, the question remains how
to support elementary teachers to integrate CT through
educational robotics with their math instruction (Lee et al.,
2017; Leonard et al., 2018).

Improving Teacher Use of Educational
Robotics To Teach Computer Science
in K-5 Mathematics
Theodore J. Kopcha, Cheryl Y. Wilson, and Dayae Yang, The University of Georgia

Corresponding Author: Theodore J. Kopcha, tjkopcha@uga.edu

Abstract

This paper reports on a professional development (PD) effort in which 12 elementary teachers (K-5) in a rural,
under-resourced school were equipped with the skills needed to integrate computer science activity into

the regular math curriculum� Over the course of a year, the teachers engaged in a week-long summer workshop
and monthly follow-up training with in-classroom support as they integrated educational robots into their math
curriculum� Surveys, tests, and teacher lesson plans were analyzed to better understand how the PD contributed
to teacher’s knowledge and skills� Wilcoxon Signed-Rank tests indicated that teacher rankings on their attitudes
towards and planning practices with educational robots were statistically significantly higher at the end of
the PD� The improvement was further reflected in the quality of their lesson plans� Implications for preparing
teachers to use educational robots to teach computer science in elementary mathematics are discussed�

http://www.acm.org/education
mailto:tjkopcha@uga.edu

Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions48

Professional Development Framework
Our professional development (PD) focused on the
knowledge, skills, and attitudes needed to integrate
educational robotics into the mathematics curriculum. We
used Ozobot robots because this technology supports
learning CS concepts from Kindergarten through fifth
grade. As shown in Figure 1, Ozobots can be programmed
visually using hand-drawn commands such as following
solid lines and performing actions through color
combinations (e.g., red-green-red = go faster). Ozobots
can also be programmed to move, change speed, turn, and
perform actions (e.g., zig zag; change color) through block-
based programming (see Figure 2). For younger learners,
commands are represented visually (e.g., a 90° turn as a
circle with one quarter filled in) whereas more advanced
learners can use text-based blocks to enter specific values.

To address both the technological skills and teaching
practices needed to integrate CS into the math curriculum
through educational robotics, we drew on two areas of re-
search: research-based principles of teacher PD in technolo-
gy integration (e.g., Kopcha, 2012; Mouza, 2009) and Smith
& Stein’s (2011) five practices for mathematical discourse.

Research-based Technology Integration
PD Principles
Teachers learning to integrate technology face a variety of
potential barriers, including a lack of knowledge, beliefs,
time, and support (Kopcha, 2012). Mouza (2009) developed
a set of research-based principles for technology PD that
address those barriers. The six principles include: focus
on teacher knowledge, reform-type activities (e.g., co-
teaching and co-planning), situate activities in teacher
needs, active learning, extensive duration, and collective
participation (e.g., regular meetings; inclusion of STEM
coaches and technology specialists). These principles can

Professional development (PD) can equip teachers with
the knowledge and skills needed to integrate educational
robotics into the elementary curriculum while meeting
content area standards (Ketelhut et al., 2020; Yuan et al.,
2019). This is important for achieving the national vision
of CS for all students, particularly in under-resourced
communities. However, improving a teacher's attitude
toward and use of educational robotics is particularly
important. As elementary teachers increase their use of
educational robotics, students have opportunities to develop
foundational computational thinking skills at a young age.
Positive exposure to CT and computer programming at a
young age can help children view themselves as capable
of and interested in a career in computer science (Eguchi,
2014; Karp & Maloney, 2013; Yuan et al., 2019). Given the
demand for CS education in today’s schools, there is a
need for research on specific approaches that can support
teacher integration of CS through educational robotics
(Anwar et al., 2019; Ketelhut et al., 2020).

This paper reports a PD effort in which 12 elementary
teachers (K-5) in a rural, under-resourced area learned
to integrate educational robotics into the regular math
curriculum. The year-long PD blended research-based
principles of technology integration PD (e.g., Mouza, 2009;
Kopcha, 2012) with Smith & Stein’s (2011) five practices for
orchestrating mathematical discourse to support teachers
in meeting state standards while engaging students in
educational robotics. Survey data and lesson plans were
analyzed to understand how the PD contributed to the
teachers’ learning and success. The questions guiding this
study were:

A� What is the influence of PD on elementary teachers’
attitudes toward and knowledge of teaching math
through educational robotics?

B� How did the elementary teachers integrate educational
robotics to support Smith and Stein’s (2011)
mathematical practices?

Figure 1. Ozobot programming with
(a) solid lines and color codes and (b) block-based programming�

(a) (b)

www.acm.org/education 49

educational robotics at the elementary level. For exam-
ple, Ozobot block programming uses circular symbols to
indicate angle measures, where a 90° turn is represented as
a circle that is one quarter full. A teacher using the five prac-
tices would anticipate that young children might struggle
with representing a 90° angle as one quarter of a circle and
develop questions that encourage students to struggle with
the concept (e.g., Which block code represents 90°? What
portion of the circle is represented? How do you know?).
The teacher could select and sequence examples of that
concept from student work, building on the idea that two
90° turns add up to 180°. This connects with the concept of
fractional addition as represented visually (e.g., two quarter
circles is half a circle). In this way, the teacher supports stu-
dents in applying mathematical concepts while engaging in
CT skills like recognizing patterns and engaging in algorith-
mic thinking (e.g., 90° + 90° is half a circle or 180°, which
can also be expressed as ¼ + ¼ = ½).

Research suggests that the five practices can help teach-
ers sustain cognitive demand around mathematical concepts
(Boston & Smith, 2009) and support students in deeper
levels of mathematical reasoning (Ball et al., 2008; Lampert
et al., 2010). We anticipated that blending Smith and Stein’s
practices with research-based principles of PD would help
improve our teachers’ attitudes and skills when integrating
educational robotics into elementary math curriculum.

METHODS

This study took place in a high-need elementary STEM
charter school in the rural South. Leadership identified
improving students’ mathematical skills through CS activity
as an important goal. The school, which serves over
300 diverse K-5 students (51% African-American, 38%
Caucasian, 6% Hispanic), partnered with the university to
offer PD through a US Department of Education Improving
Teacher Quality state grant.

Participants
The participants were 12 elementary teachers. Eight were
grade-level teachers from first (1 teacher), second (1), third
(2), fourth (2) and fifth (2) grade. The remaining participants
included the school library media specialist, who co-taught
with teachers each week in the media center, and three
STEM coaches, who regularly provided individual, in-
classroom support to the teachers. Aside from the school
library media specialist, none of the teachers had prior
experience with educational robotics.

Data Collection and Analysis
Teachers completed a survey and test of knowledge
during the first professional development session as a pre-

help teachers manage barriers such as access, knowledge,
and skills, which, in turn, improves their technology use in
the classroom (Kopcha, 2012; Mouza, 2009).

Our PD emphasized the six principles. It began with a
week-long summer workshop in which teachers completed
five activities as if they were the student. We chose this
strategy to promote active learning as part of our PD. For
example, the teachers used the robots to draw and name
geometric shapes for the robot to follow, explore the
relationship between perimeter and area, and program
the robot to trace various angle measures, line lengths,
and regular polygons. These activities were hands-on
and provided multiple opportunities for the teachers to
apply computer programming skills and mathematical
thinking in a similar manner as their students. This strategy
is similar to that used by Carpenter et al. (1989) who found
that teachers who engaged in the same activities as their
students during PD were better equipped to support and
guide student learning in the classroom.

As part of the workshop, the teachers also developed
three lesson plans that integrated educational robotics into
the math curriculum; the goal was for the teachers to make
a plan for using the educational robots over the coming
academic year. This helped them situate the PD in their own
needs and the needs of their students. Extensive duration
was achieved through monthly follow-up meetings and
in-classroom support throughout the year as the teachers
implemented their lessons. Collective participation was
established in that teachers received in-classroom support
from both the researchers and the on-sight math coach
and technology specialist. In-classroom support, which is
a reform-type activity, primarily consisted of co-teaching.
When co-teaching, the teacher led the lesson activity while
in-the-moment coaching and modeling were provided
by one of the researchers and/or the math coach or
technology specialist. That coaching focused primarily
on pedagogical approaches to supporting mathematical
thinking through Smith and Stein’s (2011) five practices for
orchestrating mathematical discourse (see next section).

Five Practices for Mathematical Discourse
Throughout the PD, teacher learning centered on Smith and
Stein’s (2011) five practices for orchestrating mathematical
discourse. The five practices encourage teachers to antic-
ipate student misconceptions, monitor student activity for
those misconceptions, and select and sequence student
work in a way that supports connecting student thinking to
larger mathematical concepts. These practices encourage
teachers to help students solve mathematical problems with-
out providing the information directly by testing conjectures
mathematically, trying new problem-solving approaches and
ideas, and struggling productively with math concepts.

We chose Smith and Stein’s (2011) five practices be-
cause those practices support the teaching of math through

http://www.acm.org/education

Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions50

on a scale from low (1) to high (3) across five dimensions:
mathematics, cognitive demand, student access to
mathematics, student agency, and the assessment.
Mathematics refers to the way that lesson activities support
meaningful connections between concepts and procedures
and offer opportunities to build a coherent understanding
of math. Cognitive demand refers to the presence of the
Smith and Stein teaching practices (e.g., anticipating,
monitoring); this relates to student access in that classroom
activity structures need to invite and support students’
active engagement in core concepts and ideas. Agency
refers to opportunities for students to conjecture, test, and
modify ideas, whereas assessment refers to students having
opportunity to explain their thinking and build off of initial
ideas or address key misconceptions. Scores were applied
initially by two independent raters who then compared
ratings; scores were then averaged between the two
reviewers so that disagreements between reviewers were
factored into the final scores.

RESULTS

As shown in Table 1, scores on the five survey items were
compared before and after the PD using a Wilcoxon
Signed-Ranks test. Results indicated that teachers
ranked their ability to use robots to teach math as being
significantly higher after the workshop (M = 3.83; Mdn = 4)
than before (M = 2.42; Mdn = 2), W = 0, p < .01. Teachers
also ranked their ability to help students when having
difficult with the robot significantly higher after the PD (M=
3.70; Mdn = 3) than before (M = 2.55; Mdn = 3), W = 1, p <
.01. Teachers confidence in teaching math through robotics
was significantly higher after the PD (M = 3.70; Mdn = 3)
than before (M = 2.55; Mdn = 3), W = 4, p < .01. No other
statistically significant results were found.

As shown in Table 2, the scores associated with each of
Smith and Stein’s (2011) practices for orchestrating produc-
tive mathematical discourse were significantly higher after the
PD than before. This included their ability to anticipate stu-
dent responses and challenges (Mdn = 2 and 0.75, W = 1.5),
monitoring student work (Mdn = 2 and 1; W = 2), select and
sequence student work for whole-class discussion (Mdn = 2
and 0; W = 2), and connecting student ideas with other math-
ematical concepts (Mdn = 2 and 0.75; W = 0). The difference
in rankings for both CS items was not statistically significant.

As shown in Table 3, teacher lesson plans addressed
a number of K-5 mathematical concepts (e.g., construct-
ing fractions; calculating distance and perimeter; dividing
shapes in half). The lesson plans approached a score of
‘high’ (3.00) with regard to their incorporation of mathe-
matical concepts and ideas (M = 2.78), opportunities to
conjecture and test or modify ideas (i.e., agency; M = 2.89),
and assessing learning by building off initial ideas and/or
misconceptions (M = 2.78).

measure, then again 10 months later as a post-measure.
Lesson plans were analyzed at the conclusion of the PD.
Each form of data collection is described below.

Survey
The survey included five attitudinal items about a teacher’s
confidence in integrating robotics into the math curriculum.
Teachers rated their agreement on a five-point Likert scale
from 1 (Strongly Disagree) to 5 (Strongly Agree). Wilcoxon
Signed-Ranked tests were conducted on each item to eval-
uate changes from pre- to post-PD. In order to reduce Type I
error, the significance level was set at .01 by using a Bonfer-
roni correction and dividing .05 by the number of items (5).

Test of Knowledge
The test of knowledge addressed two areas: lesson plan-
ning and computer programming. Teachers first provided a
short answer in which they applied Smith and Stein’s (2011)
five practices to a pre-made lesson scenario: “You plan
to have students program a robot to trace a polygon that
has three equal sides. To the best of your current knowl-
edge and abilities, complete the elements of the Thinking
Through a Lesson Plan (Smith & Stein, 2011) protocol that
are listed below.” Responses were scored from low (1) to
high (3) evidence of knowledge associated with the five
practices (anticipating, monitoring, selecting, sequencing,
connecting). Scores were assigned based on the number of
accurate possibilities offered (e.g., 2+ was high, 1 was mid,
inaccurate or no response was low). For example, a high
score in connect meant teachers noted at least two other
related math concepts (e.g., the number of degrees in a
circle; representing parts of a whole circle as a fraction). To
test CS knowledge, teachers were provided with two exam-
ples of block-based computer code and asked to predict
the results of that code. The two examples addressed the
programming of basic movement skills to form a square
shape and higher levels of logic that included loops and
conditionals. Teacher responses were scored from high (3),
or entirely correct, to low (1), or entirely incorrect.

Throughout the scoring of the test items, two
independent raters coded the CS test items to establish
inter-rater reliability, which was 90% and deemed
satisfactory to proceed with the first rater’s coding.
Wilcoxon Signed-Ranked tests were conducted on each
item to evaluate changes from pre- to post-PD. Because of
the large number of items associated with lesson planning,
we reduced Type I error by setting the significance level at
.01 using a Bonferroni correction and dividing .05 by the
number of items (5).

Lesson Plan Evaluation
Nine unique lessons were created by the teachers in this
study. Each was evaluated using Schoenfeld et al.’s (2014)
Teaching for Robust Understanding of Mathematics Rubric
(TRU). The TRU rubric assesses the strength of a lesson plan

www.acm.org/education 51

Table 3. Mean TRU Scores by Lesson Plan and Associated CS Activity and Math Concepts

Title Overview Mathematics Grade Math Cog Dem. Content Agency Assess

Fraction
Bowling

Knock down pins and name score
as a fraction. Graph / interpret.

Fractions
3-5 3 3 3 3 3

Shape of
Things

Draw shapes on paper; use color-
codes.

Shapes and
angles

1-5 2 2 2 3 3

Addition Move through an addition maze. Add within
100

1 1 1 2 3 2

Fraction
Shapes

Create a geometric shape and
divide into halves and quarters

Express equal
shares

1 3 3 3 3 3

Three
Little Pigs
Measuring

Create path and measure using a
non-standard method.

Express length
1 3 2 3 3 3

Multiply
Maze

Create a path with total product
< 5,500.

Multiply multi-
digit numbers

3 2 2 3 2 2

National
Park Data

Merge two maps to plot course. Read a key,
interpret data

3 2 3 3 3 3

Santa's
Dilemma

Plot course and program Ozobot
to follow.

Multiplication
and division

3, 5 3 3 3 3 3

Ozobot
Race

Find the shortest path. Factoring;
perimeter and
area

3, 5 3 3 3 3 3

Table 1. Mean and Median Scores by Survey Item

Item Pretest Posttest

Mean Median Mean Median

I can consistently use robots to teach math.* 2.42 2 3.83 4

I can help students when they have difficulty with the robots.* 2.50 3 3.67 3.5

I have the skills necessary to use robotics to teach specific
math concepts and skills.*

2.42 2 3.67 4

I can regularly incorporate robots into math when appropriate. 3.33 3 4.00 4

I am confident I can teach math concepts/skills with robotics. 4.00 4 4.08 4

* Statistically significant, p < .01.

Table 2. Mean and Median Scores by Test Item

Item Pretest Posttest

Mean Median Mean Median

Lesson Planning: Anticipating* 0.58 0.75 1.96 2

Lesson Planning: Monitoring* 0.96 1 2.13 2

Lesson Planning: Selecting & Sequencing* 0.25 0 1.75 2

Lesson Planning: Connecting* 0.58 0.75 1.67 2

CS skill: Basic movement 2.21 2 2.54 2.50

CS skill: Loops and conditionals 1.21 1 1.27 1

*Statistically significant, *p < .01,

http://www.acm.org/education

Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions52

Implications
The improvements in teacher attitudes and knowledge
noted in this study suggest how sustained PD with
reform-type activities (e.g., monthly follow-up meetings;
in-classroom support) can help teachers develop new
skills and practices. In the week-long summer workshop,
teachers engaged in active learning, programming
the robots themselves to construct geometric shapes,
explore the relationship between area and perimeter, and
associate distance with the measurement of length. They
then planned lessons for their own students (situated in
their needs). Over the academic year, they met with the
research team regularly (extended duration) and received
in-classroom support through co-teaching (reform-type
activities). These activities are likely to have contributed
to the teachers’ gains in confidence and knowledge of
teaching practices associated with educational robotics
in this study. Similar to the current study, Mouza (2009)
and Kopcha (2012) both found that ongoing, in-classroom
support led to improved attitudes toward and practices
with technology. Likewise, Menekse (2015), reported that
PD in the context of CS should be sustained over time and
place emphasis on active learning and teacher’s knowledge
of effective teaching strategies.

Conclusion
This paper offers a detailed account of teacher PD in CS
education that can support teacher change. While the
sample size is small, it is likely that the approach employed
in this study can be transferred to a new context to foster
teacher attitudes and lesson planning skills when using
educational robots to teach both CS and mathematics.
Future research on teacher PD would benefit from adding
teacher observations to see how mathematics is supported
during educational robotics. Doing so is an important step
towards increasing participation in CS and making CS
accessible for all.

Acknowledgments
Funding: This study was supported by the US Department
of Education’s Improving Teacher Quality State Grant
program.
Keywords: elementary teacher professional development,
teacher technology use, computer science education,
educational robotics in mathematics

Theodore J. Kopcha
The University of Georgia
205 River’s Crossing
850 College Station Road
Athens, GA 30602
Email: tjkopcha@uga.edu

For example, the lesson, Shape of Things, was created
by the school library media specialist in collaboration with
the first grade teacher, then shared with other grades as an
introduction to visual programming. The overarching goal
was to use the Ozobot to reinforce key geometry standards
and concepts. Student agency was strong, as the students
explored their own shapes and actively talked about the
connections with geometry based on their own drawings.

Teachers from the other grade levels used the
core lesson and modified it to meet the needs of their
own students. For example, the teachers in grades K-2
supported agency by planning to ask questions about
equal and unequal side lengths (i.e., regular vs. irregular
polygons) and how that equality and inequality might
change the Ozobot’s movement. The teachers in grades
3-5 supported agency by planning to use open-ended
questions to challenge students to draw regular five- and
six-sided polygons (e.g., “Can you draw a shape with five
equal sides? How do you know the sides are equal?”). This
connected with the idea that polygons with more sides are
comprised of multiple isosceles or equilateral triangles.

Discussion
Our PD adopted a unique strategy—it combined
research-based principles of technology integration PD
with the practices associated with teaching mathematics.
The results suggest that this approach helped our
teachers improved their confidence and pedagogical
knowledge for using educational robotics to teach.
Those improvements were reflected in their lesson plans,
which exhibited high levels of mathematical content and
opportunities to conjecture about mathematics. Our
results support others who found that active learning
and follow-up support can lead to changes in classroom
practices and behaviors that support CS education
(Clark & Hollingsworth, 2002; Goode & Margolis, 2011).
This is an important step towards reducing a teacher’s
perception that CS activities like educational robotics are
a burden and increasing the integration of CS into the
elementary curriculum (Ketelhut et al., 2020).

