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S ince Wing’s (2006) article regarding computational 
thinking, there has been a dramatic increase in the focus 

on computational thinking (CT) in K-12 education. Compu-
tational thinking has permeated across K-12 classrooms, 
particularly at the elementary level. In a review of the state 
of the field of computational thinking in K-12, Grover and 
Pea (2013) described the research on CT as mainly focused 
on definitional issues, descriptions of environments and 
tools that foster CT, and assessment of CT. They called for 
a need to address large gaps in our knowledge around CT, 
including the cognitive aspects of CT and how CT can be 
integrated into other subjects. Several articles have provid-
ed suggestions on how to integrate CT (e.g., Yadav, Hong, 
& Stephenson, 2016). In a meta-review of 120 studies on CT 
published between 2006 to 2017, Hsu, Chang, and Hung 
(2018) found that most of these studies were situated within 
programming (n=31) or computer science (n=26) contexts. 
The other contexts where CT was studied included math 
(n=11), biology (n=9), and robotics (n=8). Many of these 
studies usually focused on students at the secondary and 
post-secondary levels.

Although research on CT within K-12 has been 
emerging over the past few years, few studies have 
investigated the teaching of CT at the younger ages. The 
ACM and the Robin Hood Learning + Technology Fund 
co-funded this special research publication to examine 
empirically-based studies that focused on the integration 
of computational thinking at the elementary levels into a 
variety of learning disciplines including math, ELA, science, 
and computer science.

We received 48 submitted abstracts after the call for 
proposal. We prioritized studies that provided  empirical 
data and invited 19 authors to submit full papers. We then 
selected nine of the submitted final papers that clearly 
focused on K-5 CT from a range of subject areas (CS 
specific=1; all subjects=2; literacy=2; science=2; math=3).  
Five of these papers included PreK-5 student data, 
six included inservice teacher data, and one included 

preservice teacher data. This introduction highlights the 
themes that cut across the nine papers. In addition, we 
discuss the gaps that need to be investigated and provide 
directions for future work. 

Defining Computational Thinking
The papers in this issue generally define CT based 
on Jeanette Wing’s influential article, which stated: 
“Computational thinking involves solving problems, 
designing systems, and understanding human behavior by 
drawing on the concepts fundamental to computer science” 
(Wing, 2006, p. 33). Some papers use state or national CS 
standards to define CT, while others include more refined 
descriptions, such as the common framework PRADA (Dong 
et al., 2019) which includes pattern recognition, abstraction, 
decomposition, and algorithms. While the authors include 
common CT practices (such as algorithms, debugging, 
pattern recognition, etc.), how the authors use these CT 
terms manifest differently depending on their viewpoints. 
For example, Weintrop et al. uses PRADA for integration 
of CT into fourth grade mathematics, but includes iterative 
development and debugging practices that are associated 
with programming. Sheridan et al.  focuses on how preservice 
teachers represented five CT practices (abstraction, 
algorithmic thinking, data, decomposition, and simulation) in 
their two lessons using a concept mapping tool and Scratch. 

Although all papers conceptualize CT and associated 
practices in different ways, all provide clear examples 
of what the CT looked like as it was integrated into their 
preK-5 classroom context.  The multiple ways CT plays 
out in the papers suggest that CT is still in its infancy and 
very much contextualized by researchers and teachers. As 
Denning (2017) argued, there are still challenges in how CT 
is defined and how to measure students’ abilities to think 
computationally. The idea of CT as “algorithmic thinking” 
has been around since the 1950s (Caeli & Yadav, 2010; 
Denning, 2017; Grover, 2018) and, as evidenced by papers 
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This use of levels to describe how teachers incorporate 
CT is similar to that used to classify technology integration 
and teachers’ uses of technology (e.g., Jonassen, 1996; 
Sandholtz et al., 1997). In this issue, Israel et al. also describe 
how CT integration could range “from using academic 
language that crosses disciplinary areas (e.g., the term 
decomposition across CS and math instruction) to using 
complex integrated computer-based activities” (p. 65). These 
levels or ranges of CT integration are important distinctions 
that need to be investigated further. Such investigations could 
involve questions such as “Are all levels of CT integration 
impactful?” and “Do these all lead to similar results?” 

While the descriptive approaches that identify levels 
of CT integration are valuable, future research also needs 
to examine whether and how teachers move between 
integration ranges or levels. Throughout the nine papers 
in this issue, we found that CT integration at the lower 
elementary levels tended to focus on the use of the language, 
whereas upper elementary levels tended to connect these 
ideas to computer-based activities and tasks. More specifically, 
we want to challenge future researchers to examine how the 
use of CT language supports disciplinary learning, as well 
as whether it prepares learners for salient computationally 
rich applications. In other words, when we have younger 
students searching for patterns in language or science, or 
decomposing playdough art into parts, will they be able to 
transfer this knowledge to computer-relevant applications 
later? Are these appropriate tasks that we are designing and 
will they provide students’ with strong conceptions of CT/
CS later? In addition, future research should examine how 
CT integration supports disciplinary learning?

Furthermore, what support is needed for teachers 
to move from one integration approach to another and 
translate it into their practices? We need to examine how 
teachers move from unplugged CT to plugged CT, and 
how they implement those approaches to support their 
disciplinary learning goals. For example, practitioners could 
incorporate CT practices when teaching about the water 
cycle. They could do so by having students decompose 
the water cycle (breaking the cycle into smaller parts), 
discover the patterns and looping of the cycle, and write 
out the algorithm for the water cycle. This is a good starting 
place for teachers to connect CT practice in a science 
disciplinary context. Taking this approach one step further, 
however, they could have students create a model of the 
water cycle using computational tools (such as Scratch and 
SageModeler), thus providing a deeper understanding of 
CT concepts and practices.  

Some of the papers in this issue did focus on using CT 
to teach core subject areas, such as mathematics, and found 
that teachers or students had stronger conceptions of the 

in this special issue, it continues to play out in multiple 
ways in K-12 classrooms. As it is important to contextualize 
CT for particular contexts to support disciplinary learning, 
we want to encourage scholars in this area to clearly 
define CT. Perhaps even more important is the use of 
specific curricular examples that showcase how CT was 
implemented in classroom contexts.  This way, readers can 
visualize how the authors are defining CT.

The Integration of Computational Thinking
Our K-12 curriculum is a zero-sum game, where adding a 
subject means something else needs to be removed. At the 
elementary level, the discussion of how to cover the new 
subject area of CT/CS has led to different implementation 
designs. While some suggest that CT/CS can be taught as 
a separate stand-alone course, such as math, reading, or 
science, others have suggested that elementary teachers 
do not have the time to teach CT or CS as its own discipline. 
To accommodate for these time struggles, many suggest 
that CT could be integrated into other core content areas 
(e.g., Sherwood et al., 2021). In fact, Fofang et al. (2020) 
indicated that the three justifications for the integration of 
CT include practical (e.g., lack of time), pedagogical (e.g., 
integration provides richer problem-solving contexts), and 
equity (e.g., ensuring all learners would have access). These 
are solid rationales for the integration of CT, and ones that 
other studies have shown as critical to teachers’ integration 
of CT (Israel et al., 2015; Rich, Yadav, and Larmore, 2020). 

Levels of Computational Thinking Integration
Beyond the rationale to integrate CT, however, there is a 
range of types of CT integration. In this issue, Coenraad et 
al. describes four different levels of integrating CT that were 
present across 22 CT-integrated science lessons created by 
36 elementary teachers. These levels are 

•  exist (labeling already present CT), 
•  enhance (using CT to support science learning), 
•  extend (extend science learning by integrating CT tools 

and practices), and 
•  exhibit level (using programming to show science 

learning). 

Coenraad et al. used these levels to examine how 
elementary teachers’ science lesson plans incorporated CT 
and found that of the 16 lessons: 

•  three lessons (18.75%) integrated CT at an exist level, 
•  eight (50%) integrated CT at an enhance level, 
•  two lessons (12.5%) extended science learning, and 
•  three lessons (18.75%) integrated science and CT on  

an exhibit level.
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Systemic Change for CT integration
In this special issue, the study by Israel et al. describes 
different approaches to implementing CT focused 
curriculum across an elementary school. The authors 
articulate a number of challenges for CT integration: 

A�  limited CT teaching expertise, 
B�  limited time for CT integration, lack of CT-specific 

assessment knowledge and tools,
C�  limited pedagogical understanding for meeting 

students’ diverse instructional needs, and
D�  low teacher-buy-in for teaching CT. 

These findings suggest the need for a system-wide 
implementation of CT to ensure that all students are 
introduced to CT and not only the students of teachers who 
decide to participate in professional learning around CT. 
Given that teachers face a number of challenges such as 
standardized testing requirements and constraints of the 
curriculum, it is critical for schools to have a vision for CT 
integration combined with support for teachers. Computer 
science education researchers must develop researcher 
practitioner partnerships that take a holistic approach to 
bringing CT across the curriculum in schools. Furthermore, 
these partnerships should extend beyond schools to include 
the community and family involvement. One study in this 
issue by Grover et al. focuses on examining how CT could 
be integrated into preschool math and science instruction. 
The authors found that involving parents/caregivers in 
the design of CT learning activities could be productive 
to engage young learners in CT practices. This provides 
additional evidence of the importance of engaging multiple 
stakeholders to ensure a successful implementation and 
diffusion of CT/CS at the elementary levels.

Measuring Computational Thinking
It is important to note that the papers in this issue used 
different approaches to measuring teachers and/or 
students’ knowledge, skills, and attitudes towards CT. For 
example, Grover et al. observed preschool students in their 
homes, noting where they placed specific manipulatives, 
or whether they pointed or verbally described something. 
Weintrop et al. vignettes that not only described the activity 
the students participated in, but also provided a clear 
discussion of how student words and actions represented 
CT concepts. Jacob et al. provided a complete audio 
transcript of conversations between the teacher and 
students, demonstrating how the teacher used the popular 
book, The Most Magnificent Thing, to teach her students 
about debugging and iterating. Bofferding et al. used 
worked examples to measure students’ CT understandings, 

other subject area content based on the integration of CT. 
For example, Weintrop et al. describes fourth grade students’ 
experiences using Sphero during math lessons. The authors 
described how students engaged in CT practices (such 
as decomposition, debugging, pattern recognition, and 
algorithms) as well as mathematical practices (precision 
and proportional reasoning). Kopcha et al. also detailed a 
study of how elementary teachers used robotics to teach 
math concepts (e.g., fractions, angles, addition, perimeter 
and area). The authors found that, as a result of professional 
development on CT integration, elementary teachers’ 
confidence in using robotics to teach math and facilitating 
productive math discourse was significantly higher. In Jacob 
et al.’s study, students showcased their storytelling and 
narrative skills while discussing CT concepts and dispositions 
in The Most Magnificent Thing book. The researchers 
found that these narrative skills were demonstrated by 
teaching computational thinking through literacy. Bers and 
colleagues also embedded CT in literacy in first and second 
grade classrooms using KIBO robotics. The results from 
this study suggest that the curriculum improved students’ 
coding and CT skills, however students’ baseline literacy 
skills predicted their CT skills. 

Visualization of CT Integration
Regardless of how the CT was integrated, the strength of 
these nine papers lies in their commitment to providing 
detailed descriptions of the curricula. This was sometimes 
done using tables to outline activities and content (e.g., 
Jacob et al., Sheridan et al.), or through pictures of student 
work (e.g., Weintrop et al., Grover et al.). For example, 
Grover et al. showcases examples of a playdough activity 
whereby students were tasked with decomposing 
creations to identify its smaller parts. Jacob et al. provide 
a table showcasing the teacher activities and depict how 
these activities aligned with more English Language 
Arts standards and CSTA standards. Sheridan et al. even 
provides an outline of the programming module, with 
examples of the assignments and discussion questions. 
Bofferding et al. (this issue) also include all three sets of the 
worked examples used in their study, thus providing the 
pedagogical design choices within the table that illustrates 
the CT learning connections.

These thick descriptions help readers understand how 
CT is being integrated. Similar to the concerns associated 
with the CT definitions above, the thick descriptions also 
help orient the readers and allow us to view CT through 
the authors’ lenses. This is an important concept as we 
work together to better understand CT, how learners 
conceptualize CT, and how CT can be integrated into the 
elementary curriculum. 
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which was represented by a success score (did they achieve 
the objective), as well as an in-depth investigation of 
students’ coded programs. The creative approaches used 
to capture and explain how CT could be represented is 
another addition to our conversations around this topic. 

Conclusion
Overall, the nine papers included in this special issue 
provide a diverse overview of computational thinking at  
the elementary level. They showcase how to teach CT  
at the elementary level through a range of the following: 

•  Approaches: integrated and stand-alone 
•  Activities: unplugged manipulatives, computational 

toys, software applications and services
•  Areas of focus: pattern recognition, algorithms, 

decomposition, debugging, etc.
•  Instructional strategies: worked examples, hands-on 

practice, graphic organizers, cooperative learning; 
•  Grades levels: PreK-5; and 
•  Subject areas: math, science, language arts, CS. 

The field still needs to identify developmentally 
appropriate practices and learning goals for elementary 
students. In addition, there is still a great deal of research 
needed to examine how to integrate CT into other subject 
areas, benefiting both the subject areas and CT/CS. 
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Abstract

In this chapter, we describe a pedagogical approach aimed at preparing pre-service teachers to integrate (CT) 
into K-8 contexts� Specifically, we present a standalone educational technology course with explicit attention 

on connecting CT to disciplinary content and pedagogy while introducing a range of digital tools� Data were 
collected from 34 pre-service teachers over the period of one semester� Specifically, a total of 68 lesson plans 
developed by pre-service teachers through two distinct lesson planning tasks using concept mapping and 
programming tools were collected and analyzed using both quantitative and qualitative techniques� The 
analysis utilized a coding scheme that focused on identifying specific CT practices illustrated in each lesson� It 
also examined differences in the CT practices exhibited in each lesson planning task� Findings indicated that 
the CT practice of data was most prevalent in pre-service teachers’ lesson plans� Outside of data, however, there 
was greater variation in the CT practices represented in programming lesson plans compared to the concept 
mapping lesson plans� Implications for teacher educators are discussed based on the findings�

Introduction
In recent years there has been a renewed focus on the 
development of computational thinking (CT) among all 
students. CT has its origins in the work of Seymour Papert 
(1980) who aspired to engage all students in computer 
programming. Augmented by innovative low-floor high-
ceiling programming languages (e.g., Scratch), CT has 
resurfaced as a critical 21st century skill for all students 
(Wing, 2006). As such, it has been incorporated in a variety 
of content area standards, including the Common Core 
State Standards in the United States (CCSS, 2010), the 
Next Generation Science standards (NGSS, 2013), and the 
National Education Technology standards (ISTE, 2016).

While CT has emerged as an area of growing 
significance, definitions of CT continue to vary in the 
literature. The most popular definition was provided by 
Wing (2006), indicating that CT “involves solving problems, 
designing systems, and understanding human behavior, 
by drawing on the concepts fundamental to computer 
science” (p. 33). In the context of K-12 education, however, 
Barr and Stephenson (2011) defined CT as a problem-
solving methodology that can be transferred and applied 
across subjects, which is important for K-12 as it points out 
the connection of CT to various subject areas. Indeed, CT 
has been suggested as a set of practices (e.g., algorithmic 

thinking, decomposition, abstraction, data, simulation) that 
are more than just programming and can be integrated in 
disciplines outside of computer science (CS) to support 
disciplinary learning (Barr & Stephenson, 2011; Yadav 
et al., 2021). Further, it can be integrated using digital 
tools beyond programming (e.g., concept mapping, 
data collection tools) beginning at the elementary level 
(Kotsopoulos et al., 2017; Lambrou & Reppenning, 2018). 

A key challenge in the introduction of CT in K-8 
education is the preparation of pre-service teachers. 
Yadav et al. (2017) have argued that in order for pre-
service teachers to teach CT, they need to develop a 
deep understanding of both their content area and of CT. 
Indeed, research indicates that effective integration of CT 
necessitates that pre-service teachers build knowledge 
of new computing content (CK), knowledge of good 
pedagogical practices (PK), and knowledge of technology 
tools (TK) inherent in CT instruction (Mouza et al., 2017). 
The interactions among these knowledge domains form the 
core of what has been called Technological Pedagogical 
Content Knowledge (TPACK; Mishra and Koehler, 2006), 
CS-related TPACK (Vivian & Falkner, 2019) or TPACK-
CT (Mouza et al., 2017). As the interest in computing 
is growing, teachers need support to navigate these 
knowledge domains (Vivian & Falkner, 2019). Yet limited 
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content and pedagogy when incorporating concept 
mapping tools and Scratch programming in lesson 
planning? Are there significant differences across the 
two lesson planning tasks?

METHODS

Participants 
Participants for this study included 34 pre-service teachers 
(N=34) enrolled in a four-year elementary teacher education 
program in a Mid-Atlantic University in the United States. 
Graduates of the program are eligible for an elementary 
(K-5) teacher certification as well as a certification in special 
education, English as a second language (ESL) or a middle 
school (6-8) content area. All participants were in their 
sophomore, junior, or senior year and were enrolled in a 
required course titled, Integrating Technology in Education 
during the period of one semester. All participants were 
females between the age of 18-22 except for one participant 
who was in the age group of 27-32. Baseline data collected at 
the beginning of the course indicated that although pre-service 
teachers were not able to expressly define CT in a way it might 
appear in the literature, many recognized that it was a thought 
process used in problem solving. All but one pre-service 
teacher believed that CT could be integrated into the classroom 
though generating examples was challenging for participants.

Description of the Course: Integrating 
Technology in Education 
Integrating Technology in Education is a required 3-credit 
hour course for all pre-service teachers, typically taken 
during sophomore or junior year. The course spans over 14 
weeks and introduces pre-service teachers to technologies 
available for use in classroom content areas, pedagogical 
considerations with these technologies, and teaching and 
learning practices that combine the use of technologies with 
content and pedagogy (Mouza & Karchmer-Klein, 2015). 
Although the course is usually offered in a hybrid format, 
due to COVID-19, the course was held asynchronously 
online with synchronous help sessions offered via Zoom. 

Given the growing attention on CS education and the 
need to prepare pre-service teachers to integrate CT across 
the curriculum, the course was previously redesigned to 
support the development of pre-service teachers’ knowledge 
of CT (see Mouza et al., 2017). Towards this goal, we 
introduced CT practices (e.g., decomposition, abstraction) 
and tools appropriate for elementary instruction using 
relevant theoretical and empirical articles, CT resources 
developed by various organizations, and hands-on activities. 
In this work, we view CT as an interdisciplinary set of practices 
that can help support existing content area instruction. Our 
goal was to help pre-service teachers recognize, highlight, 

research has focused on building pre-service teacher‘ 
knowledge for CT integration across content areas.

One way to advance pre-service teacher knowledge 
of CT is through standalone educational technology 
courses required in most teacher education programs 
around the U.S. (Yadav et al., 2017). Yadav et al. (2011), for 
instance, integrated introductory CT learning modules in 
an educational psychology course for pre-service teachers 
focusing on examples of CT application in both science and 
humanities. Similarly Bean et al. (2015) introduced pre-
service teachers to coding in three subject areas: music, 
language arts, and mathematics. Results indicated that 
pre-service teachers’ knowledge and self-efficacy of CT 
improved. Here, we discuss one approach to integrating 
CT in an educational technology course. The course that 
served as the foundation of this work introduces computing 
tools and practices specific to incorporating CT with 
content and pedagogical knowledge in K-8 settings. 

As part of their participation in the course, pre-
service teachers completed lesson planning tasks and 
sample products (i.e., an example of what they expected 
students to produce) that asked them to integrate CT 
with disciplinary content and pedagogy using digital 
tools that can support the development of CT practices 
among K-8 students. Such tools include, among others, 
concept mapping software (i.e., software that allows the 
development of conceptual diagrams or figures illustrating 
suggested relationships among concepts in a domain; 
see also Malallah & Weese, 2020) and visual oriented 
programming software (i.e., Scratch). For instance, pre-
service teachers could engage students in the CT practice 
of decomposition by asking them to visually illustrate the 
process of breaking down and solving a mathematics 
problem using a concept mapping tool. Through these 
lesson design tasks we sought to identify the CT practices 
most frequently represented by pre-service teachers and 
the extent in which they connected CT with content and 
pedagogy in the spirit of the TPACK framework. 

In prior work, we have found that pre-service teachers 
were able to develop CT-integrated lesson plans aligned 
with content and pedagogy more successfully when using 
concept mapping tools compared to Scratch programming 
(Sheridan et al., 2020; Yang et al., 2018). We attributed 
this difference to pre-service teachers’ greater familiarity 
with concept mapping software compared to Scratch 
programming (Zinth, 2016). As a result, we have redesigned 
a module focusing on programming in ways that allowed 
pre-service teachers to build greater familiarity with both 
the technology and its potential to support CT development 
across content areas. Following the redesign of the module, 
we investigated the following research question:

A�   What CT practices are represented in pre-service 
teachers’ lesson planning tasks when using concept 
mapping tools and Scratch programming?

B�   To what extent do pre-service teachers connect CT to 
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design of their own lesson plans by responding to a series 
of prompts following the Harris & Hofer (2009) framework 
which asked them to provide: (a) specific learning goals 
using disciplinary standards, (b) a description of how to 
introduce concept mapping to students, (c) a description 
of activities to engage students in the learning process of 
disciplinary content, and (d) a description of how concept 
mapping could be used to help students achieve the 
learning goals. Each lesson plan was accompanied by a 
copy of a sample concept map similar to what they were 
expecting from their students to produce (e.g., a concept 
map representing the plant cycle in science to illustrate 
abstraction or a concept map demonstrating place value in 
mathematics to illustrate decomposition; see also Figure 1). 

Lesson Planning Task 2: Programming
The programming lesson-planning task asked pre-service 
teachers to design a lesson plan that incorporated Scratch 
programming within a curriculum content area. Prior to 
designing their lesson, pre-service teachers (a) engaged 
with a scenario-based digital simulation where they 
reflected and enacted conversations related to the role 
of CT in elementary education, (b) reviewed readings and 
videos, (c) reflected on the readings, and (d) practiced 
using Scratch programming. They also examined existing 
lessons on the integration of programming in elementary 
instruction. Table 1 presents an overview of the module. 

and design CT-integrated instruction utilizing digital tools 
which are usable in a broad variety of content areas (e.g., 
concept mapping software, programming) and widely 
available in mainstream classrooms (Mouza et al., 2017). This 
approach is different from teaching CT as part of a standalone 
course independent of disciplinary applications (Weintrop 
et al., 2016). To support pre-service teachers’ instructional 
design, we provided a series of scaffolding questions that 
allowed for CT-integrated lesson planning in the spirit of the 
TPACK framework. Specifically, pre-service teachers engaged 
in the design of two lesson planning tasks following the 5-step 
approach presented by Harris and Hofer (2009). This approach 
helps pre-service teachers consider the content and pedagogy 
of a lesson and then identify technology tools and practices, 
including CT practices, that could support students’ learning. 

Lesson Planning Task 1: Concept Mapping 
The concept mapping lesson planning task asked pre-
service teachers to design a lesson plan that incorporated 
a concept mapping in a content area. Pre-service teachers 
first read and reflected on a series of articles focusing 
on the role and importance of concept mapping to 
build their knowledge of technology and pedagogy. 
Subsequently, they were introduced to concept mapping 
tools (e.g., Popplet), practiced how to use such tools, and 
examined existing lessons integrating concept mapping for 
instruction. Finally, pre-service teachers engaged with the 

Table 1� Description of Programming Module

Week Description of Course Activities

Week 1 Scenario-Based Simulation Exercise: CS is not my job 
Pre-Service teachers engage in a practice space: https://teacher-moments.herokuapp.com/
scenarios/, which provides a space to practice ideas and consider how to respond to challenging 
teacher situations around CT integration.

Read & Watch 
Describe the importance of CT integration 
Videos explaining CT Integration (e.g., ISTE, 2012)

Reflect: 3-2-1 
(1) Identify 3 new insights or take-aways from your readings on computational thinking. 
(2)  Discuss 2 more ways in which you can integrate computational thinking in your future 

classroom and the ways in which students could benefit from such integration (these examples 
could be very brief, e.g., use an algorithm to model the exit routine from the classroom).

(3) Identify any remaining questions about computational thinking.

Table continued on next page

http://www.acm.org/education
https://teacher-moments.herokuapp.com/scenarios/
https://teacher-moments.herokuapp.com/scenarios/


Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions4

Table 1� Description of Programming Module (continued)

Week Description of Course Activities

Week 2 Hour of Code: Watch, Practice & Discuss (http://code.org) 
Discussion Questions 
(1) Which programming course did you try out in Code. org? 
(2) What did you like/did not like about it? 
(3) What suggestions do you have for improving the course and what is your rationale?

Scratch Tutorial: Let’s Dance

Reflect 
(1) Identify 3 new insights or take-aways from your experience programming with Scratch. 
(2) How would you describe your experience with Scratch? Did anything surprise you?

Week 3 Lesson Planning Review & Design 
(1) Review CT-Integrated lessons on ScratchEd. Examples in Storytelling, Math, Science, and Music. 
(2) Lesson Design (Parallels concept mapping lesson design)

• Select a content area of your choice: What is the learning goal? What standards does it address? 
• Describe the pedagogical knowledge. 
• Consider how you will introduce Scratch to your students. 
• Describe the activity types used in the lesson. 
• Describe the assessment strategies used in this lesson. 
•  How does the use of programming support the learning goals and pedagogical knowledge 

identified in the lesson?

Data Collection
This study specifically focuses on the two lesson planning 
tasks to examine the integration of CT within various 
content areas. Each participant (N=34) completed the two 
lesson planning tasks described above, which resulted in a 
total of 68 lesson plans (N=68). 

Data Analysis 
All lesson plans (N=68) were analyzed qualitatively in three 
phases. First, a descriptive analysis was conducted by 
the first author to identify the content areas represented 
in each lesson. Second, each lesson plan was analyzed 
again by the first author to determine the presence or 
absence of specific CT practices using the coding scheme 
presented in Table 2. Third, each lesson was assessed 
using a rubric adapted from Harris et al. (2010) and used in 
prior work by authors (Mouza et al., 2017; Sheridan et al., 
2020). The rubric provides a valid and reliable instrument 
that can be used to evaluate pre-service teachers’ lesson 
plans for content, pedagogy, and technology in relation 
to CT. It incorporates four evaluation criteria including: 
(a) Fit: alignment of content, pedagogy, and digital tools 
to foster CT knowledge and skills; (b) Curriculum Goals 

and Technologies: (e.g., digital tools and practices that 
support the development of CT knowledge and skills); (c) 
Instructional Strategies and Technology: using computing 
tools to support teaching and learning that fosters 
students’ CT knowledge and skills; and (d) Technology 
Activities: activities’ compatibility with curriculum goals and 
instructional strategies. 

Each criterion is scored on a numerical scale from  
1 to 4, allowing each lesson plan to receive an aggregate 
score between 4-16. A score of 1 in any of the criteria 
indicates failure to meet the necessary requirements of 
the criterion, while a score of 4 indicates full success in 
meeting the requirements of the criterion. The first and 
second authors scored the lesson plans independently 
before coming together to review initial inter-rater 
reliability for CT practices present and scores for each 
criterion. Any inconsistencies were due to varying 
interpretations of the rubric and were discussed between 
the coders until an agreement was reached to ensure 
internal consistency. Subsequently, one quarter of the 
data were re-coded by both coders to determine inter-
rater reliability for individual evaluation criteria, aggregate 
scores, and identifiable CT (Cohen, 1960). Pooled kappa 
scores were K=0.80 for Fit, K=0.88 for Curriculum Goals 

http://code.org
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Within the concept mapping lesson plans, five teachers 
created social studies lessons, and within the Scratch 
programming lessons, two teachers created music lessons. 
Nearly half of the programming lessons were created for 
ELA content (47%). This finding is noteworthy because many 
efforts to introduce CT in K-8 curricula focus primarily on 
mathematics and science (Lye & Koh, 2014), thereby limiting 
opportunities for students to consider new and diverse 
computing pathways through other content areas. 

CT Practices Represented in Lesson Plans
Examination of the lesson plans uncovered a wide range 
of CT practices represented in pre-service teachers’ 
lessons. However, there were seven instances where CT 
was not discernable in the programming lesson plans in 
contrast to the concept mapping lesson plans which all 
contained discernable CT practices. An overview of the CT 

and Technology, K=0.80 for Instructional Strategies 
and Technology, K=0.88 for Tech Activities, K=0.86 for 
aggregate scores, and K=0.85 for identifiable CT; all 
scores ranged from K=0.80 to K=0.90 which indicate 
strong agreement (McHugh, 2012). Finally, numerical 
data from the rubric were analyzed quantitatively using 
multiple dependent paired sample t-tests to identify 
potential differences among the concept mapping and 
Scratch programming lesson plans. Scores from each 
individual criterion of the rubric as well as aggregate 
scores for each lesson planning task were used as 
dependent variables. 

RESULTS

Subject Areas Represented in Lesson Plans
In the context of the lesson planning tasks, pre-service 
teachers were given autonomy for choosing the content 
area and disciplinary standard(s) their lesson plans 
addressed. An overview of the lesson plans by subject area 
is presented in Table 3.

Results demonstrate that pre-service teachers’ lesson 
plans were primarily focused on the core subjects of English 
Language Arts (ELA) and mathematics and to a lesser extent 
science. Traditionally, elementary school teachers spend 
most of their instructional time on core academic subjects 
such as literacy and mathematics. Therefore, the focus 
on these two areas among participants is not surprising. 

Table 2. Coding Scheme with Definitions and Examples of CT Practices from Lesson Plans 

CT Concept Definition Examples from Data

Abstraction Reducing complexity to define main ideas Students used a concept mapping tool to 
represent the characteristics of 2D shapes 
categorized by defining attributes (e.g., triangles 
are closed and have three sides). 

Algorithms A series of ordered steps taken to solve a 
problem or achieve some end.

Students utilized Scratch to draw polygons 
after given the coordinates for the vertices in a 
coordinate plane.

Data (Collection, 
Analysis and 
Representation)

The process of gathering appropriate information 

Making sense of data, finding patterns, and 
drawing conclusions 

Depicting and organizing data in appropriate 
graphs, charts, words, or images

Students used Scratch to program events from a 
story and extracted context clues from the story to 
organize events in chronological order. 

Problem 
Decomposition

Breaking down tasks into smaller, manageable 
parts.

Students created their own Scratch projects 
breaking down three-digit numbers into tens, 
ones, and hundreds.

Simulation Representation of models of a process. 
Simulation also involves running experiments 
using models.