Teachers in our study did not improve their CS
knowledge at a significant level. One reason may be that
the teachers in our study preferred to focus on visual
coding techniques with their students rather than a block-
based programming environment. This would make
sense in lower grade levels, where it would be easier for a
teacher to have young children draw and color to program
the robot than use a computer interface to create and
download blocks of code. This is consistent with Zhang
and Nouri (2019) who found that advanced programming
skills are challenging for teachers to incorporate in their
instruction and often overlooked because students struggle
with them. As such, it is not surprising that CS knowledge
did not see any significant gains in this study.

mailto:tjkopcha@uga.edu

www.acm.org/education 53

Lampert, M., Beasley, H., Ghousseini, H., Kazemi, E., & Franke,
M. (2010). Using designed instructional activities to enable
novices to manage ambitious mathematics teaching. In
Instructional explanations in the disciplines (pp. 129-141).
Springer US.

Lee, I. A., Psaila Dombrowski, M., & Angel, E. (2017). Preparing
stem teachers to offer New Mexico computer science for
all. In Proceedings of the 2017 ACM SIGCSE Technical
Symposium on Computer Science Education (pp. 363-368).

Leonard, J., Mitchell, M., Barnes-Johnson, J., Unertl, A., Outka-
Hill, J., Robinson, R., & Hester-Croff, C. (2018). Preparing
teachers to engage rural students in computational thinking
through robotics, game design, and culturally responsive
teaching. Journal of Teacher Education, 69(4), 386-407.
https://doi.org/10.1177/0022487117732317

Menekse, M. (2015). Computer science teacher professional
development in the United States: a review of studies
published between 2004 and 2014, Computer Science
Education, 25:4, 325-350. http://dx.doi.org/10.1080/089934
08.2015.1111645

Mouza, C. (2009). Does research-based professional
development make a difference? A longitudinal investigation
of teacher learning in technology integration. Teachers
College Record, 111(5), 1195-1241.

National Science & Technology Council (2018). Charting a
course for success: America’s strategy for STEM education.
Retrieved https://www.whitehouse.gov/wp-content/
uploads/2018/12/STEM-Education-Strategic-Plan-2018.pdf

Papert, S. (1980). Mindstorms. New York: Basic Rooks.

Rich, K. M., Spaepen, E., Strickland, C., & Moran, C.
(2020). Synergies and differences in mathematical and
computational thinking: Implications for integrated
instruction. Interactive Learning Environments, 28(3), 272-
283. https://doi.org/10.1080/10494820.2019.1612445

Rich, K.M., Yadav, A. & Schwarz, C.V. (2019). Computational
Thinking, Mathematics, and Science: Elementary Teachers’
Perspectives on Integration. Journal of Technology and
Teacher Education, 27(2), 165-205. Waynesville, NC USA:
Society for Information Technology & Teacher Education.
Retrieved March 12, 2021 from https://www.learntechlib.org/
primary/p/207487/

References
Anwar, S., Bascou, N. A., Menekse, M., & Kardgar, A. (2019).

A Systematic Review of Studies on Educational Robotics.
Journal of Pre-College Engineering Education Research
(J-PEER), 9(2), Article 2. https://doi.org/10.7771/2157-
9288.1223

Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content
knowledge for teaching: what makes it special? Journal
of Teacher Education, 59(5), 389-407. https://doi.
org/10.1177/0022487108324554

Bers, M. (2010). The TangibleK robotics program: applied
computational thinking for young children. Early Childhood
Research and Practice, 12(2), 1-20.

Boston, M. D., & Smith, M. S. (2009). Transforming secondary
mathematics teaching: Increasing the cognitive demands of
instructional tasks used in teachers' classrooms. Journal for
Research in Mathematics Education, 40(2), 119-156. https://
doi.org/10.2307/40539329

Carpenter, T. P., Fennema, E., Peterson, P. L., Chiang, C. P., &
Loef, M. (1989). Using knowledge of children’s mathematics
thinking in classroom teaching: An experimental study.
American Educational Research Journal, 26(4), 499-531.

Dunbar, K. M., & Rich, K. M. (2020). Mathematics Makes Robots
Roll. Mathematics Teacher: Learning and Teaching PK-12,
113(7), 565-572

Eguchi, A. (2017). Bringing robotics in classrooms. In Robotics in
STEM education (pp. 3-31). Springer, Cham.

Grover, S., & Pea, R. (2013). Computational thinking in K–12: A
review of the state of the field. Educational researcher, 42(1),
38-43. https://doi.org/10.3102/0013189X12463051

Karp, T., & Maloney, P. (2013). Exciting Young Students in Grades
K-8 about STEM through an Afterschool Robotics Challenge.
American Journal of Engineering Education, 4(1), 39-54.

Ketelhut, D. J., Mills, K., Hestness, E., Cabrera, L., Plane, J.,
& McGinnis, J. R. (2020). Teacher change following a
professional development experience in integrating
computational thinking into elementary science. Journal of
science education and technology, 29(1), 174-188.

Kopcha, T. J. (2012). Teachers' perceptions of the barriers to
technology integration and practices with technology under
situated professional development. Computers & Education,
59(4), 1109-1121.

http://www.acm.org/education
https://doi.org/10.1177/0022487117732317
http://dx.doi.org/10.1080/08993408.2015.1111645
http://dx.doi.org/10.1080/08993408.2015.1111645
https://www.whitehouse.gov/wp-content/uploads/2018/12/STEM-Education-Strategic-Plan-2018.pdf
https://www.whitehouse.gov/wp-content/uploads/2018/12/STEM-Education-Strategic-Plan-2018.pdf
https://doi.org/10.1080/10494820.2019.1612445
https://www.learntechlib.org/primary/p/207487/
https://www.learntechlib.org/primary/p/207487/
https://doi.org/10.7771/2157-9288.1223
https://doi.org/10.7771/2157-9288.1223
https://doi.org/10.1177/0022487108324554
https://doi.org/10.1177/0022487108324554
https://doi.org/10.2307/40539329
https://doi.org/10.2307/40539329
https://doi.org/10.3102/0013189X12463051

Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions54

Yadav, A., Gretter, S., Good, J., & McLean, T. (2017).
Computational thinking in teacher education. In Emerging
research, practice, and policy on computational thinking (pp.
205-220). Springer, Cham.

Yuan, J., Kim, C., Hill, R., & Kim, D. (2019). Robotics integration
for learning with technology. Contemporary Issues in
Technology and Teacher Education 19(4), 708-735.

Yuen, T., Stone, J., Davis, D., Gomez, A., Guillen, A., Tiger, E. P.,
& Boecking, M. (2015). A model of how children construct
knowledge and understanding of engineering design within
robotics focused contexts. International Journal of Research
Studies in Educational Technology, 5(1).

Zhang, L., & Nouri, J. (2019). A systematic review of learning
computational thinking through Scratch in K-9. Computers
& Education, 141, 103607. https://doi.org/10.1016/j.
compedu.2019.103607

Schoenfeld, A. H., Floden, R. E., & the Algebra Teaching Study
and Mathematics Assessment Project. (2014). An introduction
to the TRU Math document suite. Berkeley, CA & E. Lansing,
MI: Graduate. School of Education, University of California,
Berkeley & College of Education, Michigan State. University.
Retrieved: http://map.mathshell.org/trumath.php

Smith, M., & Stein, M. K. (2011). Five practices for orchestrating
productive mathematical discourse. Reston, VA: National
Council of Teachers of Mathematics.

Wing, J. M. (2006). Computational thinking. Communications of
the ACM, 49(3), 33-35.

Wing, J. (2011). Research notebook: Computational thinking—
What and why. The link magazine, 6.

https://doi.org/10.1016/j.compedu.2019.103607
https://doi.org/10.1016/j.compedu.2019.103607
http://map.mathshell.org/trumath.php

www.acm.org/education 55

While the integration of computational thinking (CT) into
science, technology, engineering, and mathematics (STEM)
education has been well studied (Jona et al., 2014; Sengup-
ta et al., 2018; Weintrop et al., 2016), there is a smaller but
growing body of work on CT and literacy integration (Jacob
et al., 2018; Burke & Kafai, 2012; Kafai et al., 2020; Vogel
et al., 2020). There are several affordances to engaging
diverse learners when combining CT and literacy instruc-
tion. Programming in narrative genres may foster literacy
development and technological fluency while motivating
students who may not otherwise identify with computer sci-
ence (CS; Burke & Kafai, 2012). This can facilitate the kinds
of inquiry, cultural and community engagement, and social
recognition that are integral to fostering identity develop-
ment in STEM (National Research Council [NRC], 2014).

Computational thinking and literacy integration is
particularly beneficial in elementary grades, as instructional
minutes allotted to STEM are extremely limited, especially
for students who are second language learners (Dorph et
al., 2011). While the value of focusing on language and
literacy instruction in early grades is undisputed, integration
of CT within the language arts curriculum can provide a way
to overcome STEM instructional time constraints, allowing
students to get vital early exposure to CS while also
supporting their language development.

This paper describes the implementation of an English
Language Arts (ELA)-focused curriculum to support
learning and positive identification with CS among

multilingual elementary school students. We first describe
the model of computational literacies we draw on and
then describe the curriculum that forms the basis of the
intervention and study.

We address the following research question:
A� What strategies are used by upper elementary teachers

to integrate CT into literacy and language instruction?
B� How does applying the CT and literacy framework

advance our understanding of how to leverage
multilingual students’ literacy resources to develop
their computational thinking skills?

Computational Literacies
Our study draws from Jacob and Warschauer’s (2018) model
of computational literacy, which situates computational
thinking as a fundamental literacy required for full societal
participation (cf. diSessa, 2000; Wing, 2006). This model
proposes three dimensions for 1) characterizing the
relationship between computational thinking and literacy
(i.e., computational thinking as literacy), 2) examining how
students’ existing literacy skills can be leveraged to foster
computational thinking (i.e., computational thinking through
literacy), and 3) discussing the ways in which computational
thinking skills foster literacy development (i.e., literacy
through computational thinking; Jacob & Warschauer, 2018;
see Figure 1).

Sharin Rawhiya Jacob, Miranda C. Parker, and Mark Warschauer, University of California, Irvine

Corresponding Author: Sharin Rawhiya Jacob, Sharinj@uci.edu

Abstract

This paper describes the development and implementation of a yearlong integrated English Language Arts
(ELA) and computational thinking (CT) curriculum that has been adapted to meet the needs of multilingual

students� The integration of computational thinking into K-12 literacy instruction has only been examined in a
handful of studies, and little is known about how such integration supports the development of CT for multilingual
students� We conducted a qualitative case study on curricular implementation in a general education classroom
with large numbers of students designated as English learners� Results from detailed field notes revealed that
the strategic application of instructional practices was implemented in the service of building on students’
existing literacy skills to teach CT concepts and dispositions� The CT and literacy framework put forth in this
study can be used as an analytic framework to highlight how instructional strategies mobilize the existing
literacy and CT resources of linguistically diverse students� Based on our findings, we discuss recommendations
for future integrated ELA-CT curricula�

Integration of Computational Thinking
Into English Language Arts

http://www.acm.org/education
mailto:Sharinj@uci.edu

Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions56

was actually programmed as "the monkey disappears when
it touches the hunter." Results such as these suggest that
students' existing literacy skills can be mobilized to develop
their computational thinking skills.

The CS-ELA Integrated CT Curriculum
Elementary schools with large percentages of multilingual
students, not surprisingly, devote large amounts of
instructional time to improving students’ English skills. This
makes it challenging to introduce non-core curriculum,
such as CS. Indeed, research has shown that science, let
alone CS, is rare in high-ELL schools and districts (Gomez-
Zwiep, 2017). Our project has addressed this challenge
by adapting the Creative Computing Curriculum (Brennan
et al., 2014) for integration into ELA instruction. The
curriculum--called Elementary Computing for All--exploits
the affordances of Scratch for learning to decode and
code stories of the same genres that are emphasized in
traditional narrative and informative texts in elementary
school. It also integrates age-appropriate readings about
diverse pioneers in CS, thus strengthening the connection
to reading while also providing culturally relevant support.
In this way, STEM identity is developed as children learn
about diverse computer scientists and code stories about
their own lives and communities.

The storybooks integrated into the curriculum teach
not only computational thinking concepts but also key
dispositions that foster student success in computing. In
2011, the International Society for Technology in Education
(ISTE) and the Computer Science Teachers Association
(CSTA) outlined specific dispositions or mindsets that are
fundamental to student success in computational thinking
including 1) confidence in dealing with complexity, 2)
persistence in working with difficult problems, 3) tolerance
for ambiguity, and 4) the ability to deal with open ended
problems (ISTE & CSTA, 2011). The storybooks in our
curriculum teach these dispositions in culturally and age
appropriate ways. For example, students read The Most
Magnificent Thing, a storybook about a young girl who,
through engaging in making activities, acquires positive
dispositions and approaches to computing. The protagonist
of the book desires to construct a computational artifact
for her dog. Throughout the design process, she abstracts
her model, decomposes her problem, implements her
solutions, debugs her errors, and engages in iterative
problem solving to arrive at a “magnificent” solution. To this
end, the storybook teaches both computational thinking
concepts such as abstraction, iteration, decomposition, and
debugging as well as dispositions that enable students to
become successful computational thinkers. The big idea
of the story, having a growth mindset, is operationalized
through examples of the protagonist dealing with complex
problems, persisting through mistakes, and tolerating
ambiguity. Storybooks such as these provide affordances

For the purpose of this paper, we focus on the second
component of the computational thinking and literacy
framework: computational thinking through literacy. To
this end, we examine how students leverage their existing
literacy skills as a mechanism for learning computation-
al thinking. Integrating computational thinking into ELA
content has multiple affordances for CT learning. Evidence
suggests that learning to read and write and to code can
go hand in hand (Peppler & Warschauer, 2011; Bers, 2019).
The several interlocking features of coding and literacy
draw children’s attention to symbol-meaning relationships.
For example, students interact with text in multiple ways as
they use Scratch and leverage their knowledge of multi-
modal signifiers to assemble programs. These relationships
offer a highly engaging and supportive environment for
children with emerging literacies to demonstrate their skills
and abilities (Peppler & Warschauer, 2011).

Additionally, informational and narrative genres capture
the semiotic process related to computing. To illustrate,
Burke and Kafai (2012) leveraged students' knowledge
of the writing process (i.e., drafting, revising, editing) to
engage them in designing computational artifacts (i.e.,
(design, troubleshooting, debugging). Similarly, De Souza
et al. (2011) compared students' narrative accounts of
programming games to their design process, paying
specific attention to verbal structures. Findings indicated
that at first students used transitive verb based narrative
accounts to design games, and over time they began to use
intransitive verbal structures that more closely resembled
programming languages For example, A typical student
characterization of a game "the hunter killed the monkey"

Figure 1. A Three-Dimensional Framework for Understanding
Computational Thinking and Literacy (Jacob & Warschauer, 2018)

www.acm.org/education 57

for language use (NRC, 1996) while making instruction
more engaging, concrete, and meaningful for multilingual
students (Janzen, 2008; NRC, 2012; Rosebery & Warren,
2008). Computer science disciplinary activities and learning
goals are aligned with standards to guide teachers (see
Table 1 for an example).

Second, the revised curriculum encourages rich
classroom discourse through explicit suggestions of
collaborative activity formats to invite students to use
their everyday sense-making and disciplinary language in
multiple contexts (Shea & Shanahan, 2011).

Third, strategies that teachers can use to build on
students’ existing resources (i.e., cultural, linguistic,
semiotic, embodied) to acquire proficiency in language
and CS are explicitly stated in the curriculum and during
professional development. For example, the curriculum

Table 1. Sample Learning Goals That Integrate Grade 4 Common Core ELA, English Language Development, and Computer Science
Teachers Association Standards

Activity: Students program a story about their lives, families, or communities

Computer Science Concepts: Loops, Sequences, Conditionals

Computer Science Teachers Association (CSTA) Standards

CSTA 1B-AP-10 Create programs that include sequences, events, loops, and conditionals

CSTA 1B-AP-13
Use an iterative process to plan the development of a program by including
others’ perspectives and considering user preferences

CSTA 1B-AP-15 Test and debug a program or algorithm to ensure it runs as intended

English Language Development (ELD) Standards

Emerging Expanding Bridging

3. Offering opinions
Negotiate with or persuade others
in conversations using basic
learned phrases (e.g., I think) as
well as open responses in order to
gain and/or hold the floor.

3. Offering opinions
Negotiate with or persuade others
in conversations using a variety
of learned phrases (e.g., That’s a
good idea. However…) as well as
open responses, in order to gain
and/or hold the floor.

3. Offering opinions
Negotiate with or persuade others
in conversations using a variety of
learned phrases (e.g., That’s a good
idea. However…) as well as open
responses in order to gain and/or
hold the floor, elaborate on an idea,
and provide different opinions.

11. Supporting opinions
Offer opinions and provide good
reasons (e.g., My favorite book
is X because X) referring to the
text or to relevant background
knowledge.

11. Supporting opinions
Offer opinions and provide good
reasons and some textual evidence
or relevant background knowledge
(e.g., paraphrased examples from
text or knowledge of content).

11. Supporting opinions
Offer opinions and provide good
reasons with detailed textual
evidence or relevant background
knowledge (e.g., specific examples
from text or knowledge of content).

Corresponding English Language Arts Standards

CCSS.ELA-L.SL.4.1

CCSS.ELA-L.SL.4.4

CCSS.ELA-L.SL.4.6

CCSS.ELA-L.W.4.9

Engage effectively in a range of collaborative discussions with diverse partners,
building on others’ ideas and expressing their own clearly. Report on a topic
or text, tell a story, or recount an experience in an organized manner, using
appropriate facts and relevant, descriptive details to support main ideas or
themes; speak clearly at an understandable pace. Differentiate between
contexts that call for formal English (e.g., presenting ideas) and situations where
informal discourse is appropriate (e.g., small-group discussion); use formal
English when appropriate to task and situation. Draw evidence from literary or
informational texts to support analysis, reflection, and research.

for teaching both the computing concepts necessary for
learning the discipline as well and dispositions that foster
successful computational thinkers.

Linguistic Scaffolding
Researchers and practitioners worked collaboratively
to develop additional language scaffolding to amplify
the curriculum’s effectiveness with multilingual students,
following effective practices recommended by a national
panel (National Academies of Science, Engineering, and
Medicine [NASEM], 2018). First, the revised curriculum
integrates CS and ELA tasks to engage students in
disciplinary practices. Students explore and modify existing
programs before creating their own projects. These kinds
of structured inquiry-based science approaches provide
a powerful mechanism for providing authentic contexts

http://www.acm.org/education
http://CCSS.ELA-L.SL
http://CCSS.ELA-L.SL
http://CCSS.ELA-L.SL

Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions58

Thus, we analyze structured notes from weekly classroom
observations. For each field observation, two researchers
took detailed field notes on teachers’ instructional moves,
students’ interaction, and computing tasks and activities.
Four Ph.D. students and three undergraduates observed
teachers’ classes when they integrated CT and literacy
lessons. All lessons were audio recorded and transcribed.