Students developed a model to represent the 
various stages of Earth’s minerals and rocks as 
influenced by the flow of energy that drives the 
cycle. (e.g. melting, crystallization, weathering, 
deformation, and sedimentation).

(Definitions of CT from CSTA & ISTE, 2011)

Table 3. Lesson Plans by Subject Area

 Concept 
Mapping

Scratch 
Programming

ELA 8 16

Math 14 9

Science 7 7

Social Studies 5 0

Music 0 2

http://www.acm.org/education
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Despite receiving higher aggregate scores and higher 
scores on all four criteria of the rubric, t-test results indicated 
that there was a statistically significant difference in concept 
mapping and programming lesson plan scores only on 
the criterion of Fit (MD = 0.47, t(33) = 2.14, p = 0.04). This 
finding indicates that participants were more likely to 
design lessons that illustrated alignment between content, 
pedagogical strategies, and use of concept mapping 
software in ways that fostered the development of CT 
knowledge and skills. There were no statistically significant 
differences on the criteria of Curriculum Goals & Technology 
(MD = 0.32, t(33) = 1.48, p = 0.15), Instructional Strategies & 
Technology (MD = 0.24 , t(33) = 1.14 , p = 0.26), Technology 
Activities (MD = 0.29, t(33) = 1.20, p = 0.24), and Aggregate 
Scores (MD = 1.32, t(33) = 1.53, p = 0.14). 

Although there were no statistically significant differences 
across most of the individual criteria or aggregate scores, 
data indicate that a greater number of pre-service teachers 
developed concept mapping lesson plans which received 
scores in a range from 9-12. A lesson plan with a high score (13-
16), for instance, illustrated the CT practice of decomposition 
by having students use concept mapping to demonstrate 
their understanding of place values in mathematics and 
represent three-digit values in multiple formats (see Figure 
1a). On the other hand, a lesson plan with a low score (4-8) 
used concept mapping for strict teacher guided instruction 
rather than for CT-integrated student production. In contrast, 
Scratch programming lessons tended to receive either 
high scores (13-16) or low scores (4-8) with fewer tending 
towards the mean. A lesson plan with a high score, for instance, 
addressed ELA standards in which students programmed 
an animation simulating components needed for storytelling 

practices incorporated into lesson plans is presented in 
Table 4. As shown on Table 4, the CT practice of data was 
prevalent in both lesson planning tasks. Outside of data, 
however, there was greater variation in the CT practices 
represented in programming lesson plans compared to 
the concept mapping lesson plans. 

Technology, CT, and Pedagogy across 
Lesson Plans 
On average, pre-service teachers’ concept mapping lesson 
plans received higher scores on all four criteria of the rubric 
(Fit, Curriculum Goals & Technology, Instructional Strategies 
& Technology, and Technology Activities) compared to 
their programming lesson plans. Average total scores for 
concept mapping lesson plans were also higher (10.9 vs. 
9.54). Descriptive statistics based on the application of the 
rubric for both lesson plans are presented in Table 5.

Table 4. CT Practices Represented in Each Lesson Planning Task

 Concept 
Mapping  

Lesson

Scratch 
Programming 

Lesson*

Abstraction 6 3

Algorithmic 
Thinking

1 6

Data 19 7

Decomposition 6 4

Simulation 1 8

* Seven of the Scratch lesson plans contained no discernable CT 
concepts

Table 5. Descriptive Statistics of Rubric Scores 

Lesson Plan Fit Instructional 
Strategies & Tech

Curriculum  
Goals & Tech

Tech  
Activities Total

M SD M SD M SD M SD M SD

Concept Mapping (N= 34) 2.79 0.73 2.68 0.77 2.74 0.75 2.65 0.85 10.9 2.96

Scratch (N = 34) 2.32 1.34 2.44 1.21 2.41 1.28 2.35 1.37 9.53 5.12

Table 6. Statistical Analysis (t-Test) Results

Rubric
M 

(Concept 
Mapping)

M 
(Scratch) M diff SD t df

p  
(two-

tailed)
Effect size  

(d)

Fit 2.79 2.32 0.47 1.28 2.14 33 0.04* 0.42

Instructional 
Strategies & Tech

2.68 2.44 0.24 1.21 1.14 33 0.26 0.23

Curriculum Goals 
& Tech

2.74 2.41 0.32 1.27 1.48 33 0.15 0.30

Tech Activities 2.65 2.35 0.29 1.43 1.20 33 0.24 0.25

Total 10.85 9.53 1.32 5.04 1.53 33 0.14 0.31

*p < .05 and effect size <0.3 is small, 0.3-0.5 is medium, and >0.5 is large (Cohen, 1988). (N=34)
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(see Figure 1b). However, a lesson plan with a low score, used a 
premade Scratch program as a digital worksheet, disconnected 
from CT-integrated standards specified in the lesson plan. 
Figures 2 and 3 show histograms with distributions of the 
scores for concept mapping and programming lesson plans.

A closer examination of the Scratch programming 
lessons revealed that the majority of high scoring lesson 
plans focused on the CT practice of simulation (n=8). The 
lowest scoring group of lessons were those that had no 
discernable CT (n=7). Lessons which had CT practices other 
than simulation (n=19) had scores ranging from 4 to 16. 
Figure 4 shows a histogram with distributions of scores for 
Scratch lesson plans grouped by CT practice.

Figure 2. Score Distribution of Concept Mapping Lesson Plans 
Based on Rubric

Figure 3. Score Distribution of Programming Lesson Plans  
Based on Rubric

Figure 4. Distribution of Programming Lesson Plan Scores  
by CT Practice

Figure 1. Decomposition with Concept Mapping (1a) and Programming Simulation in Scratch (1b) Lesson Plans

1A 1b

http://www.acm.org/education
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to offer different affordances such as creating animations, 
games, and simulations. The results from this work offer 
some evidence that when pre-service teachers take such 
affordances into account, even when they have limited 
technological knowledge, they can create lessons that 
use digital tools to create CT rich learning experiences. 
Nonetheless, it appears that distinct modules within 
educational technology coursework are not adequately 
building pre-service teachers’ knowledge of CT in the 
spirit of the TPACK framework. As a result, there are three 
implications for educational researchers and practitioners: 

A�  Different tools may be able to support different types 
of CT practices (e.g., concept mapping software may 
be well suited for supporting the CT practice of data 
while programming may be best suited for supporting 
CT practices associated with algorithmic thinking or 
simulations). Hence, teacher educators need to help 
pre-service teachers leverage tool affordances in ways 
that optimize CT instruction and student development 
of associated CT practices. 

B�  Pre-service teachers could benefit from a greater range 
of CT-infused examples in relation to content and 
pedagogy. The ScratchEd online community (https://
scratched.gse.harvard.edu/) could serve as a helpful 
resource, since pre-service teachers do not yet have 
adequate opportunities to observe the implementation 
of CT-infused lessons in their field placements (Mouza 
et al., 2017). This may help pre-service teachers 
envision uses of CT in content areas beyond ELA 
and mathematics. Further, scenario-based digital 
simulations, such as the one used in this work (https://
teacher-moments.herokuapp.com/scenarios/), could 
also help pre-service teachers practice pedagogical 
ideas around CT. Teacher educators should incorporate 
such opportunities across pre-service curricula to more 
clearly illustrate the integration and role of CT across 
different content areas. 

C�  While designing lesson plans is beneficial for helping 
pre-service teachers connect CT to content and 
pedagogy, it is important that teacher educators also 
provide opportunities for implementing and reflecting 
on CT lessons in authentic settings to help bridge 
theory and practice.

Discussion
In this work we examined the ways in which pre-service 
teachers represented CT in two different lesson planning 
tasks. We also examined the ways they integrated CT with 
content and pedagogy when using different digital tools. 
Findings indicated the prevalent use of data across lesson 
plans, particularly lessons using concept mapping (55.9%). 
This finding is consistent with prior work and is largely 
attributed to pre-service teachers’ familiarity with data 
through other disciplines (McGinnis et al., 2019). Concept 
mapping tools are primarily designed for analyzing the 
connections between different types of data and concepts, 
which are fundamental CT skills that can be used across 
disciplines (Psycharis, 2018). Scratch lesson plans were 
more likely to utilize simulations and incorporate a wider 
range of CT practices. These findings indicate that widely 
available computing tools for K-8 teachers have different 
affordances that could be leveraged to support distinct 
CT concepts. For instance, the affordances of concept 
mapping software make it more difficult to utilize such 
tools for simulations. In contrast, the dynamic nature of 
programming tools facilitates the design of simulations 
that illustrate emergent phenomena across various fields 
(Weintrop et al., 2016). 

Examining the ways in which pre-service teachers 
integrated CT with content and pedagogy, findings 
indicated that there were no significant differences 
across the two types of lesson plans. In prior work, we 
have documented significant differences between the 
concept mapping and Scratch lesson plans with concept 
mapping lessons receiving higher scores, indicating a 
stronger alignment among CT, technology, content, and 
pedagogy (Sheridan et al., 2020). Findings from this work 
indicated that greater exposure to Scratch programming, 
as provided in the redesigned programming module, and 
more examples showcasing the integration of Scratch 
programming across subject areas may have contributed 
to pre-service teachers’ lesson designs. Nonetheless, 
findings also indicated that CT was absent in some Scratch 
programming lessons and that lessons tended to receive 
either high or low scores. This indicates that pre-service 
teachers continued to struggle integrating programming 
in ways that supported both specific learning goals and 
pedagogy. Lessons receiving high scores typically utilized 
Scratch for simulation – a key affordance of programming. 

Implications
This study demonstrates that developing successful CT-
integrated lessons using different digital tools may be 
closely tied to the affordances they offer. Concept mapping 
tools offer affordances for connecting concepts, ideas, 
names, dates and other forms of data with one another, 
making them a good candidate for promoting use of data. 
Programming tools, such as Scratch, have been developed 

https://scratched.gse.harvard.edu/
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Introduction
As society becomes increasingly computational, 
computational thinking (CT) instruction has taken on a 
growing role in schools (Bocconi et al., 2016; National 
Research Council, 2010). Beyond focusing on CT within 
computer science (CS) courses, researchers and educational 
standards encourage the integration of CT into disciplinary 
subjects (Lee et al., 2020), particularly science (NGSS Lead 
States, 2013). This shift towards CT integration has two goals: 
to provide opportunities for all students to access computing 
opportunities—a first step to broadening participation in 
computing courses—and to enhance science learning by 
making content more authentic to modern professional 
science. However, to provide CT learning opportunities that 
meet these two goals, it is imperative we equip teachers 
with the necessary knowledge and skills to integrate CT 
in ways that are both authentic to computing and prepare 
students to engage in computing as a way to learn science. 
It is important to prepare teachers for this task at the 
elementary level, where children are beginning to explore 
their academic and vocational identities and are impacted by 
positive experiences in science and computing (Tran, 2019). 

Prior research has focused on preparing both pre-service 
and in-service teachers to integrate CT. Teacher educators 
have integrated CT learning into pre-service technology 
courses (e.g., Chang & Peterson, 2018; Mouza et al., 2017) 
and science methods courses (e.g., Jaipal-Jamani & Angeli, 
2017; McGinnis et al., 2020). Further, researchers have 
encouraged focusing on both technology and disciplinary 
teaching (Blikstein, 2018; Yadav et al., 2017). Studies have 
built pre-service and in-service teacher knowledge using 
CT tools such as robotics (e.g., Jaipal-Jamani & Angeli, 
2017), block-based programming environments (e.g., Bean 
et al., 2015; Bort & Brylow, 2013; Dodero et al., 2017), and 
simulations (e.g., Ahamed et al., 2010). 

Taken together, this research has had mixed results. 
While both pre-service and in-service teachers showed 
an improved understanding of CT following professional 
development (PD) (Jaipal-Jamani & Angeli, 2017; Curzon et 
al., 2014; Yadav et al., 2014) and increased self-efficacy and 
attitudes about the importance of CT (Bower et al., 2017; 
Simmonds et al., 2019), some still had misconceptions 
about CT (Chang & Peterson, 2018; Lamprou & Repenning, 
2018) and had difficulty writing lesson plans integrating 
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Within the PD, we focused on supporting pre-service 
and in-service teachers to write and enact CT-integrated 
lesson plans within their elementary science classes. In this 
paper, we will present the lesson plans teachers developed 
and examine the CT practices integrated and the level of CT 
integration achieved according to a framework designed by 
Waterman et al. (2020). We aim to determine the level of CT 
integration in the lessons and identify patterns of integration 
to answer the research question: To what extent do pre-
service and in-service teachers integrate computational 
thinking into elementary science lesson plans?

METHODS

We designed and implemented the Science Teaching 
Computational Thinking Inquiry Group (STIGCT) to collaborate 
with teachers around integrating CT in elementary science 
lessons within a community of practice (Coenraad et al., 2021; 
PD guide and activities at https://education.umd.edu/stigct). 
STIGCT was a semester-long PD for both pre-service and in-
service teachers developed through Design-Based Research 
(Brown, 1992; Barab, 2006). Teachers and researcher facilitators 
met for four 165-minute sessions (February - May 2019; 11 
hours total). Prior to participating in STIGCT, all teachers were 
introduced to CT through their pre-service science methods 
course or a workshop for in-service teachers. The course and 
the workshop were designed to cover the same information 
to ensure that both groups received equal grounding in CT. 
This included an introduction to CT and the Next Generation 
Science Standards, presentation of our CT framework, and 
completing plugged and unplugged CT activities.

CT concepts and tools into disciplinary contexts (Bort & 
Brylow, 2013; Mouza et al., 2017). Therefore, it is important 
to investigate how best to support both pre-service and 
in-service teachers in enacting their knowledge of CT when 
designing integrated lessons and implementing them in 
their classrooms.

Our work examined how pre-service and in-service 
elementary teachers (herein referred to as “teachers”) 
learned to integrate CT into elementary science teaching 
through PD. We focused on supporting teachers to write 
and enact CT-integrated lesson plans. To support our 
instruction, we developed the Framework for Teachers’ 
Integration of Computational Thinking into Elementary 
Science specifically focused on supporting elementary 
teachers within a CT for science perspective (Ketelhut et 
al., 2019). Based on Weintrop et al. (2016) and informed by 
our prior work with teachers, the framework was designed 
with three main considerations: eliminating computer 
science jargon teachers found inaccessible, selecting 
practices elementary-aged children could engage in, 
and differentiating CT from scientific inquiry—a distinction 
we found was blurry for teachers. The framework divides 
CT into four sets of practices: Using Data, Programming, 
Computational Simulations, and Systems Thinking from 
a CT Perspective (Figure 1; for detailed definitions of 
each practice, see Cabrera et al., 2021). We introduced 
the framework to teachers early in their PD and used it 
throughout the program as a definition of CT and a set 
of concrete practices students should engage in during 
science learning. Within this paper, we also used this 
framework when analyzing teachers’ enactments of CT in 
their classrooms. 

Figure 1. Framework for Teachers’ Integration of Computational Thinking into Elementary Science

https://education.umd.edu/stigct
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of integration presented by Waterman et al. (2020), we 
included a fourth category, exhibit, which was identified 
inductively during our coding process. Lessons in this 
category used a CT activity, typically programming, to 
exhibit science knowledge students gained through other 
means. For example, creating a Scratch animation about 
an animal in its habitat based on book or online research. 
This can be seen in Figure 2 where CT and science are both 
present, but do not overlap. 

During our analysis we first identified the CT practices 
integrated into each lesson plan. Two researchers read 
20% of the data and reached 85.7% interrater reliability. The 
two researchers then discussed all disagreements to reach 
100% agreement. One researcher then coded the remaining 
lesson plans. In a second round of coding, we used 
Waterman et al.’s (2020) framework to label each lesson plan 
as exist, enhance, or extend. Two researchers coded a subset 
of the lessons, discussed discrepancies in the coding, and 
completed the coding after reaching agreement. Following 
this coding, a portion of the lesson plans were identified 
as not aligning to any of Waterman et al.’s categories. We 
therefore added a fourth category for these lessons (exhibit) 
and re-coded the lesson plans. The initial agreement 
between the researchers was 90.9% (20 of 22 lessons), 
which was elevated to 100% after discussing discrepancies. 

RESULTS

Overall, teachers were able to effectively incorporate CT 
into an elementary science lesson plan following their 
participation in STIGCT. Thirty of the 36 teachers (83.33%) 
submitted a lesson plan containing at least one CT practice 
(16 of the 22 unique lesson plans; 73.73%). Within the 22 
unique lesson plans, researchers identified the use of three 
of the four CT practices (Figure 3): Using Data (9 lessons; 
40.91%), Computational Simulations (8 lessons; 36.36%), 
and Programming (7 lessons; 31.82%). No lesson plans 
contained Systems Thinking from a CT Perspective. Six 
lesson plans (27.27%) included no CT, despite teachers 
self-identifying practices in the lesson. Some lesson 
plans contained practices from multiple categories of 
CT practices (Figure 3). This overlap was most common 

Each STIGCT session focused on one of the four CT 
practices and included three sections: presentation of the 
CT practice, CT-integrated science activities from a student 
lens, and development of a lesson seed (the beginning of a 
lesson plan) with grade-similar peers and a facilitator. Each 
teacher selected one lesson seed and developed it into a 
full lesson plan they taught to their class. In the final session, 
teachers shared and reflected upon their lesson plan and 
teaching experience. 

In total, 36 teachers participated in STIGCT and 
submitted a lesson plan (20 pre-service, 16 in-service). They 
taught in elementary schools in the Mid-Atlantic region of 
the United States. Because some participating pre-service 
and in-service teachers worked together as a mentor/
mentee pair or on a grade-level team at the same school, 
the teachers developed 22 unique lesson plans. In this 
paper, we analyze these lesson plans using Waterman et al.’s 
framework (2020) to determine the level of CT integration. 

To categorize the level of CT integration within lessons, 
we modified Waterman et al’s. (2020) three-part framework: 
exist, enhance, extend (Figure 2). In their framework, lessons 
are considered to be at the exist level if the “CT concepts, 
skills, and practices already exist in the lesson and can 
simply be called out or elaborated upon” (Waterman et 
al., 2020, p. 54). As seen in Figure 2, this is an instance of 
CT within a science lesson, but additional science learning 
is not supported by the CT. This level identifies ways CT 
is already in the curriculum and can act as a base for 
deeper integration. In their second level, enhance, CT is 
integrated based on the “creation of additional tasks or 
lessons to enhance the disciplinary concept and provide 
clear connection to computing concepts that are present” 
(Waterman et al., 2020, p. 55). In these lessons, students 
go beyond what is already in the curriculum, utilizing CT 
skills in service of their disciplinary learning. In Figure 2, this 
is represented by multiple instances of CT expanding the 
science lesson. In their final level, extend, teachers add CT 
activities, typically programming (Waterman et al., 2020). 
In our interpretation, we looked for teachers using CT to 
promote science learning through computational activities, 
extending students’ learning of a disciplinary concept. 
As shown in Figure 2, the science lesson is expanded by 
the CT focus within the lesson. In addition to the levels 

Figure 2. Levels of CT Integration
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(Figure 4). Two lessons (12.5%) extended science learning 
through the integration of CT tools and practices. Finally, 
three lessons (18.75%) integrated science and CT on an 
exhibit level, using a relevant science concept as the topic 
exhibited through the CT learning experience, but doing so 
in a way that does not explicitly increase science learning 
and could be replaced with a different disciplinary topic 
without changing the activity. 

We also found patterns between the CT practices within 
lessons and the level of CT integration (Figure 4). Lessons 
identified to include only Using Data practices were all at 
an exist level of integration (3 of 3 lessons; Table 1 Example 
A). Further, those that included Computational Simulation 
practices integrated CT at the extend level (8 of 8 lessons; 
Table 1 Example B). Lessons that integrated Programming 
practices tended to reach the extend (2 of 2 lessons; Table 
1 Example C) or exhibit (3 of 3 lessons; Table 1 Example 
D) level of integration. These trends point to a relationship 
between the CT practices enacted within a lesson and the 
level of integration the lesson reached. 

Discussion
Overall, teachers successfully integrated CT into their 
elementary science lesson plans across most CT practices. 
But integrations varied in level of integration and coverage 
of CT practices. Our results show that no teachers 
integrated Systems Thinking from a CT Perspective into 
their lesson plans. This raises questions about whether 
systems thinking around quantitative relationships is 
developmentally appropriate for students at the elementary 
level and whether further support is needed for teachers 
to feel confident engaging their students in discussions 
of systems thinking. It is common for elementary classes 
to examine systems such as the food web or the water 

between Using Data and Computational Simulations. 
In these lessons, students typically collected data using 
a computational simulation and analyzed that data for 
patterns and trends to make conclusions (see Table 1 
Example B below). 

While teachers who participated in STIGCT were 
able to integrate CT practices within their lesson plans 
generally, prior research has demonstrated not all CT 
integration within lesson plans provides students with equal 
opportunities to deeply engage with CT (Bort & Brylow, 
2013; Mouza et al., 2017). Of the 16 unique teacher lesson 
plans containing at least one CT practice, three lessons 
(18.75%) integrated CT at an exist level, identifying CT 
already present within a typical science lesson plan. The 
greatest number of lessons, eight (50%), integrated CT at 
an enhance level, using CT to support science learning by 
adding CT experiences with computing tools or practices 

Figure 3. CT practices identified within teacher lesson plans 

Figure 4. CT Integration levels in elementary science lesson plans
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to lead to instructional change and, therefore, new 
computational learning opportunities.

All lessons at the enhance level of integration utilized 
Computational Simulations (8 of 8 lessons). As the most 
popular tool used by teachers within their lesson plans, 
simulations appear to be a comfortable computational tool 
for integration. Yet, while teachers seemed comfortable 
integrating pre-made online simulations, they did not create 
their own simulations. Our findings suggest that integrating 
simulations can be an important starting point for teachers 
to integrate CT that can enhance science learning and 
inquiry. These integrations are particularly productive 
when studying scientific phenomena that are temporally 
too far away or spatially too small or large to see. However, 
future research could examine how teachers who feel 
comfortable integrating pre-made simulations could be 
supported to integrate CT more deeply by assessing and 
creating simulations with their students. While there is some 
important work on how students can engage with these 
practices (Basu et al., 2016; diSessa, 2000; Wilensky & Rand, 
2015), the support that teachers need to venture into the 
extend level with simulations is less clear. 

cycle, but these investigations rarely reach the point of 
interrogating the quantitative relationships within the 
system or representing the system using a computational 
tool. Future research could investigate whether elementary 
students can engage in systems thinking practices and 
develop strategies for teachers to integrate Systems 
Thinking from a CT Perspective. 

The relationships between integration levels and CT 
practices we found provide insight into current gaps in 
knowledge and possibilities for future research around 
supporting teachers to write lessons with deeper levels 
of integration. We found that teachers who included 
only Using Data practices integrated CT and science at 
the exist level (3 of 3 lessons). This finding can partially 
be explained by the likeness between CT data practices 
and scientific inquiry, where students collect and analyze 
data. Further research could explore how PD can support 
teachers in leveraging computational aspects of data 
collection and analysis to move beyond exist level 
integration and into the enhance and extend levels. This 
effort is particularly important given that simply naming 
existing activities aligned with CT practices is unlikely 

Table 1. Example lesson plans at each level of integration

Example Level of  
Integration

Grade and  
Topic

CT Practices 
Integrated Lesson Activities

A Exist 1st grade 

Growing 
Lima Beans

Using Data:
•  Creating graphs or 

charts

•  Finding patterns 
and relationships in 
datasets

Students dissect a lima bean while making qualitative 
observations. Then, students plant two lima beans and 
place one in a lit environment (i.e., the window sill) and 
one in a dark environment (i.e., a dark room). Every two 
days, students measure and graph the height of their 
plants. As a class, students draw conclusions about light 
and plant growth based on their data.

B Enhance 4th grade 

Energy 
Transfer

Using Data:
•  Collecting data 

with computational 
devices

Computational 
Simulations:
•  Using computational 

simulations

The class reviews the vocabulary term collision and 
discusses the types of energy involved in collisions. 
Then, students use the PhET online simulation Collision 
Lab to collect data about two objects colliding. Students 
use the simulation to manipulate variables like the mass 
of the objects and collect data about each collision for 
analysis. 

C Extend 5th grade

Water 
Pollution

Programming:
• Coding

Using Data:
•  Collecting data 

with computational 
devices

Students code a micro:bit to detect light levels. Then, 
using their own water samples, students measure how 
much light passes through water from a flashlight. 
Students record their data and analyze it using guided 
questions to make conclusions about pollution levels 
within the body of water from which they took their 
sample.

D Exhibit 3rd grade 

Weather 
Animation

All Programming 
Practices

Students are introduced to extreme weather with an 
introductory video and sharing their own experiences. 
Then, students explore an extreme weather event by 
conducting guided research. To present their research, 
students create a Scratch animation “movie” telling 
about their weather event.

http://www.acm.org/education
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Implications
Due to the nature of our study and the data we examine, 
implications of our work are particularly relevant to teacher 
educators as practitioners responsible for supporting 
teachers as they learn to integrate CT into disciplinary 
lessons. When planning and implementing PD, teacher 
educators should: 

•  Focus on supporting teachers to integrate CT in service 
of science learning rather than only building CT or CS 
skills.

•  Provide explicit discussions of the levels of CT 
integration and moving beyond finding CT within the 
existing science curriculum.

•  Present examples of Programming activities integrating 
CT at the exhibit and extend levels to demonstrate the 
differences in CT and science integrated learning they 
promote.

•  Build teacher efficacy and confidence with 
programming environments to build their own 
simulations and lead students to use programming to 
increase understanding of science phenomena.

•  Examine the barriers to integration teachers are facing 
and support them integrating CT at the enhance and 
extend levels despite the barriers they might face to 
provide more equitable learning experiences across CT 
practices for all students.

References
Barab, S. (2006). Design-Based Research: A methodological 

toolkit for the learning scientist. In R. K. Sawyer (Ed.), The 
Cambridge Handbook of the Learning Sciences (Issue 10,  
pp. 153–169). Cambridge University Press.

Basu, S., Biswas, G., Sengupta, P., Dickes, A., Kinnebrew, J. 
S., & Clark, D. (2016). Identifying middle school students’ 
challenges in computational thinking-based science 
learning. Research and Practice in Technology Enhanced 
Learning, 11(1), 13. https://doi.org/10.1186/s41039-016-
0036-2

Bean, N., Weese, J., Feldhausen, R., & Bell, R. S. (2015). Starting 
from scratch: Developing a pre-service teacher training 
program in computational thinking. Proceedings of 2015 
IEEE Frontiers in Education Conference (FIE). https://doi.
org/10.1109/FIE.2015.7344237

Blikstein, P. (2018). Pre-college computer science education: A 
survey of the field. https://goo.gl/gmS1Vm.

Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., Engelhardt, 
K., Kampylis, P., & Punie, Y. (2016). Developing computational 
thinking in compulsory education: Implications for policy 
and practice. In JRC Science for Policy Report. https://doi.
org/10.2791/792158

Regarding Programming practices, our findings 
show teachers need support to differentiate between 
programming activities that extend science learning 
(2 lessons) and those that only integrate science on an 
exhibit level (3 lessons). Although not included in the 
original Waterman et al. (2020) framework, we found 
exhibit to be a unique level of integration, representing 
the integration of science as a thematic topic in CT 
activities without learning-supportive integration. While 
the creation of a Scratch animation about a science topic 
is a valuable exercise to learn programming skills, the 
activity does not support further science learning—it can 
only serve as an assessment of content understanding. 
The emergence of the exhibit category raises questions 
about the integration of Scratch within CT lessons. 
As a tool utilized during our PD, teachers had some 
familiarity with Scratch. Because it is a programming 
environment, demonstrating a clear connection to coding 
and CS, the addition of Scratch was a clear-cut way for 
teachers to ensure they were integrating CT practices. 
Yet, the propensity to do so at a topic level rather than 
using more advanced computing such as conditionals 
or programming a simulation points to teachers 
potentially lacking confidence or knowledge with either 
programming tools, science, or both. To support teachers 
in making the differentiation between extend and exhibit, 
PD opportunities could include demonstrating examples 
of each and the differences in CT and science integrated 
learning they promote and providing further examples of 
programming that supports scientific learning.

The varied levels of CT integration highlight a need 
to examine the implications of different integration levels 
for equal and inclusive CT opportunities for students. 
As our findings demonstrate, even with PD focused on 
integrating CT in science, teachers have varied success 
writing CT-integrated science lesson plans. This has 
implications for the students in their classrooms, particularly 
because focusing on providing greater access to CT 
within classrooms is not enough to ensure equitable CT 
experiences for all students (Coenraad et al., 2020). If 
some teachers integrate at the exist level and others at 
the enhance or extend level, students are getting different 
levels of integration and thus different levels of preparation 
for the use of computing in jobs both within and outside 
of CS. Future research should consider the connections 
between school environment and teachers’ level of CT 
integration to further understand the inequalities that 
could be perpetuated by different levels of CT integration. 
Integrating CT into science provides opportunities for more 
students to experience CT than if students only received 
instruction in elective or after school programs. However, 
as the field works toward providing equitable computing 
opportunities for all students, paying attention to the level 
of integration and the practices teachers are integrating will 
ensure quality opportunities for students. 

https://doi.org/10.1186/s41039-016-0036-2
https://doi.org/10.1186/s41039-016-0036-2
https://doi.org/10.1109/FIE.2015.7344237
https://doi.org/10.1109/FIE.2015.7344237
https://goo.gl/gmS1Vm
https://doi.org/10.2791/792158
https://doi.org/10.2791/792158


www.acm.org/education 17

Jaipal-Jamani, K., & Angeli, C. (2017). Effect of robotics on 
elementary preservice teachers’ self-efficacy, science 
learning, and computational thinking. Journal of Science 
Education and Technology, 26, 175–192. https://doi.
org/10.1007/s10956-016-9663-z

Ketelhut, D. J., Cabrera, L., McGinnis, R. J., Plane, J., Coenraad, 
M., Killen, H., & Mills, K. M. (2019). Exploring the Integration 
of computational Thinking into Preservice Elementary 
Science Teacher Education. National Science Foundation 
STEM+C PI Meeting. http://stemcsummit.edc.org/slides/
DianeJass.pdf

Lamprou, A., & Repenning, A. (2018). Teaching how to teach 
computational thinking. Proceedings of the 23rd Annual 
ACM Conference on Innovation and Technology in Computer 
Science Education - ITiCSE 2018, 69–74. https://doi.
org/10.1145/3197091.3197120

Lee, I., Grover, S., Martin, F., Pillai, S., & Malyn-Smith, J. (2020). 
Computational thinking from a disciplinary perspective: 
Integrating computational thinking in K-12 science, 
technology, engineering, and mathematics education. 
Journal of Science Education and Technology, 29(1), 1–8. 
https://doi.org/10.1007/s10956-019-09803-w

McGinnis, J. R., Hestness, E., Mills, K., Ketelhut, D., Cabrera, L., & 
Jeong, H. (2020). Preservice science teachers’ beliefs about 
computational thinking following a curricular module within 
an elementary science methods course. Contemporary 
Issues in Technology and Teacher Education, 20(1), 85-107.