These data were analyzed through open coding in
iterative cycles. Two researchers collaborated to assign
initial codes to excerpts of text that pertained to strategies
used by teachers to integrate CT and ELA content (Hsieh &
Shannon, 2005), paying specific attention to instructional
practices that are effective for engaging multilingual
students in STEM (NASEM, 2018). After coding 25% of field
notes, the researchers met to combine, split, and categorize
codes based on initial findings. After this discussion, the
first author applied the consolidated codes to the rest of
the data, generating new codes when they were pertinent
to the research questions. After coding all of the field
notes, two researchers (first and second author) randomly
selected 10% of the data to conduct an interrater reliability
check and achieved 83% agreement. The two researchers
then met to discuss differing codes and redefine each of
the codes. After revising the codebook, they reapplied the
modified codes and reached 94% agreement.

RESULTS

All the teachers in our study were able to successfully teach
the curriculum and carry out appropriate strategies for
students designated as English learners that integrated CT
and ELA in the classroom (see Table 3). To illustrate this,
we present a case from one classroom taught by Jenny
(pseudonym), which was a general education classroom of
predominantly Latinx and low-income students designated
as English learners.

and professional development include tips for teacher
“talk moves'' (Michaels & O’Connor, 2015), namely asking
for clarification and leveraging students’ own ways of
explaining to guide them towards more formal language
and advanced CS concepts.

Fourth, visualizations and physical, unplugged activities
are built into the curriculum to engage students in multiple
modalities, including linguistic modalities of talk and
text, as well as nonlinguistic modalities such as gestures,
pictures, and symbols, to better teach key academic
vocabulary and CT concepts (cf. Lee et al., 2019).

Fifth, the curriculum provides explicit focus on how
language functions in the discipline by providing language
frames to teachers for use by students during peer
feedback and pair programming, and while asking for
assistance (see example in Table 2).

METHODS

Researchers at Western University (pseudonym) and
educators in a large urban school district joined together
in a research-practice partnership to iteratively develop
and implement the curriculum. The district has among
the highest percentages in the nation of Latinx students
(93%), low-income learners (89.7% receiving free or
reduced-price lunch), and students designated as English
language learners (62.7% in the elementary grades).
Ordinary elementary school teachers in the district taught
the curriculum in their own classes after a one-week
professional development program in the summer that
taught them about Scratch, computational thinking, equity
issues in CS education, and the CT-ELA approach.

Though broader data were collected for the larger
study, in this paper we only focus on the instructional
strategies carried out by teachers to integrate CT and ELA
instruction that meets the needs of multilingual students.

Table 2. Computer Science Language Functions

Teacher Activities
Student Discourse CS Concepts

(Language Function)Emerging Expanding Bridging

Remind students
to think about the
events that will
cause each action
to happen in their
project, which
programs will run
parallel to each
other, and how
their project will
reset once it has
finished running.

I need help with __.

__ caused __ to
happen.

__ and__ are running at
the same time.

I used __ to reset the
program.

I am having difficulty
with __.

__ is the event that
caused __ to happen.

__ and __ are running
parallel to each other.

I used __ to initialize
the program.

Could you help me fix
the following challenge
in my code __?

The event that caused
__ to happen is __.

__ and __ are running
parallel to each other/
simultaneously/at the
same time.

__ caused the program
to initialize.

Debugging, events,
initialization,
parallelism (Describing,
comparing)

www.acm.org/education 59

characters, setting, conflict, resolution), and invoking the
big idea (i.e., identifying the main idea of the lesson).

Jenny also facilitated student discourse by engaging
them in collaboration during pair programming activities.
For example, she instructed her students to provide
constructive feedback to their peers, even if their peers’
projects contained mistakes. This helped to normalize the
making of mistakes in the classroom and foster persistence
in the face of challenges. Another strategy Jenny used
was the activation of prior knowledge, which involves
priming students’ existing knowledge and providing
prerequisite knowledge for students to understand lesson
concepts. To this end, Jenny would reference previous CT
lessons to connect to the current lesson she was teaching.
This strategy is essential to providing a foundation for
multilingual students to assimilate new information (Lee &
Fradd, 1998; Turner & Bustillos, 2017). Jenny also promoted
the use of discipline-specific discourse by fostering
interaction, prompting student reflection during whole
group discussion, and modeling the use of CS language
during whole group instruction.

Applying a CT and Literacy Framework
Through CT-ELA Integration
We present a vignette that explores how the instructional
moves employed by Jenny apply the CT and literacy
framework (Jacob & Warschauer, 2018) to integrate CT-ELA

Table 3. Coding Framework Excerpt

Categories
Strategies for

Activating Prior
Knowledge

Strategies for Asking
Questions

Strategies for Providing
Direct Instruction

Strategies for Providing
Language Support

Sample
Codes and
Definitions

Leveraging Students’
Background Knowledge
Applying students’
existing knowledge to
lesson content.

Building on Students’
Personal Experiences
Connecting lessons
to students’ personal
experiences.

Using Questions to
Foster Higher Order
Thinking
Asking higher order
questions (i.e., analysis,
evaluation) instead of
recall of comprehension
checks.

Using Questions to
Make Interdisciplinary
Connections
Asking how one subject
is similar to another
(e.g., using elements of
storytelling to describe
coding processes).

Using Questions to Elicit
Big Idea
Asking how instructional
materials relate to the big
idea of the lesson.

Discussing
Computational Concepts
Discussing
computational concepts
(i.e., abstraction,
algorithms) and
programming concepts
(i.e., sequence, loops,
conditionals).

Pre-Teaching Lesson
Vocabulary
Introducing lesson
vocabulary in multiple
modalities at beginning
of lesson.

Facilitating Discourse
Through Collaboration
Engaging students in
peer-to-peer or teacher-
student-student talk
to build on students’
existing resources.

Prompting Students to
Use Sentence Frames
Using sentence frames
as prompts to provide
language support,
guidance, and to
encourage elaboration.

Encourage Students to
Use CS Language During
Reflection
Encouraging students
to use CS language
gradually on their own.

Strategies Used for CT-ELA Integration
Jenny’s most frequently used strategy included multiple
questioning techniques, and she made a point to integrate
ELA reading strategies with CT lessons. For example,
after reading The Most Magnificent Thing to her students,
she used questioning techniques to check students'
understanding of key computational thinking concepts
such as sequencing, decomposition, debugging, and
abstraction. She also used questions to elicit big ideas,
such as developing a growth mindset. To illustrate, after
the protagonist of the story The Most Magnificent Thing
finished designing her computational artifact, the teacher
asked: “Was it perfect?” The students responded: “No!”
Then the teacher asked, “But did it do the job?” and
the whole group responded “Yes!” In this example, she
underscored for her students the idea that while they can
always improve their work, they should also be proud of
the artifacts that they have created. Research corroborates
the idea that the design process is iterative and emphasis
should be placed on process over product when
developing computational artifacts (Ryoo et al., 2015).
Finally, Jenny’s use of multiple questioning techniques
facilitated comprehension of CT and literacy content by
providing opportunities for students to experience ideas
in multiple ways. She primarily questioned students during
whole group activities and used specific techniques related
to ELA instruction such as encouraging higher order
thinking (i.e., providing supporting evidence), elaborating
components of storytelling (i.e., students identify plot,

http://www.acm.org/education

Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions60

& Gotwals, 2018) allows Jenny’s students to check her
students’ understanding of CT and literary concepts,
through whole group interaction that is broken down
into meaningful chunks. Through her questions, Jenny
encourages students to engage in several CT concepts
and practices, including sequences (“What happened
next?”), abstraction (“What did she notice about all of
those things?”), and experimenting and iterating (“Was it
perfect?”). With this process she simultaneously teaches
literary themes (i.e., plot, character development, conflict,
resolution, theme), CT concepts (i.e., iteration, testing,
debugging, design process), and positive attitudes and
dispositions towards CT (i.e., growth mindset, confidence,
perseverance). In her next lesson, Jenny moves on to apply
the idea of a growth mindset to students’ programming
tasks, encouraging students to iterate and debug

instruction for multilingual students. The purpose of this
section is to advance our understanding of how teacher
moves can benefit culturally and linguistically diverse
students in a CT-ELA integrated curriculum.

Teaching CT and Literacy in Jenny’s Diverse General
Education Classroom
In the excerpt below (Table 4), Jenny reads The Most Mag-
nificent Thing to her students and pauses the story multiple
times to question her students to emphasize the key idea.

In this excerpt, Jenny is teaching computational thinking
through literacy by leveraging students' knowledge
of storytelling and narrative devices to engage them
in productive discussion of computing concepts and
dispositions. Using well-established techniques such as
making predictions and discussing main ideas (Wright

Table 4. Audio Transcript of Jenny Teaching The Most Magnificent Thing

Speaker Audio Transcript

Jenny: (teacher pauses story) Why is she quitting? Talk to your partner. Why is she quitting? Tell me, why is she
giving up? (students are busy discussing with one another)

Student 1: It is too hard…

Student 2: Not the way she wants it to be…

Student 3: Maybe because what she is thinking it is not possible because it is hard (teacher resumes story then
teacher pauses story again)

Jenny: So tell me first of all, what was the problem with what she was building? What was she building?

Student 4: A robot…

Student 5: A car…

Jenny: (Jenny plays the story to find out what she is building) What did she do? What happened first? What did
she do first?

Student 4: She got mad.

Jenny: What happened next? Did she just stay mad and give up? What happened next?

Student 3: She took her dog out for a walk and saw all that she did and what she gave up.

Student 6 So she looked at all of her work that she thought was wrong.

Jenny: And what did she notice about all of those things?

Student 3: There were pieces that she liked.

Student 7: There were the right pieces that she made.

Jenny: So she had to do what? To her thinking? She had to do what to her thinking?

Student 8: She had to look at her invention.

Student 9: Think more…

Student 10: Think about her problems so that she could fix them…

Student 3: Rethink her model…

Jenny: And what happened at the end?...

Student 8: She found out that she used different things but then she went back to change it and made it right.

Jenny: Think about that last page. Was it perfect?

Whole Class: No!!

Jenny: But did it do the job?

Whole Class: Yes!!!

www.acm.org/education 61

language, and literacy skills. Practitioners who integrate CT
curricula with narrative genres can use students' knowledge
of storytelling devices to teach CT concepts. When serving
multilingual students, teachers should also be aware of
students' heterogeneous backgrounds. For students who
are learning English and their home language at the same
time, instruction that leverages their everyday language
solidifies CS knowledge in preparation for engaging
students in more demanding scientific and technical
language. Finally, CS content should not be taught to the
exclusion of the dispositions that will enable students to
develop a sense of efficacy and belonging as computer
scientists. Therefore, supplementing the curriculum with
instructional materials, such as children’s books, about
diverse pioneers in the field of CS who persevere in the
face of adversity is an excellent way to foster student
identification with the discipline.

Acknowledgements
We would first like to thank the teachers and students
who invited us into their classrooms and supported this
work. We would also like to thank the reviewers for giving
this work a platform. Finally, we would like to thank the
National Science Foundation (grant 1738825 and 1923136)
for providing the funding that made this project possible.
Findings expressed in this work are those of the authors
and do not necessarily reflect the views of the National
Science Foundation.

References
Bers, M. U. (2019). Coding as another language: A pedagogical

approach for teaching computer science in early childhood.
Journal of Computers in Education, 6(4), 499-528.

Brennan, K., Balch, C., & Chung, M. (2014). Creative
computing. Harvard Graduate School of Education. http://
creativecomputing.gse.harvard.edu/guide/

Burke, Q., & Kafai, Y. B. (2012, February). The writers' workshop
for youth programmers: Digital storytelling with Scratch in
middle school classrooms. In Proceedings of the 43rd ACM
technical symposium on Computer Science Education (pp.
433-438).

Connolly, J. H. (2001, July). Context in the study of human
languages and computer programming languages: A
comparison. In International and Interdisciplinary Conference
on Modeling and Using Context (pp. 116-128). Springer.

diSessa, A. (2000). Changing minds: Computers, learning and
literacy. MIT Press.

challenging problems. In doing so, she phrased different
questions to prompt students to think about examples
and non-examples of growth mindset to provide students
a framework for giving constructive feedback. Jenny’s
questioning techniques built on students’ resources to
make connections between pre-existing knowledge and
new lesson content. By leveraging their existing resources,
she assigns value to students’ experiences and draws upon
their funds of knowledge (Gonzalez et al., 2006).

Discussion
Our findings on instructional practices from Jenny’s class-
room can be used to support and inform strategies for the
integrating CT, language, and literacy instruction. While
there is a growing body of work on CT-ELA integrated
curricula (Bers, 2019; Burke & Kafai, 2012), little research
focuses on the instructional strategies that meet the specific
needs of multilingual students (see Jacob et al., 2020). Typi-
cally, what has been missing in the literature is the specifica-
tion of how the heterogeneous backgrounds of multilingual
students influence their learning processes. Given that
students in Jenny’s class come from mostly Spanish speak-
ing families and communities, but are schooled in English,
their home language proficiency levels vary. Students from
heterogeneous communities such as these tend to display
proficiency in oral and written genres of informal English
and leverage their everyday sense-making abilities to un-
derstand complex computational concepts (NASEM, 2018).
To this end, Jenny’s use of verbal questioning techniques
to scaffold the children’s storybook enabled her students to
mobilize their oral and semiotic resources to make sense of
CS lesson concepts and content.

The strategic application of instructional practices was
implemented in the service of building on students’ existing
literacy skills to teach CT (Jacob & Warschauer, 2018).
This investigation stands in contrast to empirical studies
focusing on how to integrate CT and ELA instruction.
Emerging CT and literacy frameworks advance this
discussion to situate computational thinking as a literacy in
itself across multiple dimensions. However, what has been
lacking is theoretical frameworks focusing on the overlap
between CT, language, and literacy learning that informs
instructional practices for culturally and linguistically
diverse learners. The CT and literacy framework put forth
by Jacob and Warschauer (2018) can be used as an
analytic framework to highlight how instructional strategies
mobilize the existing literacy and CT resources of students
with heterogeneous linguistic needs.

Implications
Based on our findings, we suggest that practitioners apply
strategies for teaching CT-ELA integrated instruction
that leverages students' existing resources to foster CT,

http://www.acm.org/education
http://creativecomputing.gse.harvard.edu/guide/
http://creativecomputing.gse.harvard.edu/guide/

Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions62

Kafai, Y., Proctor, C., & Lui, D. (2020). From theory bias to
theory dialogue: Embracing cognitive, situated, and critical
framings of computational thinking in K-12 CS education.
ACM Inroads, 11(1), 44-53.

Lee, O., & Fradd, S. H. (1998). Science for all, including students
from non-English-language backgrounds. Educational
Researcher, 27(4), 12–21.

Lee, O., Llosa, L., Grapin, S., Haas, A., & Goggins, M. (2019).
Science and language integration with English learners:
A conceptual framework guiding instructional materials
development. Science Education, 103(2), 317-337.

Michaels, S., & O’Connor, C. (2015). Conceptualizing talk
moves as tools: Professional development approaches for
academically productive discussions. In L. B. Resnick, C.
Asterhan, & S. Clarke (Eds.), Socializing intelligence through
academic talk and dialogue (pp. 347-362).

National Academies of Sciences, Engineering, and Medicine.
(2018). English learners in STEM subjects: Transforming
classrooms, schools, and lives. The National Academies Press.
doi:h10.17226/25182

National Research Council. (1996). National science education
standards. ERIC Document Reproduction Service, 391(690).
National Academy Press.

National Research Council. (2012). A framework for K–12 science
education: Practices, crosscutting concepts, and core ideas.
National Academies Press.

National Research Council. (2014). STEM integration in K-12
education: Status, prospects, and an agenda for research. The
National Academies Press. doi:10.17226/18612

Pane, J. F., & Myers, B. A. (2001). Studying the language and
structure in non-programmers' solutions to programming
problems. International Journal of Human-Computer Studies,
54(2), 237-264.

Peppler, K. A., & Warschauer, M. (2011). Uncovering literacies,
disrupting stereotypes: Examining the (dis) abilities of a
child learning to computer program and read. International
Journal of Learning and Media, 3(3), 15-41.

Proctor, C. P., Dalton, B., & Grisham, D. L. (2007). Scaffolding
English language learners and struggling readers in a
universal literacy environment with embedded strategy
instruction and vocabulary support. Journal of Literacy
Research, 39(1), 71-93.

Dorph, R., Shields, P., Tiffany-Morales, J., Hartry, A., & McCaffrey,
T. (2011). High hopes–few opportunities: The status of
elementary science education in California. Sacramento,
CA: The Center for the Future of Teaching and Learning at
WestEd.

García, O., & Wei, L. (2015). Translanguaging, bilingualism,
and bilingual education. The Handbook of Bilingual and
Multilingual Education, 223, 240.

Gomez-Zwiep, S. (2017, March). Creating equitable STEM spaces
for English learners [Paper presentation]. California STEM
Includes Conference, Anaheim, CA, United States.

González, N., Moll, L. C., & Amanti, C. (Eds.). (2006). Funds of
knowledge: Theorizing practices in households, communities,
and classrooms. Routledge.

Hsieh, H. F., & Shannon, S. E. (2005). Three approaches to
qualitative content analysis. Qualitative Health Research,
15(9), 1277-1288.

International Society for Technology in Education (ISTE) &
Computer Science Teachers Association (CSTA), (2011).
Operational definition of computational thinking for K-12
education.

Jacob, S. R., & Warschauer, M. (2018). Computational thinking
and literacy. Journal of Computer Science Integration, 1(1),
1-19.

Jacob, S., Nguyen, H., Tofel-Grehl, C., Richardson, D., &
Warschauer, M. (2018). Teaching computational thinking to
English learners. NYS TESOL journal, 5(2), 12-24.

Jacob, S., Nguyen, H., Garcia, L., Richardson, D., & Warschauer,
M. (2020, March). Teaching Computational Thinking to
Multilingual Students through Inquiry-based Learning. In
2020 Research on Equity and Sustained Participation in
Engineering, Computing, and Technology (RESPECT) (Vol. 1,
pp. 1-8). IEEE.

Janzen, J. (2008). Teaching English language learners in the
content areas. Review of Educational Research, 78(4), 1010-
1038.

Jona, K., Wilensky, U., Trouille, L., Horn, M. S., Orton, K.,
Weintrop, D., & Beheshti, E. (2014, January). Embedding
computational thinking in science, technology, engineering,
and math (CT-STEM). In Future directions in computer science
education summit meeting, Orlando, FL.

www.acm.org/education 63

Vee, A. (2017). Coding literacy: How computer programming is
changing writing. MIT Press.

Vogel, S., Hoadley, C., Castillo, A. R., & Ascenzi-Moreno, L.
(2020). Languages, literacies and literate programming: can
we use the latest theories on how bilingual people learn to
help us teach computational literacies?. Computer Science
Education, 30(4), 420-443.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille,
L., & Wilensky, U. (2016). Defining computational thinking
for mathematics and science classrooms. Journal of Science
Education and Technology, 25(1), 127-147.

Wing, J. M. (2006). Computational thinking. Communications of
the ACM, 49(3), 33-35.

Wright, T. S., & Gotwals, A. W. (2017). Supporting kindergartners’
science talk in the context of an integrated science and
disciplinary literacy curriculum. The Elementary School
Journal, 117(3), 513-537.

Rosebery, A. S., & Warren, B. (Eds.). (2008). Teaching science to
English language learners: Building on students’ strengths.
National Science Teachers Association.

Ryoo, J. J., Bulalacao, N., Kekelis, L., McLeod, E., & Henriquez,
B. (2015, September). Tinkering with “failure”: Equity,
learning, and the iterative design process. In FabLearn 2015
Conference at Stanford University, September 2015.