Mouza, C., Yang, H., Pan, Y. C., Yilmaz Ozden, S., & Pollock, L. 
(2017). Resetting educational technology coursework for 
pre-service teachers: A computational thinking approach 
to the development of technological pedagogical content 
knowledge (TPACK). Australasian Journal of Educational 
Technology, 33(3), 61–76. https://doi.org/10.14742/ajet.3521

National Research Council. (2010). Report of a workshop on the 
scope and nature of computational thinking. http://www.nap.
edu/catalog/12840

NGSS Lead States. (2013). Next Generation Science Standards: 
For States, By States. http://www.nextgenscience.org

Simmonds, J., Gutierrez, F. J., Casanova, C., Sotomayor, C., & 
Hitschfeld, N. (2019). A teacher workshop for introducing 
computational thinking in rural and vulnerable environments. 
SIGCSE ’19 - Proceedings of the 50th ACM Technical 
Symposium on Computer Science Education, 1143–1149. 
https://doi.org/10.1145/3287324.3287456

Bort, H., & Brylow, D. (2013). CS4Impact: Measuring 
computational thinking concepts present inCS4HS 
participant lesson plans. Proceedings of the 44th ACM 
Technical Symposium on Computer Science Education 
(SIGCSE ’13), 427–432.

Bower, M., Wood, L., Lai, J., Howe, C., Lister, R., Mason, R., 
Highfield, K., & Veal, J. (2017). Improving the computational 
thinking pedagogical capabilities of school teachers. 
Australian Journal of Teacher Education, 42(3), 53–72.

Brown, A. L. (1992). Design experiments: Theoretical and 
methodological challenges in creating complex interventions 
in classroom settings. Journal of the Learning Sciences, 2(2), 
141–178. https://doi.org/10.1207/s15327809jls0202_2

Cabrera, L., Ketelhut, D. J., Mills, K., Coenraad, M., Killen, H., 
& Plane, J. (2021). Designing a Framework for Teachers’ 
Integration of Computational Thinking into Elementary 
Science. [Manuscript submitted for publication].

Chang, Y., & Peterson, L. (2018). Pre-service Teachers ’ 
Perceptions of Computational Thinking. Journal of 
Technology and Teacher Education, 26(3), 353–374.

Coenraad, M., Cabrera, L., Byrne, V., Killen, H., Ketelhut, D. 
J., Mills, K. M., & Plane, J. (2021). STIGCT: The Design of a 
Science Teaching Computational Thinking Inquiry Group to 
Promote CT Integration in Elementary Science. [Manuscript 
submitted for publication].

Coenraad, M., Mills, K., Byrne, V. L., & Ketelhut, D. J. (2020). 
Supporting teachers to integrate computational thinking 
equitably. Proceedings of 2020 Research on Equity and 
Sustained Participation in Engineering, Computing, and 
Technology, RESPECT 2020. https://doi.org/https://doi.
org/10.1109/RESPECT49803.2020.9272488

Curzon, P., McOwan, P. W., Plant, N., & Meagher, L. R. (2014). 
Introducing teachers to computational thinking using 
unlugged storytelling. Proceedings of the 9th Workshop 
in Primary and Secondary Computing Education 
(WIPSCE 2014), 82–92. https://doi.org/https://doi.
org/10.1145/2670757.2670767

diSessa, A. A. (2000). Changing Minds: Computers, Learning, 
and Literacy. MIT Press.

Dodero, J. M., Mota, J. M., & Ruiz-Rube, I. (2017). Bringing 
computatonal thinking to teachers’ training: A workshop 
review. Proceedings of the 5th International Conference on 
Technological Ecosystems for Enhancing Multiculturality, 1–6. 
https://doi.org/10.1145/3144826.3145352

http://www.acm.org/education
https://doi.org/10.1007/s10956-016-9663-z
https://doi.org/10.1007/s10956-016-9663-z
http://stemcsummit.edc.org/slides/DianeJass.pdf
http://stemcsummit.edc.org/slides/DianeJass.pdf
https://doi.org/10.1145/3197091.3197120
https://doi.org/10.1145/3197091.3197120
https://doi.org/10.1007/s10956-019-09803-w
https://doi.org/10.14742/ajet.3521
http://www.nap.edu/catalog/12840
http://www.nap.edu/catalog/12840
http://www.nextgenscience.org
https://doi.org/10.1145/3287324.3287456
https://doi.org/10.1207/s15327809jls0202_2
https://doi.org/https
http://doi.org/10.1109/RESPECT49803.2020.9272488
http://doi.org/10.1109/RESPECT49803.2020.9272488
https://doi.org/https
http://doi.org/10.1145/2670757.2670767
http://doi.org/10.1145/2670757.2670767
https://doi.org/10.1145/3144826.3145352


Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions18

Wilensky, U., & Rand, W. (2015). An Introduction to Agent-
Based Modeling: Modeling Natural, Social, and Engineered 
Complex Systems with NetLogo. Cambridge, Massachusetts; 
London, England: The MIT Press. doi:10.2307/j.ctt17kk851

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, J. T. 
(2014). Computational thinking in elementary and secondary 
teacher education. ACM Transactions on Computing 
Education, 14(1), 1–16. https://doi.org/10.1145/2576872

Yadav, A., Stephenson, C., & Hong, H. (2017). Computational 
thinking for teacher education. Communications of the ACM, 
60(4), 55–62. https://doi.org/10.1145/2994591

Tran, Y. (2019). Computational Thinking Equity 
in Elementary Classrooms: What Third-Grade 
Students Know and Can Do. Journal of Educational 
Computing Research, 073563311774391. https://doi.
org/10.1177/0735633117743918

Waterman, K. P., Goldsmith, L., & Pasquale, M. (2020). 
Integrating computational thinking into elementary science 
curriculum: an examination of activities that support 
students’ computational thinking in the service of disciplinary 
learning. Journal of Science Education and Technology, 29(1), 
53–64. https://doi.org/10.1007/s10956-019-09801-y

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, 
L., & Wilensky, U. (2016). Defining computational thinking 
for mathematics and science classrooms. Journal of Science 
Education and Technology, 25(1), 127–147.

https://doi.org/10.1145/2576872
https://doi.org/10.1145/2994591
https://doi.org/10.1177/0735633117743918
https://doi.org/10.1177/0735633117743918
https://doi.org/10.1007/s10956-019-09801-y


www.acm.org/education 19

Introduction
Computational thinking (CT) is an important skill, even 
at the elementary level (Wing, 2006), and has received 
increased attention due to promotion of teaching computer 
science in schools and the incorporation of standards 
related to CT in science (NGSS Lead States, 2013) and 
mathematics (Pérez, 2018). In particular, creating and 
debugging algorithms are CT skills (K-12 Computer 
Science Framework, 2016) that translate across all areas 
of life (Yadav et al., 2016). Because the focus of most early 
studies with young students was on whether they could 
learn to program (e.g., Wyeth, 2008; Wyeth & Purchase, 
2002), there has been less focus on investigating the 
methods that best promote young students’ CT skills, 
including their debugging practices. Such investigations 
are needed to provide teachers with instructional activities 
and methods that could best support students’ debugging 
practices. When designing our study, we focused our 
attention on two potentially impactful methods to support 
young students’ programming and debugging: play and 
worked examples.

Learning and Debugging Through Play
According to constructivist views of learning, play 
provides a rich context in which children construct 
knowledge by exploring concepts and building on prior 
experiences (Ginsburg, 2006; Parks & Graue, 2015). In 
a programming context, play could involve children 
experimenting with sequencing blocks to see how 
robots’ movements change (Highfield, 2015). One study 
found that young children using KIBO tangible blocks 
to program a robot to do dance moves improved their 
sequencing ability; after playing, they scored high on 
placing KIBO blocks in the correct order to match a story 
of a robot’s movements (Sullivan & Bers, 2018). Children 
may also naturally debug during their play. Preschoolers 
playing with KIBO could identify and fix a program with a 
missing block or incorrect sequence (McLemore & Wehry, 
2016). Further, some students successfully used the step-
by-step debugging feature of the Robo-Blocks system 
to help them find their code’s bugs (Sipitakiat & Nusen, 
2012). This process of comparing the input with the output 
step-by-step, tracing the code, is a common debugging 
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study, hypothesizing they could help students use an 
understanding the code debugging strategy, which 
involves reasoning about what the code is doing (Murphy 
et al., 2008).

Current Study
Although worked examples can support older students’ 
programming, there is scant evidence (an exception is 
Joentausta & Hellas, 2018) on whether a similar approach 
could be fruitful for early elementary students as compared 
to playing around with a programming game. Therefore, we 
set up our study design to compare the effects of playing 
a programming game with versus without the support 
of analyzing worked examples. Given that some novices 
have difficulty using worked examples (Ichinco et al., 
2017), we also investigated whether analyzing the worked 
examples would be more productive for younger students’ 
programming and debugging as they were beginning to 
play with the programming game versus after they had 
played with the game for three sessions. 

When choosing the programming environment to use 
with the first and third graders in our study, we looked 
toward prior studies. Algorithmic thinking and debugging 
activities for younger children largely involve students 
learning to use tangible, block-based programming tools 
(e.g., KIBO blocks; Sullivan & Bers, 2018). These tangible 
programming blocks typically control some type of robot 
(tangible output) and have been used successfully with 
students as young as preschool (Elkin et al., 2016). Closer to 
traditional programming, studies with older students (ages 
9-12) involve digital output, where tangible blocks control 
a character on a screen (e.g., AlgoBlocks in Suzuki & Kato, 
1995; see also Wang et al., 2013), and non-tangible block-
based programming environments with digital output 
(e.g., ScratchJr). Given the success of tangible materials, 
we chose to use the programming game, Coding AwbieTM, 
which uses tangible blocks from the Osmo system and 
involves a digital output that helped us provide a consistent 
programming environment. 

In summary, we explored how first- and third-grade 
students’ programs and debugging changed on a 
tangible, block-based programming task, depending on 
if they analyzed worked examples during their first three 
out of six play sessions (immediate group) or during their 
last three play sessions (delayed group). Specifically, we 
explored the following research questions: (1) What is  
the effect of analyzing worked examples versus playing  
on first and third graders’ programming accuracy?  
(2) What are students’ common programming bugs?  
How do students debug them? This study takes an 
important step toward informing teachers about ways 
to effectively support young learners’ creating and 
debugging of algorithms by focusing on a potentially 
impactful instructional tool: worked examples.

strategy (Murphy et al., 2008). Given the potential benefits 
of play, we included opportunities for students to play 
with programming in our study.

However, students may struggle to successfully debug 
through play alone (McLemore & Wehry, 2016; Sipitakiat 
& Nusen, 2012). Tinkering or randomly changing code, 
which could arise during play, is usually unsuccessful as 
a debugging strategy (Murphy et al., 2008). In one study, 
third graders playing with tangible programming blocks 
were not always successful in their debugging because 
they were not sure how to evaluate whether the programs 
produced a desired output (Wyeth, 2008). Moreover, 
students navigating a robot with Robo-Blocks often thought 
the last block was the bug, especially when an early bug 
in the code was the cause of later problems (Sipitakiat & 
Nusen, 2012). 

Learning and Debugging with Worked 
Examples
Another potential approach to helping students make 
sense of programming code is using worked examples. 
Worked examples present students with a set of steps 
used to solve a problem and can highlight common 
programming bugs (Griffin, 2016; Joentausta & Hellas, 
2018; see also Atkinson et al., 2000; see Table 2 for 
examples). Given worked examples’ step-by-step nature, 
we hypothesized that they could help students use the 
tracing the code debugging strategy (Murphy et al., 2008). 
Further, studying incorrect worked examples has helped 
older students program with fewer bugs and debug a 
series of steps in an algorithm (Griffin, 2016). Therefore, we 
chose to include opportunities for students to analyze both 
correct and incorrect worked examples in our study.

Although worked examples are particularly helpful 
for novices, if novices do not recognize what information 
in worked examples is important to the problem-solving 
task, analyzing worked examples could be misleading 
(Margulieux et al., 2016) or unhelpful (Ichinco et al., 2017). 
For example, Ichinco et al. (2017) hypothesized that 
students in their study (ages 10-15) either did not know 
what parts and commands to focus on in the examples or 
did not know how to map them to the programming task. 
Using subgoal labels (i.e., labels to help explain different 
steps in the code) accompanied by explanation prompts 
can help students overcome these issues (Joentausta 
& Hellas, 2018; Margulieux et al., 2016; Yan & Lavigne, 
2014). In a study with third graders using LightBot, 
students who studied correct worked examples with 
subgoal labels when they encountered programming 
difficulties completed more levels of programming 
challenges than students using worked examples without 
subgoal labels (Joentausta & Hellas, 2018). We included 
both subgoal labels and explanation prompts in our 
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in a media room with multiple classes of students (both 
participants and non-participants) attending with their 
teachers at a time. Although several of the third graders 
had tried Coding AwbieTM prior to the study, we presented 
all materials assuming no knowledge of the game or 
programming.

Analyzing Worked Examples
Students analyzed a set of two or three worked examples 
(see Table 2) during sessions 1-3 for the immediate group 
and sessions 4-6 for the delayed group (see Table 1). The 
worked examples were modeled after those developed by 
Julie Booth and her colleagues in TheAlgebraByExample 
Team (n.d.) and ways of presenting worked examples in 
programming (Griffin, 2016; Skudder & Luxton-Reilly, 2014). 
We designed the worked examples to address common 
challenges that students encountered during the first year 
of our study. Based on literature showing the advantages 
of incorrect worked examples, we included both a correct 
worked example and an incorrect worked example in each 
set. Further supporting good debugging practice, each 
example included explanation prompts that asked student 
pairs to identify why certain code was used, what it did, 
or what the bug in the program was. Finally, students had 
to apply ideas from the examples to a new task (i.e., Your 

METHODS 

Participants and Design
This paper uses data from the second year of a two-year 
study on exploring factors for effective commenting 
and debugging using the tangible programming game, 
Coding AwbieTM. We worked with 28 first- and 27 third-
grade students from one public elementary school in the 
midwestern US with approximately 45% qualifying for 
free and reduced-price lunch and about 11% classified 
as English-Language-Learners. Students first completed 
a pretest, after which they were assigned to one of two 
groups: students who analyzed worked examples during 
their first three play sessions (immediate group) or students 
who analyzed worked examples during their last three 
play sessions (delayed group). By having two orders in 
which students analyzed worked examples, we were 
able to determine the effect of using worked examples 
(WE) as an instructional tool for novices before they had 
a chance to play versus after they had played with a 
programming game (see Table 1 for the study design). 
For example, students in the delayed group spent the first 
three sessions in grade-level pairs only playing the game. 
Almost all activities took place with the researchers at 
tables outside of students’ classrooms; the only exception 
was the programming presentation, which took place 

Table 1. Study Design

Activity Format Immediate Group Time 
(min.) Delayed Group Time 

(min.)

Pretest Individual
Program commenting 
and debugging tasks 

varied
Program commenting 
and debugging tasks

varied

Intervention 
session 1

Grade-level pairs
Analyze WE set 1

Play Coding AwbieTM

~10

~10
Play Coding AwbieTM 20

Intervention 
session 2

Grade-level pairs
Analyze WE set 2

Play Coding AwbieTM

~10

~10
Play Coding AwbieTM 20

Intervention 
session 3

Grade-level pairs
Analyze WE set 3

Play Coding AwbieTM

~10

~10
Play Coding AwbieTM 20

Midtest Individual
Program commenting 
and debugging tasks

varied
Program commenting 
and debugging tasks

varied

Presentation Whole class Programming 
applications 30 Programming 

applications 30

Intervention 
session 4

Grade-level pairs Play Coding AwbieTM 20
Analyze WE set 1

Play Coding AwbieTM

~10

~10

Intervention 
session 5

Grade-level pairs Play Coding AwbieTM 20
Analyze WE set 2

Play Coding AwbieTM

~10

~10

Intervention 
session 6

Grade-level pairs Play Coding AwbieTM 20
Analyze WE set 3

Play Coding AwbieTM

~10
~10

Posttest Individual
Program commenting 
and debugging tasks

varied
Program commenting 
and debugging tasks

varied

Note. WE stands for worked examples. The worked example sets are explained in Table 2.
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Test Item
During all three video-recorded testing sessions, we met 
with the students individually. Test items for the larger 
study evaluated students’ programming conceptions 
and debugging and commenting in programming and 
mathematics. For this analysis, we focus on one, multi-
solution programming item, which was the same across the 
pretest, midtest, and posttest. Students saw the image in 
Figure 1, without the grid markings and wrote a program 
using the Coding AwbieTM blocks to help Awbie collect the 
last strawberry (5E in Figure 1). Students ran their initial 
program and, if necessary, we gave them the opportunity 
to debug it. The item required Awbie to change directions 
and make jumps (two difficult practices identified in the  
first year) and allowed for students to repeat code  
(Figure 1, program C). This item provided rich data on 
students’ algorithmic design accuracy as well as their 
debugging practices. 

Turn!, see Table 2, Set 1, Correct, for an example). Students 
wrote down the answers and solutions (or researchers 
wrote down their verbal answers) in response to these 
questions. The researchers did not provide feedback on 
whether students were correct or not, and sometimes the 
pairs did not agree. 

Playing Coding Awbie
When pairs played Coding AwbieTM, they started at the first 
level of the game and continued playing until their session 
time was up. If students finished a level, they moved on to 
the next level. We recorded their last completed level at 
the end of each session and started students on their next 
uncompleted level at the beginning of their next session. 
Therefore, students sometimes started over a level multiple 
times if they did not finish it during one or more of their 
sessions. 

Table 2. The Complete Three Sets of Worked Examples Used in the Study

Set Type Worked Example Pedagogical Design Choices 

1 Correct The first worked example in Set 1 showed color-
coded steps to help students map each step 
of code with its corresponding movements in 
the game (supporting a trace the code strategy, 
see Table 3). This method of showing steps 
was too complicated to carry over into future 
examples, but it was important for helping 
them trace the code initially. In the first year of 
our study, we observed many students double-
counting a square when Awbie switched 
directions (Kocabas et al., 2019). Therefore, 
this first example showed numbers being used 
correctly when Awbie switches directions. The 
explanation prompt regarding Carlos’s method 
was meant to support accurate counting and to 
prompt students’ wonderings about why Awbie 
might not be able to stop on a lilypad. Then 
students had to try programming Awbie on 
their own for a related situation.

1 Incorrect The incorrect example in Set 1 involved an 
incorrect use of the jump, which drew students’ 
attention to consider how far Awbie would 
move with each jump (i.e., jump over one 
space). This was a common challenge that 
students encountered in the first year of the 
study: determining how far Awbie would move 
when using the jump code (and realizing that 
Awbie will not keep jumping if he falls into the 
water). Then students had a chance to fix the 
program. A correct program would be jump left 
1, walk left 1, jump left 1, walk left 1.

Table continued on next page
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Table 2. The Complete Three Sets of Worked Examples Used in the Study (continued)

Set Type Worked Example Pedagogical Design Choices 

2 Correct In the first year of the study, students expressed 
frustration with not being able to continue a 
program after using the loop command that 
is part of the game. Therefore, Set 2 of the 
worked examples first showed students how 
to correctly program a subroutine command 
to make a loop, as well as how to distinguish 
between walk and grab pieces. To help students 
understand that step 2 and step 3 were nested 
within the subroutine button, we showed 
this with the dotted box and arrow and also 
numbered the steps of the program in the 
picture to help students trace the code and see 
that Awbie repeats steps 2 and 3 four times. We 
also used subgoal labels in the form of a set 
of questions students could ask themselves to 
help explain the lines of code. The explanation 
prompts also helped students focus on the 
subroutine button and what the number on that 
button might mean.

2 Incomplete To provide students with extra scaffolding 
on how the subroutine command works, we 
included an incomplete worked example in 
Set 2 where students completed missing code 
before and after a subroutine that operated 
as a loop. Therefore, students saw how the 
steps within the subroutine were repeated 
using the numbered steps in the picture but 
had to problem-solve to consider the missing 
steps. The incomplete worked example is a 
form of faded worked example, which is a 
fruitful method to use with older students in 
programming (Skudder & Luxton-Reilly, 2014) 
that we thought could work well with younger 
students as well.

2 Incorrect The incorrect worked example in Set 2 required 
students to fix a double-counting bug within a 
subroutine. This worked example challenged 
students to combine their understanding of 
double-counting bugs and the use of the 
subroutine command. Further, the explanation 
prompt focused students’ attention on the 
double-counting bug and encouraged them 
to consider another program that would get 
Awbie to the bottom space but without having 
him collect all of the strawberries (a goal of the 
program). Finally, students had a chance to fix 
the bugs.

Table continued on next page
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Analysis 
First, if students’ programs would get Awbie to 5E without 
bugs, we assigned their programs an accuracy score  
of 1; otherwise, we assigned them a score of 0. Second, 
we used Friedman’s ANOVA to evaluate the effects of 
being in the immediate versus delayed groups across 
testing sessions on their initial programs’ accuracy and 
used McNemar tests to further investigate the changes 
between testing sessions. Third, we analyzed students’ 
programs for their types of initial bugs (e.g., wrong 
direction, hitting a rock, double-counting). Fourth, we 

Table 2. The Complete Three Sets of Worked Examples Used in the Study (continued)

Set Type Worked Example Pedagogical Design Choices 

3 Correct Set 3 of worked examples started with a correct 
example that showed students how to use 
a warning (or conditional) command. In the 
first year of the study, students struggled with 
figuring out what the warning command does. 
Often, they placed it without any alternate code 
or in situations where it would not be needed. 
In fact, prior studies also found that children 
have difficulty learning the meaning of complex 
combinations of logic blocks through play 
alone (Wyeth, 2008), which further supported 
our use of a worked example for the warning 
command. Continuing to use the numbered 
steps, we used an exclamation point with a 
step number to show when the alternate, 
warning command code was used. Further, the 
explanation prompt encouraged students to 
make sense of why Awbie changes his number 
of steps he walks up.

3 Incorrect Given the difficulty involved in using the 
warning command (and its relative infrequency 
of use in the game), we chose instead to 
include an additional incorrect worked example 
in Set 3 that required students to think about 
what was being repeated within a subroutine. 
This example also gave students another 
opportunity to consider how far Awbie would 
move when given the jump command.

Figure 1. “Write a Program to Get Awbie to the  
Last Strawberry” (Point to 5E)
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p = .021; delayed, gain of 36%, p = .012). However, only 
students in the immediate group significantly improved 
from pretest to midtest (gain of 35%, p = .022). Even more 
promising, nearly three-fourths of students in each group 
were able to correctly program Awbie on the posttest if 
given the chance to debug (see Table 4).

Programming Bugs and Debugging
The most prevalent bug students experienced that 
prevented them from getting Awbie to 5E was double-
counting a square (See Figure 1). On the pretest, this 
happened in two ways. Six students double-counted the 
initial square (1A) and moved Awbie “walk right 3 (or 
miscounted 4)” in an attempt to get to 3A (or 4A) or “walk 
down 4 (or 5)” to get to 1D. Across all three tests, students 
also double-counted (see Table 5) by programming 
Awbie to walk down 3 (instead of walk down 2) for step 

identified students’ successful debugging strategies 
using Murphy et al.’s (2008) categories (see Table 3) 
along with one additional strategy we found. Lastly, 
we compared how many students per group correctly 
debugged their programs by creating accurate programs 
as described above. 

RESULTS

Programming Accuracy
Based on a Friedman’s ANOVA, the number of students 
who programmed Awbie to reach 5E significantly 
changed over the course of the study for students in the 
immediate group, x2(2) = 8.933, p = .011, r = .32, and the 
delayed group, x2(2) = 8.133, p = .017, r = .38. Based on 
follow-up McNemar tests, both groups made significant 
gains from pretest to posttest (immediate, gain of 26%, 

Table 3. Debugging Strategies

Strategy Description

Tinkeringa Students appeared to randomly change out commands or numbers, or students changed 
multiple parts of the code at one time.

Reprogramming Students removed all commands and numbers from their initial code and started over. Some 
students ignored the coding pieces they had used and started over with new ones. In other 
situations, students kept the coding pieces in the same order and moved them back into their 
workspace one by one as the student put together their new program.

Understanding the codea Students tried to reason about what their code was doing and why there was a problem. For 
example, one student asked himself if using walk right would move Awbie one space.

Tracing the codea Students moved their fingers along the path they expected Awbie to take to match each 
line of code. For example, if their first line of code told Awbie to walk right 2, they moved 
their finger two spaces to the right to trace where Awbie would move on the picture. On one 
occasion, a student used reprogramming but kept the coding pieces in the same order and 
used tracing at the same time to figure out where the bug was.

Pattern matchinga Students realized that something was not right or had a sense of where the problem was. 
Like subitizing where students see five objects and recognize it as five, some students saw 
the result of the code and just knew what needed to be changed. In many instances this 
happened when students saw Awbie moving too many spaces. 

a See Murphy et al., 2008 for additional descriptions.

Table 4. Students Who Correctly Programmed Awbie Across Testing Sessions 

Group
Before Debugging After Debugging

Pretest Midtest Posttest Pretest Midtest Posttest

Immediate (n=28) 18% 50%a 46% 32% 65%a 71%

First Grade (n=14) 0% 43% 36% 14% 57% 57%

Third Grade (n=14) 36% 58%a 57% 50% 75%a 86%

Delayed (n=27) 22% 37% 56%b 37% 59% 72%b

First Grade (n=14) 21% 43% 54%b 29% 50% 69%b

Third Grade (n=13) 23% 31% 58%b 46% 69% 75%b

a Two third graders did not take the midtest, so their data were not included. 
b Two students (one first grade, one third grade) left before the posttest, so their data were not included.
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Discussion
Overall, this study adds to previous literature on the utility 
of worked examples (Joentausta & Hellas, 2018; Margulieux 
et al., 2016; Yan & Lavigne, 2014) and illustrates that 
early elementary students, who have little programming 
background, can benefit from analyzing correct and 
incorrect worked examples. Although both groups made 
significant gains after the six sessions in terms of accuracy 
of their programs, only students in the immediate group 
made significant gains from the pretest to the midtest. The 
immediate group’s significant gains from pretest to midtest 
were largely due to the first graders’ larger gains, providing 
further evidence that novices, even young ones, benefit 
from analyzing worked examples (Joentausta & Hellas, 
2018), especially before playing. 

Play Versus Worked Examples
More students (across both groups) double-counted after 
spending three sessions freely playing, and fewer students 
double-counted after analyzing worked examples. Students 
may have lost track of where Awbie would be as they 
put together the coding pieces when playing, increasing 
their likelihood to double-count a square. In fact, double-
counting errors account for the immediate group’s slight 
dip on the posttest in developing accurate programs 
before debugging. Further, on the posttest, when the 
immediate group was given the chance to debug and focus 
on their code like they did with the worked examples, they 
corrected their double-counting bugs (and third graders 
excelled); over half of these students used code tracing and 
pattern matching to debug, which are practices that were 
highlighted in the worked examples. Overall, both groups’ 
accuracy increased when they were given the chance 
to debug. Unlike the immediate group, students in the 
delayed group made gains from just playing (from pretest 
to midtest); however, their gains were half as large as their 
peers in the immediate group. These results suggest that 
playing can help students improve, but incorporating 
worked examples with play provides added benefits, 
especially in terms of helping students debug. Students 
seemed to benefit from their playing the most initially 
(between pretest and midtest), which could account for why 

three in Figure 1, programs D-G. When successfully 
debugging, students either used pattern matching and 
recognized that their “walk down 3” should be “walk 
down 2” or they traced the code, moving their finger 
along the path to show where Awbie would move, and 
noticed that they would only have to walk down 2. 

Another common bug in students’ initial programs 
occurred because they did not realize that Awbie could 
not land on or walk through the rock in 3B. Ten students 
either started their programs with “walk down 1, jump 
right” or “walk right 2 (or jump right), walk down,” 
which caused Awbie to bounce back to his previously 
originating square (1B or 3A). Six students fixed the 
bug when debugging, but one of these students made 
the same bug again on the midtest and posttest. One 
student’s program only had this bug because she put her 
coding pieces together from bottom to top; she used 
an understanding the code strategy to realize that she 
needed to reorder her code. 

Other less common bugs included moving Awbie in 
the wrong direction (i.e., up or left for their first line of 
code) or walking into water (e.g., moving Awbie from 1C 
to 3C by walking right instead of jumping). Sometimes 
students had a mismatch between what they said they 
were having Awbie do and what they programmed (e.g., 
said Awbie would jump right but programmed jump up); 
usually students caught these bugs when they saw the 
program run. A few students also ended their programs 
prematurely on 5D instead of 5E and were able to add on 
to their code when debugging. 

Overall, students who successfully debugged their 
code primarily used pattern matching and tracing the 
code strategies, strategies which were embedded in 
the design of the worked examples and explanation 
prompts. Interestingly, students from the delayed 
group increasingly used a reprogramming strategy on 
the posttest. Based on the accuracy of students’ initial 
programs, fewer students had to debug their programs 
from pretest to posttest, and for students who did debug, 
their debugging success rate, as shown by their making 
an accurate program, increased (i.e., more students 
successfully put together accurate programs after 
debugging on the posttest than on the pretest; see Table 6).  
Students who were not successful when debugging 
used a tinkering strategy and introduced a previously 
discussed bug or fixed an initial bug but did not fix a bug 
later in their code.

Table 5. Percent of Students Double-Counting by Programming 
“Walk Down 3” Before Debugging

Group Pretest Midtest Posttest

Immediate 14% (n=28) 8% (n=26) 21% (n=28)

Delayed 11% (n=27) 22% (n=27) 8% (n=25)

Table 6. Students Who Correctly Debugged Their Programs Across 
Testing Sessions 

Correct for those who debugged

Group Pretest Midtest Posttest

Immediate 17% (n=23a) 31% (n=13a) 47% (n=15a)

Delayed 19% (n=21a) 35% (n=17a) 36% (n=11a)

a  The number of students for each group and test who did not 
initially program Awbie correctly.
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Implications for Teachers
As teachers work to incorporate CT skills into their 
curriculum, our results suggest that having worked 
examples together with play experiences would be more 
advantageous than only having students play to learn basic 
programming and debugging. We suggest two instructional 
steps that teachers could leverage with students around 
early programming and debugging across programming 
environments: worked examples and code tracing. 