Sengupta, P., Dickes, A., & Farris, A. (2018). Toward a
phenomenology of computational thinking in STEM
education. Computational Thinking in the STEM Disciplines,
49-72.

Shea, L. M., & Shanahan, T. B. (2011). Methods and strategies:
Talk strategies. Science and Children, 49(3), 62-66.

Turner, E. E., & Bustillos, L. M. (2017). Qué observamos aquí?
Qué preguntas tienen? Problem solving in Ms. Bustillos’s
second-grade bilingual classroom. In Access and equity:
Promoting high quality mathematics in PK–2 (pp. 45–63).
National Council of Teachers of Mathematics.

http://www.acm.org/education

Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions64

Introduction
Computational thinking (CT) is increasingly making its way
into the elementary grades. It is commonly defined as “an
approach to solving problems, designing systems and un-
derstanding human behavior that draws on concepts fun-
damental to computing” (Wing, 2006; 2008, p. 3717). The
K-12 Computer Science Framework describes several core
practices, with CT comprising four of these practices: Rec-
ognizing and defining computational problems; develop-
ing and using abstractions; creating computational artifacts;
and testing and refining computational artifacts (K-12 CS
Framework, 2016). CT can, thus, be considered “both a skill
to learn and a way to learn--to create, discover, and make
sense of the world, often with computers as extensions and
reflections of our minds” (Digital Promise, 2017, p. 21).

In the elementary grades, CT is often integrated into
the core content areas (e.g., Fofang et al., 2019; Sherwood
et al., 2021). There are three main justifications for this

approach to CT integration: (1) practical considerations
(e.g., there is not enough time for stand-alone CT
instruction), (2) pedagogical rationale (e.g., teaching CT
in the context of other disciplines offers a unique way for
students to learn, create, and problem solve), and (3) equity
(e.g., embedding CT into core academic content provides
CT access to all learners (Fofang et al., 2020). Additionally,
CT integration is informed by conceptual frameworks of
integration used across other content areas. The level of
integration can range from disciplinary instruction, where
no integration occurs, through trans-disciplinary instruction,
where students create new knowledge that transcends
the individual disciplines (Vasquez et al., 2013). Despite
conceptual and theoretical models offered by Vasquez and
others, the term “content integration” is often used as a
catch-all for all such instructional experiences (Tytler et al.,
2019). Thus, when teachers describe content integration,
they may mean a range of approaches. For example,

Maya Israel, Ruohan Liu, Wei Yan, University of Florida

Heather Sherwood, Wendy Martin, Education Development Center

Cheri Fancseli, Edgar Rivera-Cash, and Alexandra Adair, Research Alliance for New York City Schools

Corresponding Author: Maya Israel, misrael@coe.ufl.edu

Abstract

This mixed methods study examined barriers faced by three elementary schools in their approaches
to integrating computational thinking (CT) into classroom instruction� Because CT is a relatively new

instructional area, limited research guides CT integration, especially in bringing CT to academically, linguistically,
and culturally diverse instruction� This study, therefore, examined challenges faced by teachers in bringing CT
into their instructional practice� Data included interviews with 11 teachers and surveys of 46 teachers in a large,
urban school district� The three schools in the district were part of a CS for All initiative in their school district�
Data revealed common challenges: a) Limited CT teaching expertise; b) Limited time for CT integration; c) Lack
of CT-specific assessment knowledge and tools; d) Limited pedagogical understanding for meeting students’
diverse instructional needs; and e) Low teacher-buy-in for teaching CT� Our data also showed differences across
schools in access to classroom implementation infrastructure such as technology and curricular resources,
competing administrative priorities, and types of professional development opportunities� This study points
to practical implications for supporting integration of CT in elementary contexts� Most notably, it is critical to
proactively address these barriers in preservice and in-service teacher preparation as well as in school-wide
infrastructure in order to have a sustained CT integration effort�

Understanding Barriers to School-Wide
Computational Thinking Integration
at the Elementary Grades: Lessons
From Three Schools

mailto:misrael@coe.ufl.edu

www.acm.org/education 65

study were: (1) What barriers teachers report related to
integrating CT into elementary instruction? (2) Are barriers
related to the type of instructional context and professional
development provided to the teachers?

Setting and Participants
Three elementary schools in a large urban school district
in the Northeast participated in this study. Table 1 provides
school demographic information. These schools were
recruited because they were involved in a CSforAll school-
wide initiative in which they integrated CT into instruction.

All three schools received professional development
(PD) for integrating CT into their school curriculum.
However, each school approached integration in a different
manner. School A had a lead teacher who taught all the
students in the school for CT integration activities within
science instruction. This teacher was the STEM teacher
for the school. Although other teachers participated in
PD and CT activities, the primary driver of CT integration
was the STEM teacher. Their PD consisted of a structured
schedule of afterschool workshops with coaching sessions
between these workshops. The PD provider initially focused
on helping teachers conceptually understand CT but
later shifted to more hands-on practical CT integration
approaches. School B and C had a more whole-school
approach although their PD models differed. In School B,
the PD provider went through a scaffolded “I do, we do,
you do” approach where they modeled CT instruction,
followed by collaboratively teaching CT, and then the
teacher took ownership of CT instruction. School B also
utilized a structured workshop approach with coaching
occurring between these workshops. School C used
an embedded coaching model wherein the CT coach
spent time with teachers to slowly integrate CT into their
instructional practice, beginning with a focus on use of CT
academic language and moving towards more authentic
unplugged and then plugged CT integration activities.
Although School C also had structured workshops, because
the coach spent more time in the school, the coach could
also collaborate on lesson implementation, provide more
frequent feedback, and give more consistent support.

All teachers who participated in the CT integration
activities were asked to participate in the research. Of the
ones who provided informed consent, all were asked to

Table 1. School Demographic Information

School Number of
Students

% Students
with high
economic

need

% English
language
learners

% Teachers
with 3+ years

teaching
experience

Teacher participants:
Surveys/Interviews

A 500 84.6 33.8 67 8 surveys; 1 interview

B 1600 72.0 29.6 83 12 surveys; 4 interviews

C 1625 86.5 31.4 71 26 surveys; 6 interviews

Sherwood and colleagues (2021) describe CT integration
ranging from using academic language that crosses
disciplinary areas (e.g., the term decomposition across
CS and math instruction) to using complex integrated
computer-based activities.

Given this ambiguity, the existing research highlights
that teachers feel underprepared to teach CT (Yadav et
al., 2018). And, to complicate matters further, literature in
science, technology, engineering, and mathematics (STEM)
integration suggests instructional concerns such as practi-
cal difficulties in creating integrated instructional activities
(Hobbs et al., 2018), concerns about inequity between
the disciplinary areas (Vasquez et al., 2013), and lack of
consensus about what integration looks like during instruc-
tion (English, 2016). Given both the ambiguity of what CT
integration looks like at the elementary level and the lack
of resources to support CT integration, school leaders
and teachers must make instructional decisions without
guidance from the literature. Additionally, little research
exists about the barriers that teachers face when trying to
integrate CT into their instructional practice. This literature
primarily focuses more on barriers to technology integra-
tion (e.g., Ertmer, 1999; Ottenbreit-Leftwich et al., 2018;
Pittman & Gaines; 2015). Although this literature provides a
framing for considering barriers to CT integration, there is
a need for additional research on challenges that teachers
face as they attempt CT integration. Therefore, the purpose
of this paper is to unpack barriers that teachers face when
integrating CT into their elementary instruction and to pro-
vide guidelines for addressing those barriers.

METHODS

This mixed methods study employed a concurrent
triangulation design (Creswell & Plano-Clark, 2017),
with qualitative data serving as the primary source
of information which was reinforced and confirmed
through quantitative data. Specifically, we engaged in
an approach where we triangulated data by source (i.e.,
teacher interviews and surveys). In such triangulation
designs, researchers collect and analyze the qualitative
and quantitative data separately and then synthesize that
data to interpret the research findings (Creswell & Plano-
Clark, 2007). The two research questions that guided this

http://www.acm.org/education

Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions66

This item was worded as, “To what extent do you
anticipate the following challenges will interfere with
the implementation of CS and CT in your classroom?
Example items included lack of curricular materials, lack
of administrative support, lack of student interest in CS
and CT. This scale ranged from not at all to a great extent.
Cronbach’s Alpha value for the survey items is 93%, which
indicates high internal consistency of the survey items.

Data Analysis. Qualitative data analysis involved an
inductive coding using a constant comparative approach
(Glaser, 1965) within the Dedoose qualitative coding
software. The research team developed a structured
coding scheme that involved the code name, operational
definition, and code example (see Table 2).

All the interview data was coded by two researchers
in three phases. Phase 1 involved collaboratively coding
teacher interviews and developing the code book. In phase
2, once the code book was established, data was divided
among the coders for individual first-pass analysis. Data
that was analyzed individually was entered into a table
and checked for agreement with the other coders in the
second-pass analysis. When differences emerged, codes
were compared and discussed for agreement. When
necessary, the code scheme was revised for clarification
and data was recoded based on the new coding criteria. All
data was checked again for accuracy to ensure that analysis
reflected any changes that resulted from the constant-
comparative process. Analysis of the surveys involved
frequency counts of the Likert scale items to ascertain the
barriers that were identified as most prevalent among
the survey items. Finally, interview and survey data were
compared as a means of triangulating data sources.

RESULTS

Interview Results
Teachers across all three schools described five primary
barriers to CT integration (See Table 3):

complete the surveys. Given the varying approaches to
integration, a different number of teachers in each school
were selected to participate in interviews. The STEM
teacher was interviewed in School A as she was the primary
driver of CT integration at her school. In school B, there
were only two teachers per grade level who integrated CT
into instruction so these two teachers per grade level were
interviewed (4 teachers). In School 3, which was the largest,
two teachers per grade-level were randomly chosen to be
interviewed (6 teachers).

CT Integration Approaches. Across the schools, the teach-
ers had different approaches to integration based on the
approaches provided by the PD providers. In School A, the
STEM teacher integrated CT into science instruction across
all the grades in the school. In Schools B and C, the teach-
ers integrated CT primarily in literacy and math instruction
as these were the areas of priority for the schools. The
PD providers encouraged the teachers to use academic
language associated with computational thinking (e.g., se-
quencing, decomposition, debugging) as well as a combi-
nation of unplugged and plugged activities.

Data Collection. Data included teacher surveys and semi-
structured interviews across all three schools. Interviews
and surveys took place after the initial year of CT
integration. This way, the teachers were able to describe
the barriers they faced during the process. The interview
questions were designed to be open ended and allow
teachers to describe their experiences with teaching CT
and the barriers that they encountered. Initial questions
focused on asking the teachers to share their experiences
with teaching CT in general rather than on barriers. In
this way, we avoided leading the teachers to discuss
barriers. If they described barrires, the semi-structured
interview protocol allowed for follow-up questions
specific to barriers. After this set of questions, the teachers
were asked one question specific to any barriers they
encountered when implementing lessons or activities to
teach CT.

Surveys included 12 five-point Likert-scale items related
to anticipated barriers.

Table 2. Example Codes, Operational Definitions, and Example Interview Quotes

Example Code Definition Example quotes from interviews

CS/CT is a new
instructional area

Teacher describes the process of
learning how to teach CS/CT

“I’m kind of like learning and I’m still learning the Scratch
skills myself and there’s a lot of times that I end up saying
to the kids, like, “You probably know how to do it better
than I do, so that’s okay,” like we’re learning together”.

Integration of CT
into content areas

Teacher describes bringing CT concepts
and practices into the content areas

“What the best way is to put these into different subject
areas and to integrate it….I think it’s something that you
teach with the concept that you're teaching…How do we
mix it into the curriculum so that it doesn’t become an
extra thing”.

www.acm.org/education 67

academic instruction alongside CT as well as in how to
provide enriching CT instruction to all their learners.

Limited teacher buy-in. Although buy-in emerged as a
barrier to implementation, there were a range of reasons
for this limited buy-in. The most common for this was
unease with the amount of work it would require to
introduce CT into the content areas. The teachers described
limited energy, resources, and will for implementing
something new, given all of their instructional demands.
Another reason expressed by the teachers was skepticism
about whether CT integration would result in academic
benefits for their learners. Simply put, there was not enough
research about the efficacy of CT integration to make it
worthwhile for some teachers to invest time and energy to
introduce it into their teaching.

Survey Results
Survey results showcased similar findings to those in the
interviews. Barriers reported in the surveys included lack
of time to implement CT (n=26) and lack of available
curricular materials (n=17). In addition to these barriers that
appeared in both the interviews and surveys, the survey
data also revealed barriers not described in the interviews:
Lack of alignment between CT priorities and teacher
evaluation (n=17); competing priorities between CT and
other school priorities (n=33). Figure 1 provides the list of
areas the teachers indicated on the survey were barriers
to a moderate or great extent. As Figure 1 also shows, the
one area where teachers across all schools indicated that
student interest in CS and CT was not a barrier.

Differences among the schools. Although teachers across
schools indicated similar barriers, because of different PD
and integration approaches, some differences emerged.

Table 3� Barrier Categories from the Teacher Interviews

Barrier # Teachers (n=11) Illustrative Quotes

Limited knowledge
related to how to teach
CT in their classrooms.

8
“I think the biggest challenge was it was a very steep learning curve...
So as I was teaching the students and I’m still learning the Scratch skills
myself.”—School C

Finding time for CT in
the school day

6
“In the beginning, you're thinking about time. I don’t have time...Even
in these 10-minute engaging activities, where does that come from the
day?—School B

Lack of CT assessment
knowledge and tools

5
“I think the biggest challenge if I had to root it in CT is that there's still not
concrete performance indicators.”—School A

Challenges with meeting
students’ diverse needs
in computing

5
“I think just with the different levels of students, I think it’s hard for some
classes. Just that they don’t have the foundations from the previous
grade and they come already into second grade lacking that.”—School C

Limited teacher buy-in
about teaching CS/CT

5
“I think the biggest challenge would be having teachers that are willing
to implement something new. I think that’s the hardest part about, you
know, introducing anything.”—School B

Limited knowledge related to how to teach CT in their class-
rooms. When the teachers described lack of knowledge of
CT, they did so both from the perspective of having a limited
understanding of CT concepts (e.g., decomposition,
abstraction) and how to teach these concepts in the context
of integrating CT into academic content areas such as lit-
eracy, math, or science. Teachers’ lack of expertise encom-
passed three interrelated areas: CT concepts, pedagogical
approaches for introducing CT to their learners, and integra-
tion of CT into the core academic content areas. The teach-
ers, thus, indicated that they taught CT integrated lessons
in an instructionally ambiguous situation wherein they were
unsure what and how to teach CT in an integrated manner.

Finding time to teach CT. Teachers indicated that a major
barrier to CT integration was finding time to teach CT
during the school day when there was already limited
time for the core content areas, primarily reading and
mathematics. Teachers also described difficulty finding time
learn the content well enough to teach it to their learners.

Lack of knowledge of and access to CT assessment. This
barrier specifically addressed how teachers would know
whether the students learned the CT concepts that were
being introduced in class. They indicated that they had no
performance indicators, no ways of understanding how
students can apply skills learned to new problems, or no
understanding of what assessments might look like in the
context of CT integration.

Challenges with meeting the needs of students with a
wide range of learning needs. Teachers indicated that their
student population is diverse and includes students who
are emergent bilingual learners, students with disabilities,
and students who were struggling for other reasons.
They expressed a tension between providing basic core

http://www.acm.org/education

Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions68

curricular materials and none of the teachers in this school
indicated a lack of computer hardware, software, or internet
access. They had the most access to tools and technologies,
compared to the other schools. In interviews, they stated
that they had access to all necessary technologies to
implement CT integration.

School C. School C teachers described lack of time
as a barrier related to finding time during the school
day, but they did not indicate planning time as a major
barrier as their PD provider provided them with lesson
plans that could be implemented without a great deal
of development work. The teachers explained that the
administrators allowed them to use existing planning
time for CT integration planning and working with their
PD providers. Compared to Schools A and B, teachers in
School C had the lowest proportion of teachers who stated
that they had a limited understanding CS and CT as well as
pedagogical approaches and ways of integrating CS and
CT into their own instructional settings. This finding was
unsurprising as they had the most access to PD as part of
their PD implementation initiative.

Discussion
This study highlights the common barriers faced by
elementary teachers who were integrating CT into their
instruction. Although all three schools offered PD and had
resources for implementing CT, all the teachers indicated
that this work was difficult and time consuming, similar
to findings by Yadav and colleagues (2016). Although we

School A. The primary CT integration driver in School
A was the STEM teacher. When interviewed, she indicated
that although other teachers in the school attended PD,
the other teachers did not develop or implement the CT
lessons without her involvement. Thus, the STEM teacher
had CT integration responsibilities beyond her own
classroom CT activities. When the STEM teacher described
time, it was time to work with the PD provider to design
instruction for both her own class as well as time for
implementing CT instruction in the other classrooms. She
stated, “I think that time is the biggest factor in developing
a new curriculum [at all grade levels].” School A also had
a higher proportion of teachers who indicated limited
understanding of CS and CT content, as well as how
to implement CS and CT in their classrooms, including
which pedagogical approaches are effective in teaching
integrated CS and CT. Given that these teachers were not
primarily responsible for CT instruction, this finding was
unsurprising.

School B. The teachers in School B primarily described
lack of time as finding time in the school day to teach CT.
The PD providers helped to co-construct lessons with the
teachers, so the teachers had to find time to both work
with the PD providers and teach the lessons. The school
administrators allowed teachers and PD providers to use
instructional planning time for co-planning. One teacher
in School B explained, “Finding that balance of how you
can integrate the CT and still do everything that you need
to do throughout the day.” Teachers in School B had the
lowest proportion of teachers who stated that they lacked

Figure 1. Percentage of Teachers Reporting Factors that were Moderate or Great Barriers

www.acm.org/education 69

leadership engage with teachers can help address some
of these barriers (DeLyser et al., 2018). For example,
the SCRIPTS process that the CS for All Consortium
facilitates may assist district and school leadership towards
addressing both the first and second order barriers found
in this study.

It is interesting that some barriers reported in the survey
were not reported in interviews. For example, 17 teachers
responded on the survey that there was a lack of alignment
between CT priorities and criteria used by administrators
to evaluate teacher effectiveness. Similarly, 12 teachers
reported a lack of administrative support as a barrier.
However, this was not a major theme in the interviews.
It could be that the teachers did not feel comfortable
sharing concerns related to their administration with the
researchers in the interviews, but they were comfortable
reporting these results in an anonymous survey. Future
research should, therefore, address barriers in a manner
that maintains teacher anonymity during the research
process. Lastly, all the teachers in this study had access to
ongoing support and PD to develop their CT integration
knowledge and skills. Despite this support, they still
reported multiple barriers. However, in many cases,
teachers are faced with integrating CT into their instruction
on their own and taking on the leadership for both
increasing their own capacity and providing professional
support to other teachers in their buildings. Given the
findings of this study, especially as related to lack of time
and knowledge, this CT integration work should not be
placed on one or two teachers, but should take on a
systems approach (DeLyser et al., 2020).