Teachers could use worked examples as a pedagogical 
tool to draw students’ attention to their own code, support 
all learners by building on their needs and strengths, and 
lessen performance gaps, as was the case for the first and 
third graders in the immediate group (i.e., the difference 
in their accuracy on the pretest was 36%, which reduced 
to 15% on the midtest). The prevalence and persistence 
of double-counting errors suggests that more worked 
examples and instruction around early programming and 
debugging should encourage discussing and exploring 
issues around counting in programming. Specifically, 
numbering or color-coding each step of the program in the 
worked examples could help students focus on the results 
of each movement and support students in tracing the code. 
Teachers should be careful to watch how students are using 
numbers and have discussions about programming for 
funny effects versus when precision is important. Teachers 
should use explanation prompts, such as the one posed 
about Carlos’s method (see Table 2: Set 1, Correct), to help 
students focus on key aspects of code in programs. Further, 
teachers could present contrasting correct and incorrect 
worked examples to help students see the differences in 
coding with and without double-counting—which could 
prompt students to trace the differences between the code—
and incorporate worked examples that target actions that 
are difficult to make sense of through playing only (e.g., 
subroutines; Kocabas & Bofferding, 2021) or common bugs. 

Teachers could encourage students to trace their code 
by moving their finger along the path as they program 
to try and identify the code where the first bug happens 
and model this activity through whole group instruction. 
Encouraging students to reprogram mentally, teachers could 
then have students add each line of code while tracing the 
movements with their eyes, perhaps marking the beginning 
or ending points as needed for scaffolding. Over time, both 
reprogramming and tracing could lead to a more intentional 
pattern matching strategy. Before students reprogram or trace 
the code, teachers could have students articulate what the 
bug was and identify if it happened at the beginning, middle, 
or end of their code. Teachers could encourage students to 
become more precise about where the bug occurred within 
the code by asking questions such as, “Did the bug occur 
before or after Awbie jumped right?” Such questions, similar 
to the explanation prompts, could help students picture their 
code in parts and allow them to find a targeted spot in their 
code without tracing or reprogramming.

the immediate group did not make gains between midtest 
and posttest unless they were given the opportunity 
to debug (which mimicked practices embedded in the 
worked examples). The delayed group continued to make 
gains when analyzing worked examples (from midtest to 
posttest), especially in the case of third graders. 

Double-Counting Difficulties and 
Worked Examples
The results related to students’ double-counting difficulties 
are a bit concerning, especially since the prevalence of 
the double-counting errors increased after playing the 
programming game. Game features may have contributed 
to this. For example, when Awbie moved too far and hit 
a tree in the game, he bounced back to the space he 
occupied before hitting the tree. If students programmed 
“jump right 2” to move Awbie in Figure 1 to 3A by 
misinterpreting the jump’s movement, Awbie would hit 
the tree in 5A and bounce back to 3A. Therefore, students 
could reach their goal using these entertaining programs 
and may have learned that using numbers that are too large 
is not necessarily a problem, which could have contributed 
to their lax use of numbers on the midtest (for the delayed 
group) and on the posttest (for the immediate group). The 
worked examples helped lessen the double-counting bugs 
because the examples drew students’ attention to the use 
of numbers and may have helped reorient their attention to 
the numbers. This result is impressive given that only one 
of the incorrect worked examples specifically focused on a 
double-counting bug, and it occurred within a subroutine 
(see Table 2: Set 2, Incorrect). 

Worked Examples Supported Mental 
Representation in Debugging
Another benefit of analyzing worked examples, incorrect 
ones in particular, was helping students focus on 
debugging. Students in the delayed group transitioned from 
tracing their code, a popular strategy (Murphy et al., 2008), 
on the pretest to reprogramming their code on the posttest, 
but their reprogramming often involved them reusing 
pieces from their initial program and changing other pieces 
as needed. Thus, rather than focusing on following the 
path of their code with their fingers and changing specific 
lines of code, they followed the path mentally and rebuilt 
their program. These results provide some initial evidence 
that students may have made some progress in mentally 
representing the actions of the coding pieces. Students in 
the immediate group continued to use pattern matching, 
and although they also continued to trace their code, they 
did so with fewer hand movements, suggesting they were 
also mentally representing some of the movements.
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Introduction
Educators, researchers, and policymakers are recognizing 
the need to give children access to computer science 
(CS) starting at an early age (Barron et al., 2011; Bers, 
2018; Bers, 2019; Code.org, 2019; White House, 2016). 
Recently, the focus has expanded from teaching computer 
programming to also engaging with a set of underlying 
cognitive abilities known as computational thinking 
(CT) (Fayer, Lacey, & Watson, 2017; US Department of 
Education, Office of Educational Technology, 2017; Wing, 
2006, 2011). 

In an influential article entitled “Computational 
Thinking” that appeared in an issue of Communications of 
the ACM, Wing (2006) defined CT as “solving problems, 
designing systems, and understanding human behavior, 
by drawing on the concepts fundamental to computer 
science” (p. 33). Wing argued that CT should be part of 
everyone’s analytical repertoire. This echoed earlier work by 
Perlis (1962), who claimed that the “theory of computation” 
is for everyone, not only computer scientists, and Papert 
(1980), who proposed that through programming children 
can form ideas not only about computation but about 
thinking itself. 

CT has received considerable attention over the past 
several years. There is consensus that CT must be available 
to thinkers of all disciplines, regardless of their ability to 
program (Guzdial, 2008; Yadav, 2016). However, there 
is little agreement on how to define it (Aho, 2012; Allan 
et al., 2010; Barr & Stephenson, 2011; Cuny, Snyder, & 
Wing, 2010; Grover & Pea, 2013; Lu & Fletcher, 2009; 
National Academies of Science, 2010; Relkin, 2018; Relkin 
& Bers, 2019; Shute, Sun, & Asbell-Clarke, 2017; Yadav, 
Good, Voogt, & Fisser, 2017). It is widely agreed that CT 
involves a broad set of analytic and problem-solving skills, 
dispositions, and habits, rooted in computer science 
but universally applicable. Examples include thinking 
recursively, using abstraction to identify salient pieces of 
a problem, and applying heuristic reasoning to discover a 
solution and/or identify potential “bugs” or problems (CSTA 
& ISTE, 2011; Kalelioğlu, Gülbahar, & Kukul, 2016). For 
definitions that are specifically relevant to young children, 
CT must also be framed in a developmentally appropriate 
context (Bers, 2018). 

This research builds on these findings and focuses 
on the creative aspects of computer science for early 
elementary school children 5-9 years of age. We describe 
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The CAL-KIBO Curriculum
The CAL-KIBO curriculum consists of 12-15 adaptable 
lessons administered over a 6-8-week period. Throughout 
the curriculum, children engage in activities, songs, games, 
and open-ended projects CAL-KIBO integrates coding 
and CT with the use of arts and crafts, reading and writing 
activities that are commonly used in early elementary school. 
For example, the final lessons involve a project based on 
a children’s book, Where the Wild Things Are by Maurice 
Sendak. Students are invited to write a creative composition 
about what would happen in their own “Wild Rumpus” and 
subsequently program their “Wild Rumpus” using KIBOs 
(see Figure 2). The curriculum is aligned with the Common 
Core English Language Arts (ELA)/Literacy Framework, 
as well as Virginia CS Standards of Learning and other 
nationally recognized CS frameworks (e.g., K-12 CS 
Framework). Bers (2018) described seven powerful ideas 
of CT from CS that are developmentally appropriate for 
early childhood: hardware/software, algorithms, modularity, 
control structures, representation, debugging, and 
design process. Each CAL-KIBO lesson engages children 
in multiple powerful ideas of CT and connects them to 
foundational literacy and language concepts.

a curriculum called Coding as Another Language (CAL) 
that focuses on the role of languages, both artificial 
and natural, for expressive purposes. CAL integrates 
the teaching of computer programming and literacy by 
positioning the teaching of CS as another medium for 
expression (Bers, 2019). In other words, the ultimate goal of 
mastering a programming language is not only to provide 
a means of problem-solving but also to allow creation of 
personally meaningful artifacts that can be shared with 
others. Ultimately, CAL is informed by the notion that both 
natural and artificial languages are symbolic systems of 
representation that can be used for creative expression and 
communication (Vee, 2017).

Prior research has shown that learning to code 
can enhance the acquisition of CT and related 
thinking abilities. Román-González et al. (2018) found 
improvements in CT in a study of middle school 
students (ages 12–14) who engaged in the code.org 
curriculum. Arfé et al. (2019) found improvements on 
neuropsychological tests of response inhibition and 
planning in first and second graders who received 
coding instruction. These studies provide evidence 
from randomized control trials that learning to code can 
accelerate the development thinking abilities critical to 
CT in children. Further studies are needed to evaluate the 
impact of learning to code with an integrated curriculum 
such as CAL on young children's CT skills and other 
aspects of their cognitive development. 

We examined three different research questions: 1) 
How did the CAL curriculum promote students’ coding and 
CT skills? 2) What was the relationship between students’ 
CT skills and their literacy skills? 3) How did teachers react 
to the experience?

METHODS

Participants
A total of 667 first and second grade students and 57 
educators from eight elementary schools (CAL group), 
as well as 181 students from two comparison schools 
(No-CAL group), participated in this study. All schools 
were in the Norfolk Public School district, Norfolk, VA, 
and participated in the CAL coding curriculum. The 
curriculum utilizes KIBO robotics, a developmentally 
appropriate kit designed for children 4 to 7 years old, 
which does not require keyboards or screens (Bers, 2018; 
Sullivan, Bers & Mihm, 2017; Sullivan, Elkin & Bers, 2015). 
The KIBO-21 kit used in this study consists of the KIBO 
robot, 21 colorful programming wood-based blocks, as 
well as light, distance, and sound modules and sensors. 
Children assemble the barcoded blocks, scan them using 
the robot’s embedded barcode scanner, and press the 
triangle-shaped button on the robot to run the sequence 
of commands (see Figure 1).

Figure 1. KIBO-21 robotics kit

Figure 2. KIBO “Wild Rumpus” final projects created  
by second grade students
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general coding knowledge (e.g., “I know the definition 
of an algorithm”), pedagogical content knowledge 
surrounding how to teach coding (e.g., “I can teach lessons 
that integrate coding and literacy”), general KIBO robotics 
knowledge (e.g., “I can recognize common errors with 
the KIBO programming language and troubleshoot these 
errors”), knowledge of specific KIBO sensors and modules 
(e.g., “I know how to use KIBO’s Sound Sensor”), attitudes 
and self-efficacy surrounding the implementation of the 
CAL-KIBO curriculum (e.g., “I am confident in my ability to 
implement the CAL-KIBO curriculum in my classroom”) and 
perceptions on literacy (e.g., “What are your priorities in 
literacy instruction?”). T-tests were performed on pre and 
post-training survey data obtained from n = 47 participating 
first and second grade teachers.

Semi-structured interviews and focus groups with 
teachers and instructional technologists were conducted at 
various times (pre-training, during training, pre-curriculum, 
mid-curriculum, and post-curriculum) and focused on their 
reactions to KIBO and the CAL-KIBO curriculum. Examples 
of interview questions included “What has been easy/
challenging? How do these activities fit into the rest of your 
classroom curriculum? If you were to use KIBO again in 
your classroom, how would you integrate it into your lesson 
plans?” In each interview, teachers were asked to reflect on 
their attitudes towards coding and robotics education, their 
perspectives on teaching literacy and the strengths and 
challenges of their experiences. 

Measuring programming ability and CT skills in young 
children can be challenging. Two different tools were 
used to seek proof of learning of specific coding concepts 
through robotics. First, KIBO Mastery Challenges (KMCs), 
multiple-choice questions embedded in the curriculum, 
were administered after specific lessons, and a composite 
score was calculated from difficulty indices (Hassenfeld et 
al., 2020). Second, TACTIC-KIBO, a summative assessment 
of coding and CT skills, was administered after participation 
in the curriculum. Because children worked in teams 
throughout the curriculum, KMCs and TACTIC-KIBO 
provided individualized data regarding learning outcomes 
that would go unnoticed by just looking at students’ 
final projects. In addition to tool-specific assessments, a 
validated “unplugged” CT assessment called TechCheck 
was used, which focuses on problem-solving skills of 

Procedure
Participating teachers received professional development 
prior to curriculum implementation, as well as ongoing 
professional learning consisting of virtual coaching and in-
person support in the classroom provided by the district’s 
instructional technologists. Teachers implemented the 
curriculum in their classrooms approximately twice a week 
(two one-hour lessons). At the end of each lesson, teachers 
completed a lesson log, a brief online survey that asked 
questions such as “What were some successes/challenges 
(if any) during this lesson?” and “Did you modify or adapt 
the activities in this lesson in any way?”. Teachers were 
observed by the on-site project coordinator or instructional 
technologist at least two times over the course of the 
curriculum. Observers used the Positive Technological 
Development (PTD) Checklist (Bers, 2018) to examine how 
teachers and students were engaging with KIBO and with 
the CAL-KIBO lessons. 

Measures
Over two years, multiple types of data were collected (see 
Table 1). Robotics mastery and CT development in both 
teachers and students were assessed before, during, and 
after the experience. CT assessments were administered 
to students who participated in the CAL-KIBO curriculum 
and to an age and demographically matched comparison 
group from two other schools in the same district. We 
collected and analyzed students’ standardized literacy 
scores (DRA and PALS) from the beginning and end of the 
school year. DRA (Developmental Reading Assessment) is 
a computerized assessment that evaluates changes in K-8 
students’ reading level performance. PALS (Phonological 
Awareness Literacy Screening) is a diagnostic tool that 
measures children’s developing word knowledge, oral 
reading in context, alphabetic, and phonemic awareness 
and is used to identify struggling readers and provide 
additional support. 

To understand how teachers reacted to the experience 
of integrating coding and CT with literacy skills, we 
conducted surveys, interviews, and focus groups with 
participating teachers. Surveys were conducted before 
and after the professional development and consisted 
of questions related to teachers’ self-perceptions of their 

Table 1. Research Questions and Data Analysis Plan

Research Question Data Sources Data Analysis Method

RQ 1: How did the CAL curriculum promote 
students’ coding and CT skills?

TACTIC-KIBO, KIBO Mastery 
Challenges (KMCs), TechCheck

Descriptive, correlation, t-tests 

RQ 2: What was the relationship between students’ 
coding and CT skills and their literacy skills?

KMCs, TechCheck, PALS, DRA
Descriptive and correlation 
analyses

RQ3: How did teachers react to the experience?
Teacher interviews, surveys, 
and lesson logs

Thematic analysis, t-tests
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participants representing those who completed pre and 
post TechCheck as well as the DRA and PALS literacy 
measures. 

Teacher interviews and focus groups were transcribed 
and then analyzed using Braun and Clarke’s (2006) six-
phase thematic analysis approach. This approach involved 
reading through the data multiple times, generating 
initial codes, combining codes into overarching themes, 
exploring how the themes connected to our initial research 
question, refining themes with greater detail, and drafting 
our findings while referring to the data to ensure that our 
findings provided an accurate representation of teachers’ 
experiences of the curriculum. Common trends derived 
from this thematic analysis are presented in this paper. 