Limitations. Several limitations should be acknowledged
within this study. First, this study took place within one
district that had a range of CS and CT instructional
resources available to the teachers. Although PD differed
among the schools, all teachers had access to PD and the
necessary tools for implementing CT. These conditions
are not likely generalizable to smaller school districts
or those without a K-12 CS initiative. Second, this study
did not triangulate findings about barriers with the data
from administrator interviews. Although administrators
were involved in the CT integration within their schools
by helping to develop the vision and participating in
leadership decision-making, they were not used as a
specific data source related to the barriers reported
by the teachers in order to honor the confidentiality of
the participants. Future research should explore how
administrators view CT initiatives in light of the competing
priorities described by the teachers. Lastly, this study did
not investigate the extent to which previous experience
with teaching CT influenced the teachers’ perceived
barriers to implementing CT integration. Given that
disciplinary experience with CT likely shapes level-two
barriers, this connection should be explored further.

expected a great deal of variation among the barriers
reported by teachers at the different schools, there were
more commonalities than differences. The differences
that emerged could be aligned with the different PD
approaches. For example, School C had the most intensive
PD and coaching approach, so teachers indicated greater
understanding of CT integration.

Previous research on content integration (e.g., Tytler et
al., 2019) and specifically integration of CT into instruction
(e.g., Yadav, 2018) highlight both the ambiguity of what is
meant by content integration and the difficulty that teachers
face in integrating CT into their classroom instruction.
This challenge was evident in teachers’ discussion of
their lack of expertise related to CT integration in three
ways: (1) CT understanding, (2) understanding of effective
pedagogies for teaching CT, and (3) ways to bring CT into
their core academic areas. Even with robust professional
development, teachers struggled with identifying the
connections between their core content instructional
goals and CT concepts and practices. These CT integration
challenges must also be viewed in light of other challenges
faced by elementary teachers including teaching multiple
subjects, classroom management, and insufficient planning
time (e.g., Conway, 2001; Feiman-Nemser et al., 1999;
Lortie, 1975; Veenman, 1984).

Barriers reported by the teachers were consistent
with first and second order barriers to technology
implementation reported in the literature (Ertmer, 1999).
First order barriers (i.e., institutional barriers) are extrinsic
to the teachers and include both lack of time to teach and
plan integrated CT instruction as well as the competing
priorities that the teachers indicated on the surveys. These
barriers can result in significant challenges for teachers
because of lack of resources, support, and other aspects
outside of the teachers’ control. Second order barriers
(i.e., personal barriers) relate more to teachers’ underlying
beliefs about their own capacity to teach CT instruction
as well as the importance of such instruction. In this study,
the teachers described a lack of content, pedagogy, and
assessment knowledge as well as lack of buy-in for teaching
CS and CT. Although on the surface, the first order barriers
may seem like the more challenging ones to address, it
may actually be these second order barriers that are the
more difficult to address given that they require teacher
learning and change (Ertmer, 2005). Thus, it is important to
consider teacher learning and beliefs along a continuum
so that what is defined as successful CT integration for a
teacher new to CT will look different from CT integration for
a teacher who has prior CT teaching experience.

Although the teachers did not rank lack of
administrative support as a major barrier, the types of
barriers they did report were those that administrators
can influence. For example, survey results indicated that
competing priorities and time were both major barriers.
A team-based approach where district and school-based

http://www.acm.org/education

Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions70

Creswell, J. W., & Clark, V. L. P. (2017). Designing and conducting
mixed methods research. Sage publications.

DeLyser, L. A., & Wright, L. (2018, February). Creating a
Landscape of K-12 CS Curriculum. In Proceedings of the 49th
ACM Technical Symposium on Computer Science Education
(pp. 1098-1098).

DeLyser, L. A., Wright, L., Wortel-London, S., & Bora, A. (2020,
February). Evaluating A Systems Approach to District CS
Education Implementation. In Proceedings of the 51st ACM
Technical Symposium on Computer Science Education (pp.
1120-1126).

English, L. D. (2016). STEM education K-12: Perspectives on
integration. International Journal of STEM education, 3(1),
1-8.

Ertmer, P. A. (1999). Addressing first-and second-order barriers
to change: Strategies for technology integration. Educational
technology research and development, 47(4), 47-61.

Feiman-Nemser, S., Schwille, S., Carver, C., & Yusko, B. (1999). A
Conceptual Review of Literature on New Teacher Induction.
Retrieved from https://files.eric.ed.gov/fulltext/ED449147.
pdf .

Fofang, J. S., Weintrop, D., Walton, M., Elby, A., & Walkoe, J.
(2020). Mutually Supportive Mathematics and Computational
Thinking in a Fourth-Grade Classroom. In Gresalfi, M. and
Horn, I. S. (Eds.), The Interdisciplinarity of the Learning
Sciences, 14th International Conference of the Learning
Sciences (ICLS) 2020, Volume 3 (pp. 1389-1396). Nashville,
Tennessee: International Society of the Learning Sciences.

Glaser, B. G. (1965). The constant comparative method of
qualitative analysis. Social problems, 12(4), 436-445.

Han, S., & Liu, M. (2021, March). Empowering Teachers through
Professional Development Program and Online Learning
Community. In Society for Information Technology & Teacher
Education International Conference (pp. 1236-1241).
Association for the Advancement of Computing in Education
(AACE).

Israel, M., Pearson, J. N., Tapia, T., Wherfel, Q. M., & Reese, G.
(2015). Supporting all learners in school-wide computational
thinking: A cross-case qualitative analysis. Computers &
Education, 82, 263-279.

K–12 Computer Science Framework. (2016). Retrieved from
http://www.k12cs.org.

Lortie, D. (1975). Schoolteacher: A sociological study. Chicago,
IL: Univ of Chicago Press.

Implications for Practice: Suggestions for
Teachers New to CT Integration
We propose several strategies for addressing barriers to
CT integration based on the findings of this study. First,
it is essential to build a school culture of CT integration
that includes a plan for CT integration, building time
into the work day for planning, and promoting ongoing
professional learning (Israel et al., 2015). If the school
provides common planning time, teachers can use that time
to develop lesson plans that infuse CT into curricula, share
instructional strategies, and reflect on teaching experience.
Next, joining and participating in face-to-face and online
professional learning communities (Han & Liu, 2021) can
enhance teachers’ engagement in CT learning and provide
both local and remote colleagues to support learning,
provide resources, and help address implementation
barriers. There are a number of communities that can
help CS teachers feel less isolated, provide resources
and strategies, and address common barriers. These
communities include: (1) the Computer Science Teachers
Association (CSTA) national and state divisions (https://
www.csteachers.org/), (2) the CSTA K-8 Facebook page,
and (3) Twitter chats such as #CSK8 and #CSforAll. Next,
as it is important to consider a systems-approach to
proactively plan for introducing CT into classroom contexts,
supporting teachers in gaining the skills necessary to do so,
and then sustaining CT instructional initatives. Tools such as
the CS for All SCRIPT (Strategic CSforALL Planning Tool for
School Districts) program, which is a framework that guides
teams through visioning, goal setting, and planning for
CS education implementation, can provide the necessary
guidance. Lastly, many elementary teachers are novice to
CT, so it is important to find resources online. There is a
growing list of online resources for CT integration. Below
are a couple integration-specific resources:

• Project GUTS elementary modules (https://
teacherswithguts.org/welcome) provide integrated CT
and science instruction.

• EverydayCS Action Fractions (http://
everydaycomputing.org/) is a Scratch-based 3rd and
4th grade integrated fractions and CT curriculum.

References
Angevine, C., Cator, K., Roschelle, J., Thomas, S. A., Waite,

C., & Weisgrau, J. (2017). Computational Thinking for a
Computational World. Digital Promise. Retrieved from
https://digitalpromise.org/wp-content/uploads/2017/12/dp-
comp-thinking-v1r5.pdf

Conway, M. A. (2001). Sensory–perceptual episodic memory
and its context: Autobiographical memory. Philosophical
Transactions of the Royal Society of London. Series B:
Biological Sciences, 356(1413), 1375-1384.

https://files.eric.ed.gov/fulltext/ED449147.pdf
https://files.eric.ed.gov/fulltext/ED449147.pdf
http://www.k12cs.org
https://www.csteachers.org/
https://www.csteachers.org/
https://teacherswithguts.org/welcome
https://teacherswithguts.org/welcome
http://everydaycomputing.org/
http://everydaycomputing.org/
https://digitalpromise.org/wp-content/uploads/2017/12/dp-comp-thinking-v1r5.pdf
https://digitalpromise.org/wp-content/uploads/2017/12/dp-comp-thinking-v1r5.pdf

www.acm.org/education 71

Vasquez, J., Sneider, C., & Comer, M. (2013). STEM lesson
essentials, grades 3–8: integrating science, technology,
engineering, and mathematics. Portsmouth, NH: Heinemann.

Veenman, S. (1984). Perceived problems of beginning teachers.
Review of Educational Research, 54(2), 143-178.

Yadav, A., Gretter, S., Hambrusch, S., & Sands, P. (2016).
Expanding computer science education in schools:
understanding teacher experiences and challenges.
Computer Science Education, 26(4), 235-254.

Yadav, A., Krist, C., Good, J., & Caeli, E. N. (2018). Computational
thinking in elementary classrooms: measuring teacher
understanding of computational ideas for teaching science.
Computer Science Education, 28(4), 371-400.

Ottenbreit-Leftwich, A., Liao, J. Y. C., Sadik, O., & Ertmer, P.
(2018). Evolution of teachers’ technology integration
knowledge, beliefs, and practices: How can we support
beginning teachers use of technology? Journal of Research
on Technology in Education, 50(4), 282-304.

Pittman, T., & Gaines, T. (2015). Technology integration in third,
fourth and fifth grade classrooms in a Florida school district.
Educational Technology Research and Development, 63(4),
539-554.

Sherwood, H., Yan, W., Liu, R., Martin, W., Adair, A., Fancsali, C., ...
& Israel, M. (2021, March). Diverse Approaches to School-
wide Computational Thinking Integration at the Elementary
Grades: A Cross-case Analysis. In Proceedings of the 52nd
ACM Technical Symposium on Computer Science Education
(pp. 253-259).

Tytler, R., Prain, V., & Hobbs, L. (2019). Rethinking disciplinary
links in interdisciplinary STEM learning: A temporal model.
Research in Science Education, 1-19.

http://www.acm.org/education

Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions72

Strengthening Early STEM Learning
by Integrating CT into Science and
Math Activities at Home

Introduction
Five years ago, the ‘Computer Science for All’ initiative
was launched to “empower all American students to be
equipped with the computational thinking skills they
need [and] to be active citizens in our technology-driven
world” (White House, 2016). Although much of the early
attention on computational thinking (CT) in K-12 has
focused on resources for secondary school students,
new tools and activities directed to elementary children
have also proliferated in recent years with the creation
of environments focusing on programming (e.g., Scratch
Jr., Kodable, HopScotch); activity sequences (e.g., ‘Hour

of Code’ by Code.org); apps (e.g., Daisy the Dinosaur);
and tangible programmable robots (e.g., Bee-Bot, Dash
& Dot). Most of these approaches seek to introduce
children to fundamental ideas of algorithmic thinking
and its elements—sequence, conditional thinking and
repetition. Few, however, have examined CT at the
preschool level, and especially the synergistic—or mutually
supportive—integration of CT learning with other early
childhood learning domains. Studies have shown that
children’s experiences in preschool math, English, and
science can strongly predict later academic success,
and not just in these subjects (Duncan et al., 2007). As

Shuchi Grover, Looking Glass Ventures

Ximena Dominguez, Tiffany Leones, Danae Kamdar, Digital Promise
Phil Vahey, Houghton Mifflin Harcourt, and Sara Gracely, SRI International

Corresponding Author: Shuchi Grover, shuchig@cs.stanford.edu

Abstract

While understanding in the field of how CT can be used in early childhood is limited, current CT definitions
include skills and practices that align with early mathematics and science learning goals outlined in

national frameworks (e�g�, Head Start Early Learning Outcomes Framework) and state standards� In order to
understand which elements of CT align with the abilities and interests of young children and how they can
be integrated with early science and math experiences in a mutually supportive manner, we partnered with
preschool teachers and families to co-design and pilot test hands-on (unplugged) and digital activities for
classrooms and homes�

Our collaborative research identified the following CT skills as productive starting points for our co-design
work: (1) problem decomposition; (2) algorithmic thinking; (3) abstraction; and (4) testing and debugging�
This paper describes our approach to operationalizing CT for early learning and our empirical research
around activities designed to understand how CT can be linked with math and science to create powerful
learning experiences for preschool learners� Our work involves actively fostering a home-school connection for
promoting CT and prioritized designing for activities that fit the ecology of preschool classrooms and homes
(with special attention to family activities)� With a view to designing equity-oriented experiences, we partnered
with preschools serving historically underserved communities, and centered families' funds of knowledge�
This paper focuses specifically on the home component of the program and shares data and analyses about
children's and parent's experiences at home—which activities were more successful and resonated with children
and families, and which specific synergies emerged between CT skills, math and science concepts and practices�

Our findings highlight the promise of introducing early CT to support early learning, and especially involving
families in the process� Results from our research also identified challenges that should be addressed in future
iterations of this design research We believe our family connection activities are not only a unique part of the
research but also an exemplar of what should be an essential piece of STEM education for young learners�

http://Code.org
mailto:shuchig@cs.stanford.edu

www.acm.org/education 73

learning (Leibham, Alexander, Johnson, 2013). Given
the persistent problems of inequity in STEM, efforts to
promote integrated STEM learning are especially needed
in public preschool programs serving children from
historically underserved communities. Recent advances in
our understanding of the building blocks of CT and of the
capabilities of young learners make the integration of CT
with early STEM activities ripe for exploration.

Some researchers have explored non-programming
activities for building CT skills and practices in preschool,
but evidence evaluating children’s learning from the
activities designed is limited. Mittermeir (2013) found that
a small group of preschoolers could articulate algorithms
for sorting tasks. Calderon, et al. (2015) shared a prototype
idea for pattern recognition among children ages 3 to 5.
Horn, AlSulaiman, and Koh (2013) developed an interactive
storybook that leveraged family language and literacy
practices to help preschool and elementary students apply
ideas about sequences and loops. Emerging research
indicates that preschoolers are able to learn CT skills such
as sequence, modularity, and debugging in the context
of simple, engaging hands-on classroom math activities
(Lavigne et al., 2020).

Our work involves actively fostering a home-school
connection for promoting CT and prioritized designing for
activities that fit the ecology of preschool classrooms (e.g.,
circle time, small group activities, learning centers) and
homes (e.g., board games, paired/family activities). This
draws on the strong evidence in early learning literature
about the positive impact of family involvement in early
STEM learning. Based on a meta-analysis of 46 studies,
Ma et al. (2016) found a strong and positive correlation
between learning outcomes and parental involvement,
and that the role of parents (family involvement) was
more important for STEM learning than the role of
schools and communities (partnership development).
The authors argued that to develop a strong relationship
between learning outcomes and parental involvement,
home supervision, behavioral involvement, and home-
school connection were the keys from family involvement.
Additionally, scholars studying equity in computing
education more broadly suggest that connecting
computational experiences to family and community is
part of culturally responsive computing pedagogy (Scott,
Sheridan, & Clark, 2015) and is an equitable approach
to teaching computing (Pinkard et al., 2020). Roshan,
Jacobs, Dye, and DiSalvo (2014) argued that parents
in economically depressed communities struggle to
negotiate what roles they can play in their children’s
computational learning experiences, and how they can
help their children access computing-related learning
resources. We believe our family connection activities are
not only a unique part of the research but also an exemplar
of what should be an essential piece of STEM education for
young learners.

educators explore how CT can be integrated meaningfully
to support learning, it is important to investigate how
elements of CT best align with the abilities and interests of
preschool children. In what contexts can CT be promoted
in a meaningful and consequential way? How can CT
activities be integrated into common preschool classroom
activities and home learning experiences to strengthen
young children’s STEM learning, especially for children in
historically underserved communities? These questions
provided the motivation for this research.

This paper describes our research activities that
aimed to understand how CT can be linked with math
and science to create powerful learning experiences for
preschool learners. Our research centers equity; it involves
(a) purposefully partnering with preschools serving
culturally and linguistically diverse families in low-income
communities (Nasir et al., 2020) and (b) co-designing with
and drawing from families’ funds of knowledge (Moll,
2015; Moll et al., 1992). We start by framing our work in the
dual contexts of early STEM learning research, including
evidence highlighting the importance of home-school
connections, as well current CT frameworks K-12 learning.
We, then, briefly discuss how we operationalize CT for
early learning and describe our approach to iteratively
co-design activities (Penuel, Roschelle, Shechtman, 2007),
which involved bringing together public preschool
teachers, families, curriculum and media designers, and
CS education and early learning researchers. A series of
design-based research activities (DBR; Sandoval & Bell,
2004), including observations, surveys, interviews, and
assessments, aimed to examine how CT activities at home
support young children’s learning. In this paper, we discuss
findings from a culminating field study involving public
preschool classrooms and homes and discuss implications
and learnings for the field as well as our ongoing and
future efforts.

The Early Learning Context
The early childhood education field is increasingly aware
of the need for and value of promoting early learning
in STEM (Schweingruber, Duschl, & Shouse, 2007; U.S.
DHHS, 2015). This recognition emerged from research
determining that (1) young children are interested in and
have a right to engage in mathematics and science as a
way of exploring and understanding the world around
them, (2) learning mathematics and science often includes
exploratory and play-based activities that resonate with
developmentally appropriate preschool practices, (3)
scaffolding young children’s mathematics and science
learning can promote the reasoning skills and learning
dispositions crucial for later school success (Clements
& Sarama, 2014; Gelman, & Brenneman, 2004), and
(4) promoting mathematics and science can result in
increased interest in and better preparation for later STEM

http://www.acm.org/education

Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions74

Operationalizing CT, Connecting to Early
Math and Science, and Co-Designing
Activities
Early co-design work helped identify target content and
initiate the design of the learning blueprints that in turn helped
curricular design of activities. As part of the initial stages of
co-design (Figure 1), our team identified the following CT
skills as productive starting points for our work: (1) problem
decomposition; (2) algorithmic thinking; (3) abstraction;
and (4) testing and debugging. These were identified as
promising entry points for exploring integration with other
STEM areas by the co-design team and project advisors based
on their own prior research and design experiences in early
math and science (Presser et al., 2019; Vahey et al., 2018),
existing research evidence (described above), and alignment
with current early childhood standards (e.g., Head Start
Early Learning Outcomes Framework and state standards
such as California’s Preschool Learning Foundations).

A ‘learning blueprint’ (Vahey et al., 2018) was gener-
ated to list developmentally appropriate learning goals
for each of the identified CT skills and delineate possible
connections to early mathematics and science. For instance,
algorithmic thinking was tagged in relation to counting
and visual spatial skills common in navigational activities,
abstraction activities were tagged as possibly related to
science practices such as comparing, and sorting based on
key characteristics and debugging seen as tying to scientific
experimentation. Additionally, we aimed to give familiar
children’s activities a goal- or problem solving- orientation.
Children would not merely sort objects, but sort and label
in ways that help them build something more efficiently. For
example, an object with red blocks would be more efficient-
ly built if blocks were sorted by color and building an object
with square blocks would benefit from sorting by shape.

Prototype hands-on activities were pilot tested in two
classrooms and three homes to inform next DBR iterations.
22 classroom and 6 home hands-on activities emerged
from revisions. Table 1 shows a list of sample activities,
target CT skills, and mappings to math and science1. Two
digital games were designed and iterated on (and are now
freely available for iOS and Google mobile devices) for
use in home and school. In City Walk (Figure 2), children
create a sequence of instructions to help their robot
navigate a route to deliver gifts to friends around town.
Through appropriate scaffolding, the app progressively
introduces more complex tasks and provides visual and
audio feedback to help children learn how to debug errors.
In Better Building (Figure 2), children sort and label groups
of blocks based on characteristics such as shape, color, and
size, to help the robot build structures more efficiently.

Framing Computational Thinking
CT has been described as a composite set of problem-
solving skills associated with computer science but with
overlapping roots in mathematics and engineering. Wing
(2006) described CT as a universal skill for all in today’s
world, as computing has become a pervasive part of life.
Researchers focusing on primary and secondary computer
science education have further articulated the problem-
solving strategies that comprise CT as including algorithmic
thinking, decomposition, abstraction, pattern recognition,
generalization, systematic error detection and debugging,
and evaluation of solutions (Grover & Pea, 2013, 2018).
More recently, Dong et al. (2019) synthesized various
articulations of CT, including those catering to STEM
integration contexts (e.g., Weintrop et al., 2016) to propose
PRADA—Pattern Recognition (observing and identifying
patterns, trends, and regularities in data, processes, or
problems), Abstraction (identifying the general principles
and properties that are important and relevant to the
problem), Decomposition (breaking down data, processes,
or problems into meaningful smaller, manageable parts),
and Algorithms (developing step by step instructions for
solving [a problem] and similar problems).

Although research on CT in early childhood is sparse,
current CT definitions resonate with school readiness
goals delineated by preschool programs and policies. For
example, the Head Start Outcome Framework’s Reasoning
and Problem-Solving subdomain indicates that young
children need to learn to use a variety of problem-solving
strategies, and reason and plan ahead to solve problems
(DHHS, 2015). Research that examines how these CT skills
align with the abilities and interests of young learners
and uniquely support their school readiness is thus timely
and needed. Our work on integrating CT into preschool
learners’ STEM activities drew on these frameworks,
but also required that we find age-appropriate ways of
accomplishing our goals and identifying productive points
of synergy among elements of CT and early STEM learning
goals. Through this project we are developing a deeper
understanding of what CT looks like in its simplest form,
and how it can enrich math and science for preschoolers.

METHODS

The research presented in this paper is part of a broader
effort that aims to examine how we can bring CT into early
learners’ lives through curricular activities that integrate CT
with familiar preschool science and math activities and play
in ways that fit seamlessly into classroom as well as home
routines; and familiarizing teachers and parents/caregivers
on what CT is and preparing them to implement the activi-
ties at school and home, respectively. This paper focuses on
the home component of the program and shares findings
about children's and parent's experiences at home.

1 For more details on these activities, including lesson plans, please visit
https://digitalpromise�org/initiative/learning-sciences/preschool-
computational-thinking/activities/

https://digitalpromise.org/initiative/learning-sciences/preschool-computational-thinking/activities/
https://digitalpromise.org/initiative/learning-sciences/preschool-computational-thinking/activities/

www.acm.org/education 75

F� Robot in the City: As an unplugged complement to
City Walk, this activity involves children practicing with
directional arrows in order to follow a short sequence
of directions on a small city map printed as a 3x3 grid.

Additionally, we developed a playful task-based
assessment to measure CT learning. However, its use in
this research was mainly to pilot the assessment while also
gathering data for iterative refinements. Sample assessment
items are described in Table 2.

The 6 hands-on home activities (listed in the shaded
rows in Table 1) are briefly described below:

A� Playdough Workshop: In this activity, children make
a playdough creation, such as a rainbow or pizza (see
Figure 3) and engage with problem decomposition by
identifying the smaller parts they need to make in order
to tackle their big creation.

B� Cereal Necklace: This activity centered on children
learning to identify and follow a sequence of steps
(algorithms) to make a necklace out of cereal (or pasta).

C� Grocery Store Trip: The goal of this activity was to help
families plan what they need at the grocery store and
sort items on their grocery list by category (such as
fruits, dairy, vegetables, cereal) to make the search at
the store easier.

D� Getting Ready for Bed: As children create their own
book to tell the story of their bedtime routine, they
learn to identify the big task and the smaller, sub-tasks.

E� Playing with Dice: In this activity, children learn to cre-
ate instruction codes with loops to play a fun game with
numbers and activity dice. Children paired the number
on the dice to repetition of actions such as clapping,
jumping, etc.

Figure 1. Activity co-design with parents/teachers and caregivers

Figure 2. Digital apps/games for : (Left) City Walk (for algorithmic thinking) and (Right) Better Building (for abstraction)

Figure 3. Problem decomposition through
creations in Playdough Workshop

http://www.acm.org/education

Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions76

Table 1. Sample Activities, formats, and locus along with CT/Science/Math alignments
(Blue rows indicate activities designed for families and homes)

Sample Activities
Format/Locus

CT Skills Mathematics
Concepts/Skills

Science
Content/Skills/Practices

City Walk
Digital/Home & School

Algorithms
Debugging

Spatial reasoning/
visual spatial

Better Building
Digital/Home & School

Abstraction Recognizing shapes Practices: Classifying & sorting, Comparing
& contrasting

Carmella’s Apple Store
Unplugged/School

Problem
Decomposition,
Testing/Debugging

Measurement
Counting,
Cardinality

Sink and float, ramps & pathways.

Practices: Observation, Developing &
planning investigations; Cause & effect

Robot in the City
Unplugged/Home & School

Algorithms
(Sequences);
Debugging

Spatial reasoning/
visual spatial

Playing with Dice
Unplugged/Home & School

Algorithms
(Loops)

Number sense
(quantity)

Cereal Necklace
Unplugged/Home

Algorithms number, first,
next, Patterns

Playdough Workshop
Unplugged/Home & School

Problem
Decomposition

Shapes, Counting,
Cardinality

Practices: Observing & describing

Grocery Store Trip
Unplugged/Home Abstraction, Pattern

Recognition
Counting

Practices: Observing & describing,
Classifying & sorting, Comparing &
contrasting,

Content: Food/Nutrition; Animals
classification

Our Very Own Zoo
Unplugged/School

Getting Ready for Bed
Unplugged/Home

Problem
Decomposition

Counting,
Cardinality

Content: Hygiene, nutrition

Getting Ready for School
Unplugged/School

Table 2. Sample Assessment Items

Item CT Skill/Practice Description Response Format

3 Algorithms (sequence) Interpret (or follow) code to navigate a small
map. Code involves pictures.

Verbal response, point or indicate

5 Algorithms (repetition/looping) Generate code that includes a loop. Jump
three (3) times.

Tangible Manipulative placement

7 Abstraction (sorting) Sort toy vehicles for a given purpose. (two
variables - color and vehicle type)

Tangible Manipulative placement

12 Testing and Debugging Debug a mistake (made by assessor) in
navigation of a small map.

Verbal response, point or indicate

13 Abstraction (labeling) Label sorted groups of blocks for a given
purpose. (one variable - color)

Tangible Manipulative placement

15 Problem Decomposition Decompose steps to build a simple structure
with blocks.

Verbal response, point or indicate

www.acm.org/education 77

examples (e.g. we engage in algorithmic thinking when
following a recipe with clear, sequential instructions), and
a walkthrough to introduce hands-on and digital activities
(see examples in Table 1) that families were asked to try out
at home.

Data Measures. The following data were collected:
• Home observations. We conducted home observations

with detailed notetaking (Emerson, Fretz, & Shaw,
2011). Researchers met with each family three times
over the course of the field study (once for each CT
unit: abstraction, problem decomposition, algorithmic
thinking). During the family meetings, researchers
took notes on families’ experiences with the hands-
on activities and digital apps, and documented
their feedback. Family meetings in VA took place at
the preschool. In CA, family meetings took place in
a variety of settings: outdoor space on the school
premise (one family); home (one family); and local
library (two families).

• CT Assessment. Approximately 8 children per classroom
were selected to be assessed in a post-intervention
assessment using a stratified random sampling
procedure. An equal number of 3- and 4-year-old girls
and 3- and 4-year-old boys were randomly selected
from each participating classroom. The assessment was
used as a measure of CT learning with a view to also
pilot-testing the assessment.

• Post-Study Parent/Caregiver Surveys and Interviews. To
gather information about their experiences (successes
and challenges), parents/caregivers completed a survey

Field Study
The activities and resources developed throughout the proj-
ect were examined in a small quasi-experimental field study
over a six-week period conducted in both classrooms and
homes. In this paper, our data and findings focus on examin-
ing implementation in homes, with a view to understanding
(a) how we can engage families in such activities, and (b)
parent/caregiver experiences with CT and its integration
with math and science. This paper shares the research guid-
ed by the specific research question: How can we integrate
CT for preschoolers into activities at home and what are
parent/caregivers’ experiences with such integration?

Sample. A total of 7 public preschool classrooms
consented to be part of the field study; 5 classrooms were
assigned to the intervention condition and 2 classrooms
were assigned to a comparison condition. A total of
2 families (consisting of at least one parent/caregiver
and preschool aged child) in each of the intervention
classrooms were randomly selected to be part of the home
intervention (N=10 families; 4 based in California and 6 in
Virginia). All families belonged to minority ethnic groups
in the US— 6 were Hispanic/Latino, 3 were Black and 1 was
Asian. Parents‘/caregivers‘ highest level of education was
either high school or college (Table 3).

Resources and Supports for Families. In preparation
for the field study, the team also prepared professional
development materials for two meetings which includ-
ed documents, an infographic video describing CT skills
(https://vimeo.com/561877371/9959d88a08) with relatable

Table 3. Demographic Characteristics of Families in Field Study

Characteristic California Virginia Total sample

n % n % n %

Ethnicity

Hispanic or Latino 4 100 2 33.3 6 60

Not Hispanic or Latino 0 0 3 50 3 30

Race

American Indian or
Alaskan Native

0 0 0 0 0 0

Asian 0 0 1 16.7 1 10

Black or African American 0 0 3 50 3 30

Native Hawaiian or
Other Pacific Islander

0 0 0 0 0 0

White 3 75 2 33.3 5 50

Highest educational level

Some high school 0 0 0 0 0 0

High school 2 50 2 33.3 4 40

Some college 2 50 3 50 5 50

College 0 0 1 16.7 1 10

http://www.acm.org/education
https://vimeo.com/561877371/9959d88a08

Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions78

learner and parent/caregiver experiences with our activity
suite. The two researchers jointly reviewed the responses
and identified themes described in the section below on
why some activities worked (more than others). They then
coded the responses independently based on the themes,
and then met again to discuss and reach agreement.

Enactment of Home Activities
Based on the review and qualitative analysis of researcher
notes during family visits, as well as comments during the
interviews, the following feedback emerged on family
experiences with each of the activities. Activities such as
Grocery Store Trip and Getting Ready for Bed could not be
observed, and the researchers relied on parents/caregivers’
descriptions of how those activities went.

Findings from the family visits, surveys, and interviews
indicated that, overall, families really enjoyed doing
the activities and reported engaging in many of them
repeatedly with their children:

“Really good experience. Helps kids with focus and
has good directions on what to learn. My daughter is now
following directions better. Also really like the Playdough
Workshop. She likes to make every item on the cards.”

Everything was great. [Child name] and I both like to do
a lot of different things, so this was great for us. [Child name]
enjoyed everything.

“It is a really great family project. My older kids were
helping and playing with [child name]. So it was great to
have these games and materials to use at home together.”

“[Child name] really loved the activities. She liked to try
all of them. She especially loved the Bedtime book and has
asked to read it often at night. She also liked making her
own book, and is enjoying going back and adding to the
book. She is excited to make another book about Getting
Ready for School. She did this at school, but would like to
make another one at home.”

Generally, families appreciated that the activities involved
formats familiar to them (e.g., grocery shopping, book
reading, cooking, routines, etc). Families also reported that
their children liked playing the digital games; all parents/
caregivers reported their children used the apps during the
study. 78% of parents/caregivers indicated their child using
the program’s apps at least three times a week. Moreover, all
9 parents/caregivers who completed the post-study survey
reported introducing CT to their child as “very valuable” on
the survey with nearly all (n=8) expressing highest levels of
interest in continuing to teach CT to their child. The following
sections provide deeper insights into these findings of family
experiences with three of the unplugged activities (one
each for our 3 target concepts: Problem decomposition,
Algorithms, and Abstraction) and the two digital apps.

• Playdough Workshop (Problem decomposition): The
Playdough Workshop activity resonated with families,

at the end of the 6-week implementation period. The
survey included 5 Likert-scale questions specifically
pertaining to the intervention:
1� How important/valuable do you think it is to introduce

Computational Thinking to your child?
2� Would you be interested in teaching Computational

Thinking to your child in the future?
3� On a scale from 1 to 5 (1 means not very helpful and

5 means very helpful), how much do you think the
Better Building app helped your child learn about
Abstraction and Sorting?

4� On a scale from 1 to 5 (1 means not very helpful
and 5 means very helpful), how much do you think
the City Walk app helped your child learn about
Algorithms and Math?

5� During the study period, about how often did your
child use the program’s apps? [Every day, 3-4 times a
week, 1-2 times a week]

There were also 2 open-ended response questions:
1� Which of the hands-on activities you tested did you

and your child enjoy the most?
2� Which of the hands-on activities you tested did you

and your child enjoy the least?

The post-survey was followed by a semi-structured
interview to gather deeper feedback and detail on survey
responses, and specific feedback on the two digital apps—
City Walk and Better Building.

Mixed-Method Analyses and Results
Home visit and family meeting observation notes were used
to document implementation successes and challenges
of hands-on and digital activities; the degree of children’s
engagement with the activities; children’s and adults’
conversations while completing activities; and the scaffolds
needed for children to participate successfully in activities
(e.g., instructions, feedback, modeling). The purpose of the
family meetings was to provide an overview of the CT skill
and share the related hands-on activities and digital app
games for families to try together on their own or during
the meeting. In addition to the family meetings, 9 out of the
10 parents/caregivers responded to the survey and 8 out of
the 10 parents/caregivers could be interviewed post-survey.
This section presents findings from the survey analyzed
quantitatively, and qualitative coding (by 2 researchers)
of the home observation notes and post-interview
responses to questions pertaining to parents/caregivers’
overall experience with the activities, explanations of why
an activity was most enjoyable or least enjoyable, and
what they thought of the CT resources shared with them.
Given the sample size, the coding was done with a view
to identifying dominant and recurring themes across the
interviews and observations that could provide insights into

www.acm.org/education 79

because I realized that I go to many grocery stores, for
many different items. At first it was hard to think about
how to engage [child name], but then she was able to
draw the pictures of the items she wanted to add to
the list, and then categorize. Then, when shopping she
could help figure where to get the items she wanted
based on the categories (e.g. strawberries in fruits
and goldfish in snacks).” However, another family
remarked on how the activity helped the child, as the
child continued to sort unprompted while at the store,
noticing the characteristics of the items and sorting
into groups by type or color (like in the Better Building
abstraction app game): “I feel like it’s helped him a
lot, especially the one with the grocery store. Now he
wants to put it in sets like colors and fruits. He even
brings it up without me telling him about. It takes us
longer at the grocery store now [because he brings it
up]. He goes, “Mommy, let me help you.” I was getting
vegetables and he wanted me to put in the bag telling
me they were green ones. He was sorting the fruits
separately in piles on the register.”

• City Walk App Game (Algorithms & Debugging): Seven
out of nine parents/caregivers rated the City Walk
digital game a 5 when asked how much they thought
City Walk helped their child learn about algorithms
and math on a scale from 1 (not very helpful) to 5 (very
helpful); the other two rated it a 4.

especially given children’s familiarity with playdough.
Five families named this activity as the one they enjoyed
the most on the survey. When prompted to elaborate
on this during the interview, a few mentioned the
creativity aspect of the activity and noted that the
child was excited to share their creations. However,
the emphasis appeared to be on working together or
discussing the sequence of steps, and the emerging
conversations tended to focus on sequencing and math
concepts, such as counting and shape identification.
The focus on problem decomposition was not always
evident. The following quote provides a sense of the
kinds of experiences parents shared:

“She really enjoyed working with all of the playdough.
She was excited about the different cards with ideas
of what to make, and had fun making all of them. She
wanted to do each one by herself. Mom went to the dollar
store and got some tools so that she could make some
shapes easier and use little plastic knives, etc. She was
so proud of the things that she created in this activity,
and also asks to play with the materials often.”

• Cereal Necklace (Algorithms & Patterns): Although
only one parent/caregiver indicated this activity as their
favorite on the survey, two other parents/caregivers
explicitly also cited this activity as a favorite in their
interview. The families whose children found the activity
enjoyable noted in their interviews that their children
liked to create patterns; in one instance, the child sorted
the cereal prior to making the patterned necklace: “Told
her to choose her favorite cereal. We have the different
colored cheerios and the regular cheerios so she sorted
the colors. I put it in one big bowl and then she sorted
into three smaller bowls. We made a pattern and looped
it through the thread.”

The parent/caregiver of another child reported how
the activity helped her child focus and better follow
directions. These observations illustrate the synergy be-
tween CT (algorithms) and math (patterns) in this activity
and the feasibility of successfully linking CT with math.

• Grocery Store Trip (Abstraction) resonated with all
families during the initial family visit—they all made
some connection with how they might fit the activity
into their typical family routines related to grocery
shopping. However, when parents/caregivers’ shared
feedback about this activity after they tried it out or
reviewed it in more detail, two families mentioned
they were unsure about how best to engage children
in the activity, which suggests this may be challenging
for some to implement. One parent, who identified
this activity as the most challenging in the interview,
modified the activity by having the child draw the
items to add to their grocery list and then sort into
groups. This proved helpful once they were at the
grocery store since the child could determine where
to find the items on the list: “This one was difficult

http://www.acm.org/education

Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions80

to jointly engage in gameplay with siblings or family
members. In addition, for one family in particular, the
child’s gameplay sparked math related conversations
around counting/cardinality and shape identification.
There were also a few instances where we observed
parents/caregivers taking an active role in mediating
their child’s gameplay by either providing “in the
moment” scaffolding or posing questions to their child.

Why Certain Activities Worked
(More or Less Than Others)
The survey asked parents/caregivers to specify which activity
(or activities) their child enjoyed the most and least. For
most enjoyable, the Playdough Workshop activity ranked the
highest (5 out of 9 parents/caregivers); 3 out of 9 marked
the Playing with Dice activity; and Cereal Necklace and
Getting Ready for Bed received 1 vote each with one family
reporting two favorite activities. These numbers changed
slightly during the interviews with 3 parents/caregivers
mentioning Cereal Necklace as the most enjoyable. Parents/
caregivers were probed during the interview of their overall
impressions of the activity suite, why a particular activity
was their child’s favorite (or least favorite), and their specific
feedback on City Walk and Better Building digital apps. It is
interesting to note that many parents/caregivers spoke of
their children continuing to do the activity, suggesting that
that was an indicator by which the activity was judged. We
coded the responses for themes as the insights are valuable
in future iterations and activity designs and help shine a light
especially on those features of activity designs unique to
home and family involvement.

The following key themes emerged from coding
parents/caregivers’ explanations of why a particular activity
was most enjoyable. We have added a few parent/caregiver
quotes that embody the sentiment:

• Familiarity with materials (playdough or cereal) or
activity theme (such as shapes) and/or alignment with
usual home routine (how they did grocery shopping or
got ready for bed).

[Playdough Workshop] “First of all, my kids in
general already like playdough. For them, it wasn’t like
“Oh, we’re going to learn.” It was something that we’re
able to do and they still continue to do.”

• Level of difficulty� Too much challenge (as in Grocery
Store Trip) or too little challenge (as in Better Building)
was a problem for promoting engagement.

[Grocery Store Trip] “Grocery list was too hard. She
did not understand what to do.”

[Better Building] “I think only sorting 2 colors has
gotten too easy for her. Including more shapes to make
it more difficult.”

• Levels of support needed� While age-appropriateness
was a consideration in our activity designs throughout,
some activities were less engaging likely because ideas

Parents/caregivers expressed that their child found
this game enjoyable with some repeatedly returning
to it or continuing to play for an extended period.
While the game mechanics were generally intuitive
for children, three parents/caregivers noted their child
needing more extensive support throughout their
gameplay. One parent explicitly said their child liked it
more than Better Building (which was also very well-
liked). “He liked this one more than the building one. I
feel like maybe this was a little harder/more challenging.
The Better Building was more fast [got through that
game more quickly]. He got through it [City Walk], but it
took longer.”

The type of scaffolding parents provided varied
depending on whether the child needed assistance
with either correctly identifying directional arrows or
providing directions with multiple directional arrows
(visual and spatial thinking). For a couple of parents/
caregivers, observing their child’s struggles with the
game unearthed the concepts (e.g., navigation) they
thought they needed to explicitly teach.

• Better Building App Game (Abstraction & Pattern
Recognition): When asked how much they thought
Better Building helped their child learn about
abstraction and sorting, all parents reported a 5 rating.
Based on parent/caregivers’ feedback during the
interview and researcher observations of children’s
gameplay, children enjoyed the game and easily played
the game independently. For example, “First time, he
ever did that app, he was able to grasp that sorting really
well. With his toys, he puts them back and puts them
into the categories we did at home. Better organization
for when they need to find something. He really enjoyed
the sorting. He liked getting to build his pattern. He was
engaged in this one a little more.” Children’s successful
completion of levels and the extent to which they
needed additional support seemingly corresponded
with their familiarity of the characteristics of objects
being sorted within the game (e.g., shape, color, and
size). One parent/caregiver initially thought the game
would be easy for her child given the child’s familiarity
with shapes and color yet found the game appropriately
challenging as the child needed scaffolding at times
around the characteristic the object was being sorted
by. Another parent/caregiver highlighted the benefit
of the categories and/or labels within the game, noting
this similarity to the Grocery Store Trip activity (which
is also an abstraction-focused activity). To increase
game complexity, some parents/caregivers suggested
including more difficult levels or involving less familiar
shapes: “That one was also pretty easy for her to do so
adding difficulty levels (different colors and shapes). She
goes more to the City Walk.”

Similar to the hands-on activities, there were
opportunities across both digital games for children

www.acm.org/education 81

“Video is a good way to walkthrough; can repeat it
whenever you need a refresher.”

“I know you told me the definitions, but seeing
the examples helped me understand it more. These
activities can show parents what children know and don’t
know, be involved with them. It gave me an idea of what
my son should practice.”

“The activities really help children and parents
engage together at home. And it is really great for the
Head Start center to have this partnership. Really hope
that the program continues and more children/families
get an opportunity to participate!”

“I’m not sure if there’s any way to make it more
available [to more parents].”

CT Learning
The assessment data gathered from the CT assessment
designed as part of the project was used to examine pre-
post changes in student learning. A summated score was
used to exploratorily examine the promise of the resources
developed; the estimated reliability of the summated score
was 0.72 at pre-test and 0.78 at post-test. The distribution
of the data was examined to ensure there were no outliers
and a simple regression model with two predictors
only (pre-test score and condition) was conducted to
examine children’s change in post-test scores. Significant
improvements were detected from pre to post for children
who participated in the home+school connection condition,
relative to the comparison classrooms (t = -3.056 (45),
p <.005). Interestingly, a significant effect was not detected
for children who participated in the classroom only
condition, relative to the comparison condition. These
findings (albeit with a small sample) when combined with
the overwhelmingly positive feedback from families makes
this a salient result, given that involving families was a
unique element of this design research.

Discussion
Our research presents family experiences with integrating
CT activities into their homes as part of a broader effort to
integrate CT into children’s early STEM learning in school
and home. Our qualitative research analyzing the home
component provides thick data and rich insights into family
experience and provides many learnings and ideas for
the broader field and educational goal for strengthening
early STEM learning. The benefit of involving the family
was apparent in parents’/caregivers’ comments that clearly
indicated how they enjoyed it as a “family project”. Our
findings highlight the promise of introducing early CT to
support early learning, and especially involving families
in the process. Results from our research also identified
challenges that should be addressed in future iterations of
this design research. Parents/caregivers were enthusiastic
about the intervention and they appreciated being

therein required high levels of scaffolding for the child
as in Robot in the City (as well as directional arrows in
City Walk for a few children).

[City Walk] “She also had a hard time with the
different directions. She may just need more practice,
but for now it seems a bit advanced.”

• Creativity/creating something (as opposed to
enacting)� The two most popular activities—Playdough
Workshop and Cereal Necklace involved children
creating physical artifacts. Many parents/caregivers
expressed creativity or creating things as a positive
feature when explaining why these activities were
enjoyable.

[Cereal Necklace] “She was so proud of the things
that she created in this activity, and also asks to play
with the materials often.”

[Playdough Workshop] “I feel like it worked well
because it was more sharing who was gonna do what,
specifying who’s going to do this. Also used him to use
his creativity. He asks me ‘Can I use this color?’ and he
uses the color he wants.”

• Family / siblings joining in the activity� Parents/
caregivers often mentioned siblings playing with
the activity or joining in to engage jointly with the
activity. Activities that fostered this were seen as more
enjoyable, most notably, Playdough Workshop, Playing
with Dice, and Cereal Necklace.

[Playdough Workshop] “It’s helped not only him, but
also my younger daughter. Telling each other who is
going to do what. I really like that one.”

[Playing with Dice]”This one my older children really
liked playing together. It got them all moving and they
had fun.”

[Digital Apps] ”I feel like in my opinion both
activities, you know how I said before he’s second year
in preschool, it’s like a practice he continues to do. He
just turned 5 and my son teaches my daughter. She’s
adapting to what he teaches.“

In addition, other themes worth noting were:
• The home-school connection was reinforced in some

activities� For example, children were excited about
making the Getting Ready for Bed book because
of the Getting Ready for School book they made in
school. Better Building was enjoyable for some children
because of its familiarity having been introduced to it
in class.

• Parents were very appreciative of the CT training and
resources provided to them� None was familiar with the
term “Computational Thinking” prior to the intervention,
and they all appreciated the video and the connections
the examples made with activities familiar to them. They
welcomed the partnership with their child’s school and
were also keen for other parents/caregivers and families
to experience it.

http://www.acm.org/education

Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions82

Walk - such as directions (left/right)— came in handy for
children as they played Robot in the City. Our data suggest
that this was because Robot in the City required the adult
to situate the materials and explicitly facilitate/scaffold the
activity. This distinction in experience between digital and
unplugged activities covering the same concept highlights
what kind of activities can leverage and benefit from digital
affordances (as City Walk does).

Lastly, holding children’s attention is important and
some activities were clearly better on this criterion than
others. However, we found that unexpected factors can play
a role in addition to the level of challenge; sometimes other
distractions come in the way of implementation especially
with an audience of preschool learners. For example, other
happenings around the library (where the family meeting
was taking place with the researchers) would draw the child
away; or a robot figurine in Robot in the City would distract
the child from focusing on the solution to the navigational
problem. This is perhaps a relevant takeaway for children in
the lower primary age group as well.

Implications
 Our project helps contribute much-needed evidence to
the research base on early CT and inform future develop-
ment of evidence-based home and school resources for
children to learn CT, mathematics and science through
integrated activities and helps surface both successful
approaches as well as challenges. The prototype activities
we co-designed, developed, and empirically investigated
help improve our understanding of productive integration
points, activity formats familiar to preschoolers that support
the integration of CT and STEM, as well as how digital tools
complement and strengthen the learning resulting from
hands-on activities in early childhood. It is important to
note that our work focused on a subset of CT skills and that
future research is needed to explore how a wider set of CT
skills can be meaningfully promoted in early learning.

Combining family involvement with school-based
activities was a uniquely successful element of this research
that has lessons for CT learning at elementary and other
K-12 levels as well. It underscores the benefits of culturally
responsive and relevant teaching that involves families and
communities and gives due credence to learners’ cultures
and practices in the learning process. Findings from our
study also highlighted that families welcomed and valued
support for them to promote early CT at home—resources
to help parents and caregivers understand what CT is
and recognize when they naturally engage in CT in their
everyday lives was particularly helpful to them. Parents
and caregivers noted that visual and engaging formats are
especially helpful and appreciated the introductory video
co-designed as part of the project. It is worth noting that
meetings with parents/caregivers had to be scheduled
around their availability and this sometimes happened

introduced to the new idea of “Computational Thinking.”
High learner engagement levels in homes underscore the
value of co-designing activities with parents/caregivers
(and teachers) that naturally fit the ecology of preschool
homes (and classrooms). Our findings on successful
engagement with abstraction and debugging are resonant
with recent findings (e.g., Yadav et al., 2019) that indicate
that while young children may be able to engage in coding
and algorithmic thinking, other CT skills may be productive
entry points for young learners and more naturally aligned
with the hands-on activities young children experience at
home and school.

The overwhelmingly positive response from parents/
caregivers and the significant pre-to-post finding in the
home+school condition underscores the importance of
efforts that link home and school to support preschool
children’s STEM learning. Valuing learners’ ways of talking,
thinking, and interacting in schools that are consonant
with the practices that they bring from home is an equity-
centered pedagogical practice (Nasir et al., 2020) that
can enrich STEM and CT learning in elementary and
secondary levels too. Our approach also helps families
from economically disadvantaged communities be better
prepared to support and strengthen their child’s out-of-
school STEM learning.

While some reasons for the overall success of the
activities— such as, alignment with home routine, familiarity
with materials, involvement of parents/caregivers and
siblings, appropriate levels of difficulty and scaffolding—
were intuitive and to be expected, the following findings
were interesting and merit attention. (1) Algorithmic
thinking in K-12 classrooms is often fostered through
navigational activities—in physical or virtual space. This has
perhaps been influenced by the ideas of turtle geometry
that motivated Papert (1980)’s work with Logo and
children’s programming. However, amongst our unplugged
activities, the navigational activity (Robot in the City) was
not very popular with families when compared with Cereal
Necklace and Playing with Dice, which involved creating
artifacts or engaging in movement in fun and engaging
ways. The overwhelming success of Playdough Workshop
also underscored the value of activities that involve
creativity and creating artifacts. Perhaps it was because the
navigational directions and instructions in Robot in the City
were harder to implement and needed more scaffolding.
This suggests that educators and designers should expand
the repertoire of algorithmic activities beyond navigational
ones to include those that involve creating artifacts, and
preferably with materials familiar to young children. (2)
It was interesting that though unplugged activities often
provide a scaffold for digital interactions (in the context of
programming, e.g. Grover, Jackiw, & Lundh, 2019), Robot
in the City (which was meant to be the unplugged activity
to scaffold the City Walk digital app) seemed harder for
preschool children than City Walk; and elements of City

www.acm.org/education 83

Grover, S., & Pea, R. (2018). Computational Thinking: A competency
whose time has come. In S. Sentance, E. Barendsen, & S.
Carsten (Eds.), Computer Science Education: Perspectives on
Teaching and Learning in School. pp. 19–38. Bloomsbury.

Grover, S., Jackiw, N., & Lundh, P. (2019). Concepts before
coding: non-programming interactives to advance learning
of introductory programming concepts in middle school.
Computer Science Education, 29(2-3), 106-135.

Horn, M. S., AlSulaiman, S., & Koh, J. (2013, June). Translating
Roberto to Omar: computational literacy, stickerbooks,
and cultural forms. In Proceedings of the 12th International
Conference on Interaction Design and Children (pp. 120-
127). ACM.

Lavigne, H. J., Lewis-Presser, A., & Rosenfeld, D. (2020). An
exploratory approach for investigating the integration of
computational thinking and mathematics for preschool
children. Journal of Digital Learning in Teacher Education,
36(1), 63-77.

Leibham , M. B., Alexander, J. M., & Johnson, K. E., (2013).
Science interests in preschool boys and girls: Relations
to later self-concept and science achievement. Science
Education, 97, 574-593.

Ma, X., Shen, J., Krenn, H. Y., Hu, S., & Yuan, J. (2016). A meta-
analysis of the relationship between learning outcomes and
parental involvement during early childhood education and
early elementary education. Educational Psychology Review,
28(4), 771-801.

Mittermeir, R. T. (2013). Algorithmics for preschoolers: A
contradiction? Creative Education, 4(9), 557.

Moll, L. C. (2015). Tapping into the “hidden” home and
community resources of students. Kappa Delta Pi Record,
51(3), 114-117.

Moll, L. C., Amanti, C., Neff, D., & Gonzalez, N. (1992). Funds
of knowledge for teaching: Using a qualitative approach to
connect homes and classrooms. Theory into practice, 31(2),
132-141.

Nasir, N., Lee, C., Pea, R., & De Royston, M.M. (2020). (Eds.),
Reconceptualizing learning: a critical task for knowledge-
building and teaching. Routledge Handbook of the Cultural
Foundations of Learning. New York: Routledge.

Penuel, W. R., Roschelle, J., & Shechtman, N. (2007). Designing
formative assessment software with teachers: An analysis of
the co-design process. Research and practice in technology
enhanced learning, 2(01), 51-74.

outside the home—at a local library or playground. Such
flexibility is required when working with parents/caregivers,
but it sometimes introduces additional distractions and
attendant challenges in enacting activities with the little
ones. Nevertheless, this project reinforces earlier findings
on the positive impact of family involvement on children’s
early STEM learning. We encourage educators and
designers to engage families in the design and use of CT
and computing-related activities that will fit into the cultural
milieu of learners.

We experimented with known as well as hitherto un-
explored operationalizations of CT for early learners with
new learnings from each. For example, our use of arrows
for navigational activities is inspired by other tools (such as
LightBot Jr. and Scratch Jr.). Our findings of young learn-
ers’ struggle with directionality is one with broad impli-
cations. Conversely, our success in activities that involve
algorithmic thinking through creating artifacts was promis-
ing and merits attention. Our operationalization of abstrac-
tion as observing key characteristics of classes of shapes
for making block building activities serves as an exemplar
(as it also potentially connects to future CT and program-
ming through helping learners develop valuable founda-
tional skills of functional abstraction related to objects and
classes in object-oriented programming). Future research
efforts will continue to explore broader design principles
that can inform the development of both activities with
tangible materials and digital activities to inform the de-
sign of additional CT resources for teachers and families of
preschool learners.

References
Clements & Sarama (2014). Learning trajectories in mathematics

education. Mathematical thinking and learning, 6(2), 81-89.

Dong, Y., Catete, V., Jocius, R., Lytle, N., Barnes, T., Albert, J., ...
& Andrews, A. (2019, February). PRADA: A practical model
for integrating computational thinking in K-12 education. In
Proceedings of the 50th ACM SIGCSE (pp. 906-912).

Duncan, G. J., Dowsett, C. J., Claessens, A., Magnuson,
K., Huston, A. C., Klebanov, P., ... & Sexton, H. (2007).
School readiness and later achievement. Developmental
psychology, 43(6), 1428.

Gelman, R., & Brenneman, K. (2004). Science learning pathways
for young children. Early Childhood Research Quarterly,
19(1), 150-158.

Grover, S., & Pea, R. (2013). Computational thinking in K–12: A
review of the state of the field. Educational researcher, 42(1),
38-43.

http://www.acm.org/education

Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions84

U.S. Department of Health and Human Services. (DHHS; 2015).
Head Start Early Learning Outcomes Framework. https://
eclkc.ohs.acf.hhs.gov/sites/default/files/pdf/elof-ohs-
framework.pdf

Vahey, P. J., Reider, D., Orr, J., Lewis Presser, A., & Dominguez, X.
(2018). The Evidence Based Curriculum Design Framework:
Leveraging Diverse Perspectives in the Design Process.
International Journal of Designs for Learning, 9(1), 135–148.
https://doi.org/10.14434/ijdl.v9i1.23080

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille,
L., & Wilensky, U. (2016). Defining computational thinking
for mathematics and science classrooms. Journal of Science
Education and Technology, 25(1), 127-147.

White House, Office of the Press Secretary. (2016, January 30).
Computer science for all. https://www.whitehouse.gov/
blog/2016/01/30/computer-science-all

Wing, J. M. (2006). Computational thinking. Communications of
the ACM, 49(3), 33-35.

Yadav, A., Larimore, R., Rich, K., Schwarz, C. (2019). Integrating
computational thinking in elementary classrooms:
Introducing a toolkit to support teachers. In Proceedings of
SITE International Conference 2019. Chesapeake, VA: AACE.

Pinkard, N., Martin, C. K., & Erete, S. (2020). Equitable
approaches: opportunities for computational thinking
with emphasis on creative production and connections to
community. Interactive Learning Environments, 28(3), 347-361

Presser, A. L., Dominguez, X., Goldstein, M., Vidiksis, R., &
Kamdar, D. (2019). Ramp It UP!. Science and Children, 56(7),
30-37.

Roshan, P. K., Jacobs, M., Dye, M., & DiSalvo, B. J. (2014,
November). Exploring How Parents in Economically
Depressed Communities Access Learning Resources. In
GROUP (pp. 131-141).

Sandoval, W. A., & Bell, P. (2004). Design-based research
methods for studying learning in context: Introduction.
Educational psychologist, 39(4), 199-201.

Schweingruber, H. A., Duschl, R. A., & Shouse, A. W. (Eds.).
(2007). Taking Science to School: Learning and Teaching
Science in Grades K-8. National Academies Press.

Scott, K. A., Sheridan, K. M., & Clark, K. (2015). Culturally
responsive computing: A theory revisited. Learning, Media
and Technology, 40(4), 412-436.

https://eclkc.ohs.acf.hhs.gov/sites/default/files/pdf/elof-ohs-framework.pdf
https://eclkc.ohs.acf.hhs.gov/sites/default/files/pdf/elof-ohs-framework.pdf
https://eclkc.ohs.acf.hhs.gov/sites/default/files/pdf/elof-ohs-framework.pdf
https://doi.org/10.14434/ijdl.v9i1.23080
https://www.whitehouse.gov/blog/2016/01/30/computer-science-all
https://www.whitehouse.gov/blog/2016/01/30/computer-science-all

www.acm.org/education 85

Bataul Alkhateeb is a Ph.D. candidate in the School of Education at the University of
Delaware. She received a bachelor’s degree in Psychology from the University of Baltimore
and a master’s degree in Curriculum, Instruction, and Assessment from Qatar University.
While pursuing her master’s degree, she grew interested in teacher preparation programs
and improving curricula for training teachers in computer science and technology literacy.
Her thesis assessed the educational technology self-efficacy beliefs of preservice teachers.
Currently she examines pre-service teacher learning of computational thinking through
practice-based simulations as well as equity issues in computer science professional
development for in-service teachers.

Mahtob Aqazade is a postdoctoral research associate at Rice University School Mathematics
Project. Her research focuses on elementary mathematics education, particularly on the role of
conflict induction and conflict resolution in learning of conceptually challenging mathematical
concepts using stories and contexts. In her work with elementary teachers, she is interested in
exploring teachers’ learning processes when interpreting and incorporating new instructional
strategies and practices. Mahtob has a Ph.D. and M.S. in mathematics education from Purdue
University and B.S. in Industrial Mathematics.

Bianca Bennett is the Global Studies Manager for DC Public Schools, managing the
school systems global education enrichment programming and curriculum development.
Bianca’s career in education includes teaching, coaching and professional development,
program development and management, and curriculum design. Bianca’s education focus
and passions include ensuring equity and access to advanced academic and educational
enrichment experiences for underrepresented, culturally and linguistically diverse students.
Bianca has a Masters in Early Childhood Education from Georgia State University and a
Masters in Public Administration from City University of New York, Baruch College.

Marina Umaschi Bers is a professor at the Eliot-Pearson Department of Child Study and
Human Development with a secondary appointment in Computer Science Department,
at Tufts University. She heads the interdisciplinary DevTech research group. Her research
involves the design and study of innovative learning technologies to promote young
children’s positive development. Dr Bers is the co-creator of the free ScratchJr programming
language and the creator of the KIBO robotic kit. She is the author of five books on the topic
of education, new technologies and children. Her newest book is called “Beyond Coding:
How Children Learn Human Values through Programming”. Marina has an MS and PhD from
the MIT Media Lab, where she worked with Seymour Papert. Her undergraduate degree is
from Buenos Aires University.

Laura Bofferding is an associate professor in Curriculum and Instruction at Purdue
University. Her research focuses on mathematics education, particularly on conceptual change
and young children’s understanding of negative numbers. She also investigates the impact
of worked examples, contrasting cases, and instructional sequences on supporting students’
thinking. Recently, she has expanded her research into the areas of spatial and computational
thinking, investigating the role of using worked examples to help young students learn
to program. Laura has a Ph.D. in Curriculum Studies and Teacher Education and an MA in
Learning, Design, and Technology from Stanford University. Her undergraduate degree is in
elementary education.

A u t h o r B i o g r A p h i e s

http://www.acm.org/education

Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions86

Lautaro Cabrera is a postdoctoral researcher at the University of Maryland, College Park.
His research focuses on the integration of computing into Elementary schools, particularly
through teacher education and professional development. More broadly, his work lies at the
intersection of technology, psychology, and learning, with special attention to how students
and teachers develop conceptualizations of ideas and how tools support that development.
He has an undergraduate degree in Psychology from Ohio Wesleyan University and a Ph.D. in
Technology, Learning, and Leadership from the University of Maryland, College Park.

Lizhen Chen is a postdoctoral researcher at Ohio University. Her research focuses on
preservice and in-service teachers’ classroom discourse and gestures, particularly on their
probing practices. She also investigates elementary students’ mathematics learning and the
caring relationships between teacher educators and preservice teachers. Lizhen has a Ph.D. in
mathematics education and an MA in English linguistics.

Merijke Coenraad is a PhD Candidate in the Department of Teaching & Learning, Policy &
Leadership in the College of Education at the University of Maryland. Her research focuses
on the intersections of educational technology and equity including the creation of materials,
platforms, and experiences in partnership with teachers and youth through participatory
design methods. Merijke has an M.Ed in Curriculum and Instruction from Boston College and
a B.S. in Elementary Education and Spanish and Hispanic Studies from Creighton University.

Ximena Dominguez is the director of early STEM research at Digital Promise. Her research
focuses on young children’s STEM learning across home and school and involves partnerships
with public preschool educators, curriculum developers, media designers and families from
historically underserved communities to co-design equitable learning experiences for young
children. In addition to studying how science and mathematics can be promoted early in
childhood, her current work investigates how engineering and computational thinking can
be introduced to support play and early learning and explores how STEM domains can
be feasibly and meaningfully integrated in preschool classrooms. Her work also involves
developing resources for multilingual learners and explores the affordances of technology
and media for supporting early STEM teaching and learning. Ximena earned an M.S.Ed.
in education from the University of Pennsylvania and a Ph.D. in applied developmental
psychology from the University of Miami.

Andrew Elby, a professor of education at the University of Maryland, College Park, normally
focuses on science teaching and learning but has recently been exploring the integration
of computational thinking into science and integrated STEM learning. His research often
focuses on teachers’ and students’ epistemological views about what counts as learning in
the classroom. His graduate degrees from University of California, Berkeley, are in Physics,
Philosophy of Physics, and Mathematics & Science Education.

A u t h o r B i o g r A p h i e s

http://M.Ed
http://M.S.Ed

www.acm.org/education 87

Janet Bih Fofang is a doctoral student in the Technology, Learning, and Leadership
program at the University of Maryland. She has a strong interest in the learning sciences
and technology design. Her current research is primarily concerned with robotics and
computational thinking in K-12 education, designing and implementing tools and
environments that can support the integration of CT in STEM contexts using robots. Prior to
coming to the University of Maryland, Janet taught electronics in high schools and technical
vocational colleges in Cameroon. Janet holds a Masters degree in electrical engineering from
the university of Douala - Cameroon.

Madhu Govind is a doctoral candidate in the Eliot-Pearson Department of Child Study and
Human Development at Tufts University and a graduate research assistant at the DevTech
Research Group. Her interests broadly encompass the ways in which innovative education
technologies and pedagogies can promote children's learning and creative expression. Her
current work focuses on PK-2 teachers’ attitudes and experiences with coding and robotics
education.

Sara Gracely is a Project Manager at SRI International. She is engaged in multiple research
projects in early childhood STEM education and social-emotional learning. Sara also leads
SRI Education’s Student Behavior Blog which provides the latest information about evidence-
based approaches to support all students’ positive behavior, mental health, and well-being.
She holds a B.A. in Psychology with an emphasis in early childhood development from the
University of Wisconsin-Madison.

Shuchi Grover, is a computer scientist and learning scientist by training. She has been
immersed in PK-12 computer science education in formal and informal settings for over
two decades. Formerly a senior researcher at SRI International’s Center for Technology in
Learning and Visiting Scholar at Stanford University, she is currently senior research scientist
at Looking Glass Ventures where she leads several NSF-funded projects involving research &
design of curriculum, assessments, tools, and environments that help develop 21st century
competencies in topics such a computing, STEM+CS integration, AI, and cybersecurity as
well as issues of neuro-diversity, gender equity, and teacher preparation. Shuchi has a Ph.D.
in Learning Sciences & Technology Design with a focus on K-12 CS Education (Stanford
University), master’s degrees in education (Harvard University) and computer science (CWRU,
Cleveland), and bachelor’s degrees in computer science and physics (BITS Pilani, India).

Ana-Maria Haiduc. Building on her eight years of experience as a mathematics teacher,
Ana-Maria's research uses caring theory to investigate teachers' interactions with curriculum
resources. Ana-Maria works to understand teachers' curricular decision-making, specifically
as they relate to differentiated instruction. She supports efforts to use incorrectly worked
examples in instruction and develop an equitable curriculum. Additionally, her interests focus
on measurement, coordinate geometry, and students' thinking. Ana-Maria holds a master's
degree in mathematics from Purdue University Northwest and is currently a Ph.D. graduate
student in Mathematics Education at Purdue University West Lafayette.

http://www.acm.org/education

Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions88

Sharin Jacob is a PhD in Education candidate at the University of California, Irvine. She
has worked on designing and evaluating the Elementary Computing for All curriculum. This
curriculum integrates computational thinking (CT) with English Language Arts content to
simultaneously develop multilingual students’ CT, language, and literacy skills. Most recently,
Sharin has been recognized as a UCI Public Impact Distinguished Fellow for her commitment
to bringing actionable change for multilingual students in computing.

Madison Kantzer is the Manager of Assessment and Instruction Innovation at District of
Columbia Public Schools. She has 10 years of experience in experiential learning and inquiry
based education. Madison has worked with the Sphero.Math project since February 2020.
Madison has a Masters in Social Studies Teaching and Learning from Columbia University,
Teachers College,

Danae Kamdar is an Early STEM Education Researcher at Digital Promise. She is engaged in
multiple research and development projects that aim to better understand how to promote
STEM teaching and learning in both early childhood classroom settings and homes. Danae’s work
focuses on building partnerships with teachers and families to co-design early learning resources
that connect to children and families’ everyday lives. She also engages in the development of
child assessments that are intended to examine what young children are capable of learning
and what resources and instruction may lead to increased learning – with an ultimate goal of
translating research findings about early STEM education into innovative, equitable resources that
impact children’s learning and teachers’ practices. She holds an M.S. in Early Childhood Education
from New York University. Prior to becoming a researcher, she was a teacher and classroom coach
in diverse early learning classrooms, and this experience informs her work each and every day.

Diane Jass Ketelhut is Professor of Science, Technology and Math Education at the University
of Maryland. Her research centers on improving self-efficacy, learning and engagement in
computational thinking and science for students and teachers, particularly through scientific
inquiry experiences within virtual environments. She is currently the Principal Investigator on
two NSF-funded projects: CT-->PSTE that investigates the integration of computational thinking
into elementary preservice, undergraduate science teacher education; and the ACT project,
which explores best practices for helping teachers provide culturally relevant experiences for
all elementary children to participate in and engage with computational thinking integrated
into their science lessons. Certified in secondary science, she was a science/math teacher
for Grades 5–12 for 12 years. Diane received a B.S. in Bio-Medical Sciences from Brown
University, and her doctorate in Learning and Teaching from Harvard University.

Heather Killen is a PhD Candidate in the College of Education at the University of Maryland,
College Park. Heather researches adult STEM learning in informal and formal contexts,
including within teacher professional development experiences. She explores how fostering
agency, cooperative learning, and the integration of computational thinking practices can
support virtual and physical learning communities. Heather has a master’s degree in biology
from Boston University’s Marine Program in Woods Hole, MA and experience as an ecologist
and resident biology faculty for community college. Her undergraduate degree is in biology.

A u t h o r B i o g r A p h i e s

www.acm.org/education 89

Sezai Kocabas is a Ph.D. student in Curriculum and Instruction at Purdue University. His
research focuses on young children’s computational and mathematical thinking, particularly
forms of worked examples and the role of analyzing worked examples to learn programming
concepts. Recently, he started investigating young children’s spatial and computational
thinking during block composition and decomposition tasks. Sezai has an MS in Teaching,
Learning and Culture from Texas A&M University. His undergraduate degree is in elementary
education.

Theodore J. (TJ) Kopcha is an Associate Professor of Learning, Design, and Technology at
the University of Georgia; he holds a B.S. in Mathematics Education and an M.A. in Curriculum
and Instruction from the University of Connecticut. As a former secondary mathematics
teacher, TJ’s research explores how innovative technologies like educational robots can
support children’s embodied understanding of mathematics. His research, which has been
funded by UGA’s Public Service and Outreach, the National Endowment for the Humanities,
and the Spencer Foundation, provides support to rural communities who are integrating
technology through approaches like project-based learning.

Tiffany Leones is an early STEM education researcher at Digital Promise. She works on
projects engaging in participatory research and co-design to develop equitable early STEM
innovations across school and home. Her research interests more broadly include promoting
family engagement and exploring the role of educational media and technology to support
early learning. Tiffany has an M.Ed in Educational Psychology – Applied Developmental
Science from the University of Virginia and a B.A. in Psychology with a minor in Education and
Applied Psychology from the University of California, Santa Barbara.

Peter Moon is a doctoral student in the Center for Math Education at the University of
Maryland. A former high school math & programming teacher, he's interested in how students
express STEM understanding in multimodal ways and how computational thinking can inspire
greater mathematical understanding. Peter has an M.A.T. in Secondary Mathematics from
Loyola University Maryland and a B.A. in Psychology from the University of Pennsylvania.

Chrystalla Mouza is Distinguished Professor and Director of the School of Education
at the University of Delaware. Her research focuses on teacher learning and professional
development in emerging technologies and computer science education. She directed
several projects aimed at improving teaching and learning with technology in high-need
schools and preparing in-service and pre-service teachers to integrate computational thinking
with content area curricula. Dr. Mouza is the recipient of the 2010 Distinguished Research in
Teacher Education Award from the Association of Teacher Educators and current Editor of
the journal of Contemporary Issues in Technology and Teacher Education. Dr. Mouza holds
Ed.D., M.Ed. and M.A. degrees in Instructional Technology and Media from Teachers College,
Columbia University.

http://www.acm.org/education
http://M.Ed
http://M.Ed

Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions90

Anne Ottenbreit-Leftwich is the Barbara B. Jacobs Chair in Education and Technology.
She is a Professor and Interim Chair of Instructional Systems Technology within the School of
Education and an Adjunct Professor of Computer Science at Indiana University – Bloomington.
Dr. Leftwich’s expertise lies in the areas of the design of K-12 curriculum resources (particularly
focused on technology and computer science), the use of technology to support teacher
education, and development/implementation of professional development for teachers and
teacher educators. Dr. Leftwich investigates ways to teach K-12 computer science, as well as
ways to prepare preservice and inservice teachers to teach CS. She is a co-PI for the ECEP
alliance, which seeks to broaden participation in computing at the K-16 levels. She is also
a co-founder of CSforIN, which focuses on increasing CS access opportunities for all K-12
Indiana students. Her research focuses on the adoption and implementation of technology
and computer science at the K-12 levels, particularly at the elementary level.

Miranda Parker is a Postdoctoral Scholar at the University of California, Irvine. Her research
is in computer science education, where she focuses on topics of assessment, achievement,
and access. Miranda received her B.S. in Computer Science from Harvey Mudd College and
her Ph.D. in Human-Centered Computing from the Georgia Institute of Technology, advised
by Mark Guzdial.

Jan Plane, a principal lecturer of computer science and the director of the Iribe Initiative
for Inclusion and Diversity in Computing (I4C) at the University of Maryland, College Park,
has graduate degrees in both computer science and education; therefore, she focuses on
computer science curriculum, pedagogical methods and underrepresented populations
in computing. For 15 years, she worked extensively in sub-Saharan Africa and Afghanistan
developing and supporting computer science education programs for universities there.
Now, she is the founding director of both the Iribe Initiative for Inclusion and Diversity in
Computing (I4C) and the Maryland Center for Women in Computing (MCWIC) and is involved
with projects locally encouraging both quality of content and access for underrepresented
populations. Jan has graduate degrees from the University of Wisconsin, Milwaukee
(computer science) and the University of Maryland, College Park (education).

Emily Relkin is a Ph.D. student at the Eliot Pearson Department of Child Study and Human
Development at Tufts University and is a graduate research assistant at the DevTech
Research Group. Her research focuses on understanding and assessing the development of
computational thinking skills in young children. She developed and validated TechCheck, a
novel unplugged computational thinking assessment for early childhood that is being used in
research and educational settings around the world.

Scott Sheridan is a Ph.D. candidate in the School of Education at the University of Delaware.
He received a bachelor’s degree in German Language from Bates University and a Masters
degree in Educational Technology from the University of Connecticut. Prior to joining the
doctoral program at the University of Delaware, Scott worked as a secondary school teacher,
coach, and administrator. His research interests focus on teacher preparation and professional
development in computer science education. His dissertation examines the ways in which
elementary and middle school teachers apply computer science related content, pedagogy,
and technology in their classrooms following their participation in professional development.

A u t h o r B i o g r A p h i e s

www.acm.org/education 91

Phil Vahey is the Director of Applied Learning Sciences at Houghton Mifflin Harcourt. Prior to
this, including during the research reported on here, he was the Director of Strategic Research
and Innovation in the Education Division of SRI International. At SRI he researched the design,
development, and evaluation of technologies and learning activities that enhance learning of
conceptually difficult STEM topics, leading several NSF- and Department of Education-funded
studies. Phil received his PhD and MA in Education from the University of California, Berkeley,
and his undergraduate degree in Math and Computer Science from McGill University.

Janet Walkoe is an Associate Professor in the Center for Mathematics Education (CfME)
at the University of Maryland. She earned her Doctorate from Northwestern University in
the Learning Sciences in 2013. She also holds an MS in Mathematics from the University of
Illinois at Chicago and a BA in Mathematics from the University of Chicago. Before enrolling
in graduate school, Janet taught secondary mathematics for ten years and earned National
Board Certification in 2003. Janet is the PI on an NSF funded grant: CAREER: Exploring
Teacher Noticing of Students’ Multimodal Algebraic Thinking, where she investigates how
children’s lived experiences can provide resources for teachers to leverage in formal algebraic
instruction. In particular, she is interested in how teachers attend to and make sense of
student thinking and other student resources including but not limited to student dispositions
and students' ways of communicating mathematics.

Margaret Walton is a PhD Candidate in the Department of Teaching & Learning, Policy &
Leadership in the College of Education at the University of Maryland. Her research interests
focus on teachers’ attention to student thinking and how teachers make sense of student
thinking. She is particularly interested in how math teacher educators support teachers in
learning to center student ideas during instruction. Prior to studying at Maryland, Margaret
was a high school math teacher in Washington, D.C. Margaret has a B.A. in Economics from
Boston College and a Master’s in Teaching from the University of Virginia.

Mark Warschauer is Professor of Education at the University of California, Irvine, where
he directs both the Digital Learning Lab and the Elementary Computing for All Project. His
research focuses on the design, implementation, and evaluation of digital environments that
promote language and literacy development and STEM learning among diverse learners,
especially multilingual students. He is a member of the National Academy of Education.

David Weintrop is an Assistant Professor in the Department of Teaching & Learning, Policy &
Leadership in the College of Education with a joint appointment in the College of Information
Studies at the University of Maryland. His research focuses on the design, implementation,
and evaluation of effective, engaging, and equitable computational learning experiences.
His work lies at the intersection of design, computer science education, and the learning
sciences. David has a Ph.D. in the Learning Sciences from Northwestern University and a B.S.
in Computer Science from the University of Michigan.

http://www.acm.org/education

Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions92

Cheryl Wilson is a doctoral student in the Learning, Design, and Technology program at
the University of Georgia. A former programmer at an institute of higher education, she’s
interested in exploring the cross-section of maker education and learner STEM identity as
a means to broaden participation in STEM. Cheryl has an M. Ed. in Learning, Design, and
Technology from the University of Georgia and a B. S. in Information Technology from Georgia
Southern University.

Aman Yadav is a Professor of Educational Psychology and Educational Technology in the
College of Education at Michigan State University with extensive experience in research,
evaluation, and teacher professional development. His areas of expertise include computer
science education, problem-based learning, and online learning. His research and teaching
focus on improving student experiences and outcomes in computer science and engineering
at the K-16 level. His recently co-edited book, Computational Thinking in Education:
A Pedagogical Perspective tackles how to integrate computational thinking, coding, and
subject matter in relevant and meaningful ways. His work has been published in several
leading journals, including ACM Transactions on Computing Education, Journal of Research in
Science Teaching, Journal of Engineering Education, and Communications of the ACM.

Dayae Yang is a doctoral student in the Learning, Design, and Technology program at the
University of Georgia. She is interested in how students engage in computational thinking
using different learning tools including educational robotics and games. Dayae has an M.A. in
Instructional Systems Technology from Indiana University.

Hui Yang is an education researcher (STEM & CS) at SRI International . Her research interests
focus on the design of technology-rich learning environments that engage learners into
meaningful experiences and teacher preparation in computer science education. Prior to
joining SRI, Dr. Yang was a postdoctoral associate in the department of Information Science at
Cornell University. Dr. Yang completed her Ph.D. at the University of Delaware.

A u t h o r B i o g r A p h i e s

A Special Research Publication