RESULTS

This section organizes the findings based on the three 
research questions addressed by the study: the CAL 
curriculum impact on coding and CT skills, the relationship 
between coding and CT with literacy, and teachers’ 
reactions.

the kind required to carry out computer programming 
without requiring knowledge or experience with coding 
(Relkin et al., 2020). TechCheck requires the transfer of 
knowledge gained from coding into CT skills useful for 
solving unplugged challenges that are not explicitly taught 
in the CAL-KIBO curriculum. TechCheck was administered 
before and after the curriculum in both intervention and 
control groups (see Table 2). Only results from neurotypical 
students are included in the analyses that follow since 
the CT and coding assessment measures have yet to be 
validated with a neuro-diverse population. 

Data Analysis
Paired sample t-tests and generalized linear mixed 
modeling were performed on assessment results from 
students who received CAL-KIBO, as well as students 
who participated in non-coding classroom activities, to 
address how the curriculum impacted students’ CT skills. 
To address the relationship between students’CT skills and 
literacy, correlation, regression, and Bayesian mixed effect 
modeling were conducted on data from a subgroup of  
n = 191 students from among the total sample of N = 667  

Table 2. Child Study Measures

Measure TechCheck TACTIC-KIBO KMCs

Reference Relkin, de Ruiter, & Bers (2020) Relkin (2018) Hassenfeld et al. (2020); Relkin & 
Bers (2020)

Description Assessment using “unplugged” 
(non-coding) tasks to measure CT 
related problem-solving abilities

Assessment of platform-specific 
coding and CT abilities in seven 
sub-domains.

Formative assessment of 
programming concepts specific 
to the CAL-KIBO curriculum as 
“checks of learning”. Assesses 
understanding of semantics and 
syntax of programming without 
requiring them to solve problems

Example What comes next? What is the correct order to scan 
program blocks?

Which block makes KIBO shake?

Specifications •  15 multiple-choice questions 
•  Designed for children ages 5-9 
•  15 minutes to administer
•  Score range 0-15
•  Validated against expert 

assessment of CT abilities

•  28 multiple-choice questions
•  Designed for ages 5-9
•  30-40 minutes to administer
•  Score range 0-28 
•  Validated against expert 

assessment of CT abilities

•  4 assessments, 6 multiple-
choice questions each totaling 
24 questions

•  Multiple-choice format
•  Designed for children ages 5-9 
•  High interrater reliability
•  Difficulty index for each 

question calculated with 
more weight given to difficult 
questions. Questions summed 
into a weighted Difficulty 
Composite Score

http://www.acm.org/education


Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions34

Relationships Among Students’ Coding, 
CT, and Literacy Skills
The theoretical framework upon which the CAL curriculum 
is designed proposes that learning computer programming 
allows children to gain an alternative form of literacy 
that permits self-expression in ways that are similar to 
reading and writing (Bers, 2019; Vee, 2017). Thus, in this 
study we examined the correlations between coding, CT, 
and conventional measures of literacy. Specifically, we 
wanted to know if students who scored higher on state-
wide assessments of literacy also performed higher in 
coding and CT tasks after they completed the CAL-KIBO 
curriculum. Our measure of coding ability was the student’s 
KMC composite score, and our measure of CT was the 
student’s TechCheck score post-curriculum. To estimate 
students’ literacy skills before the intervention, we used 
Fall standardized literacy scores (DRA and PALS) obtained 
by the school. There was a moderate positive correlation 
(Pearson) between baseline TechCheck scores and both 
the DRA (r = 0.39, p < .0001) and PALS (r = 0.33, p < .0001). 
We carried out linear regression to examine whether these 
two baseline literacy measures predicted the endpoint 
TechCheck scores when baseline TechCheck performance 
was taken into account. A model containing baseline PALS 
and TechCheck scores significantly predicted end point 
TechCheck F(2, 190) = 38.47, p <.0001. A model containing 
baseline DRA and TechCheck scores also significantly 
predicted end point TechCheck F(2, 190) =36.18, p <.0001. 
We conducted Bayesian mixed-effects modeling with 
TechCheck scores as the outcome variable and PALS and 
DRA literacy measures as well as baseline TechCheck 
scores as predictors. The Bayes factor was >100 indicating 
“decisive evidence” that baseline literacy measures (PALS 
and DRA) were predictors of end point TechCheck score 
when baseline TechCheck score was included in the model. 
In summary, these analyses indicate a possible relationship 

CAL Curriculum Impact on Students’ 
Coding and CT Skills
Descriptive statistics for all coding and CT assessments 
are shown in Table 3. First and second grade students 
who participated in the CAL-KIBO curriculum improved 
significantly on the TechCheck assessment, t(666)= 10.55, 
p < .001. A grade-matched control group that participated 
in non-coding classroom activities, the control group, 
did not significantly improve, t(180) = 1.81, p = .07. The 
improvement after 6-8 weeks of CAL-KIBO instruction 
is consistent with the estimated change in baseline 
TechCheck scores in the absence of coding instruction 
over approximately six months. A Generalized Linear 
Mixed Model incorporating taking into account age, 
grade, classroom, gender, and baseline score revealed 
that exposure to the CAL-KIBO curriculum was a significant 
predictor of the TechCheck outcome scores, p < .01 (Relkin 
et al., 2021).

We conducted stratified analyses to look for effects 
by grade. First grade students who received CAL-KIBO 
improved significantly on TechCheck, t(270) = 9.21, p < 
0.001, whereas the control group did not, t(358.31) = 1.07, 
p = .95. Second graders in the CAL group also improved 
significantly, t(395) = 6.11, p < 0.001 but not as much as first 
graders possibly due to a ceiling effect on the TechCheck 
assessment in which high baseline scores in second 
graders reduced the window for observing change (Relkin 
et al., 2020). A more challenging version of the assessment 
for second graders has since been created to address 
this issue (Relkin et al., 2021). A smaller but borderline 
significant improvement was observed in the second grade 
non-coding group, t(109) = 2.34, p = .05 possibly due to a 
learning effect or chance. Results stratified by grade shows 
that although first and second graders both improved on 
TechCheck more than their non-coding counterparts, we 
observed more of a difference in first graders.

Table 3. Descriptive Statistics for Coding and CT Variables

 n Mean (SD) Min Max

TechCheck Baseline CAL Groupa 667 10.09 (2.61) 3 15

TechCheck End Point CAL Group 667 11.03 (2.55) 2 15

TechCheck Baseline No-CAL Group 181 9.50 (2.38) 3 14

TechCheck End Point No-CAL Group 181 9.77 (2.55) 4 14

TACTIC-KIBO First Gradeb 214 13.10 (3.33) 2 20

TACTIC-KIBO Second Grade 398 18.28 (3.90) 4 26

KMCs Second Gradec 217 3.44(1.05) 1.59 6.25

Note.
a  TechCheck assesses children’s unplugged problem solving and CT
b  The Tufts Assessment of Computational Thinking in Children - KIBO version (TACTIC-KIBO) assesses children’s 

platform specific coding and CT skills 
c  KMCs (KIBO Mastery Challenges) assesses children’s KIBO coding proficiency
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We present our qualitative findings from teachers in 
Table 4, which summarizes teachers’ perceived successes 
and challenges of their curriculum experience, reactions 
to the coding-literacy integration, and overall factors that 
impacted curricular implementation. In terms of the CAL 
curriculum, teachers’ interviews and surveys showed that 
teachers enjoyed KIBO and their students did as well. 
However, the organization of robotics materials presented 
its own set of challenges, particularly with shifting materials 
between classrooms and managing clean-up time. Teachers 
developed different strategies such as creating a rotational 
system with fellow teachers, selecting students to be in 
charge of robotics clean-up, and keeping a set of 3-4 KIBOs 
in their classrooms at all times. Despite these logistical 
challenges, during interviews, teachers described being 
drawn to the hands-on, tangible nature of KIBO, especially 
in comparison to other screen-based applications felt. 
Teachers felt KIBO was engaging and developmentally 
appropiorate for their students. 

between the acquisition of CT skills and baseline literacy 
skills. This could be a consequence of the measures 
reflecting a child’s developmental stage or literacy skills 
influencing assessment performance on TechCheck rather 
than a specific effect on learning CT. 

Teachers’ Reactions
Most teachers expressed a high level of engagement when 
first introduced to KIBO during the training and displayed 
excitement while working on their own robotic projects. 
Results of t-tests indicated statistically significant increases 
in each of the 27 survey items assessing n = 47 teachers’ 
knowledge of general coding concepts, KIBO skills, and 
CS pedagogy as well as their attitudes towards coding 
and robotics education, t’s ranging from 5.19-22.40, p < 
.001 across all t-tests. Across all survey items and domains, 
neither race/ethnicity nor teaching experience impacted 
participant responses. 

Table 4. Teachers’ Reflections of the CAL-KIBO Curriculum Experience

Topic Theme Illustrative Quote

Successes and 
challenges

Coding beyond the 
screen

“I learned that coding doesn't just involve sitting in front of a computer 
and typing things and that it actually involves just using your mind and 
talking things out and stuff like that”

KIBO organization “Because I was sharing with [name omitted] and others that only did it 
once a week, so [the KIBOs] were in and out, and things got mixed up, so I 
color-coded mine”

Coding-literacy 
integration

Resistant to integration “I almost think they should take the writing components out of it, and just 
let us focus on the actual straight coding.”

Neither resistant nor 
receptive

“I'm not reinforcing, ‘Oh, capitalization, grammar, this and that’, like that's 
just not happening...I do feel like it hit, definitely, on oral communication...
They have to communicate with their buddy, whoever they're working 
with”

Receptive to integration “Each day with each lesson the kids were writing...and reading different 
things. They had to read [it] over. They had to read other people's 
instructions.”

Factors impacting 
curricular 
implementation

Time spent preparing 
for and implementing 
lessons

“Most of the lessons are supposed to be an hour, I know, but mine were 
probably two or more... I was able to tie [the Design Journals] in with the 
writing more because I spent more time on it.”

Teacher collaboration 
and utilization of 
resources

“One of our teachers broke down the KIBO [lesson] for the day and made 
a PowerPoint, so that we would be able to follow through and...check off 
the steps as we did them.”

Competing priorities 
of other lessons and 
activities

“Teachers are always pressed with a pretty comprehensive curriculum, so 
adding this in addition was a little overwhelming at times.”

Classroom 
management

“I felt even groups of four would be too much of a chaotic ruckus. And 
I felt like the kids would be most successful if they're just working in a 
partnership.”

Flexibility in adapting 
lesson activities

“I know everybody adapted and I adapted it by adding extra time. But I 
stuck to the curriculum. I know some people kinda cut out certain things 
and whatever, but I wanted to give them the full experience, so I pretty 
much went by the book.”
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a different number of robots available in each school. The 
classroom dynamic differed when KIBO robots were shared 
by pairs of students as opposed to larger groups of 5-6 
students. Classroom size and space were other variables 
that impacted the classroom experience. The CAL-KIBO 
curriculum was successful in engaging teachers and 
generating a high level of enthusiasm. Limitations on time 
to implement the curriculum and difficulty in organizing 
materials were common challenges reported by educators.

Implications 
The key to successful educational initiatives is to make 
authentic connections to the teaching that is already going 
on in the classroom. In this study, we connected coding and 
CT to literacy. Our findings indicate that first and second 
grade students improved in their coding and CT skills 
as a result of participating in the CAL-KIBO curriculum. 
Although teachers varied in their perceptions of integrating 
coding and CT with literacy, our findings suggest that these 
disciplines may share some cognitive and pedagogical 
overlap that has yet to be extensively explored in the early 
computing education field. This integration can have a 
positive impact regarding learning outcomes. In addition, 
children who participated in the CAL-KIBO curriculum 
did better on unplugged CT challenges (TechCheck) than 
their counterparts. This improvement occurred despite 
unplugged CT challenges not being an explicit part of 
the CAL-KIBO curriculum, suggesting that a transfer of 
knowledge took place.

Based on our study, we provide the following 
recommendations for practitioners seeking to integrate CT 
and coding in their classrooms: 

•  Time: Allocate enough time in the weekly schedule 
to prepare for and implement the curriculum. 
Implementing the curriculum in the winter or spring 
enables teachers to utilize established classroom 
routines and behavioral expectations, which are key to 
maximizing young student’s engagement and learning.

•  Curricular Alignment: Although the CAL-KIBO 
curriculum focused primarily on the connections 
between literacy and CS, and was taught during the 
literacy block, teachers found ways to connect the 
activities to other curricular domains such as science 
and math. We recommend aligning with multiple 
subject areas, not just literacy, while still framing the 
teaching of coding as a form of creative expression and 
communication. The more teachers could see how the 
lesson aligned with other content instruction, the more 
they felt comfortable teaching.

•  Resources: Teachers benefitted from collaborating 
with one another, using the virtual and face-to-face 
support resources, having access to knowledgeable 
support staff, and co-teaching lessons with instructional 
technologists. These findings provide insight into the 

Teachers varied in how they responded to the 
integration of literacy in the CAL curriculum; however, 
there was a distinct trend amongst second grade teachers. 
During interviews and focus groups, it became clear that 
teachers who understood literacy instruction as singularly 
focused on discrete skills (e.g., phonics, punctuation, etc.) 
were less open to the CAL curriculum and to the overall 
integration of CT, robotics, and literacy. Conversely, 
teachers who understood literacy in broader terms and 
saw meta-cognitive ideas and concepts about reading 
and writing as essential to the development of robust 
literacy abilities (e.g., communication, creative expression, 
awareness of audience and purpose, etc.) were more open 
to the curriculum. 

The analysis of teacher interviews and focus groups 
revealed several factors that impacted teachers’ overall 
experience: time spent preparing and implementing 
lessons; collaboration and utilization of resources; 
competing priorities of other lessons and activities; 
classroom management; and flexibility in adapting lesson 
activities. Individual classroom and school contexts played 
an important role. For instance, teachers who were more 
successful with the curriculum had manageable classroom 
sizes, flexible schedules to accommodate CAL lessons, and 
an adequate number of robotic kits for students to work in 
small groups. Conversely, teachers who had a large number 
of students with little floor space, taught in an open-
classroom setting, or had rigid grade-level schedules faced 
more challenges.

Discussion
Participation in the CAL-KIBO curriculum was associated 
with improvement in coding and unplugged CT skills. It is 
noteworthy that the measure of unplugged CT (TechCheck) 
showed improvement with exposure to CAL-KIBO even 
though the curriculum did not explicitly include the types 
of unplugged activities in TechCheck. This finding supports 
the assertion that the problem-solving improvements 
were a consequence of knowledge and skills gained while 
learning to code and not a function of explicit instruction in 
solving unplugged challenges. 

Taken together, our analysis suggests that baseline 
literacy skills were related to students’ acquisition of CT 
skills. Students who had higher PALS or DRA scores at the 
beginning of the term were more successful in CT tasks 
measured by TechCheck. These findings may help us 
develop effective integrated CS curricula and identify core 
skills that need to be strengthened so that all students can 
reap the benefits of early childhood computer education.

We encouraged teachers to adapt the curriculum 
based upon their students’ needs and available time. 
As a consequence, there was variability in the fidelity of 
implementation of the CAL-KIBO curriculum across schools 
and classrooms. Other sources of variation included having 



www.acm.org/education 37

ISTE, CSTA (2011). Operational definition of computational 
thinking for K–12 education. https://id.iste.org/docs/ct-
documents/computational-thinking-operational-definition-
flyer.pdf

Cuny, J., Snyder, L., & Wing, J. M. (2010). Demystifying 
computational thinking for non-computer scientists. 
Unpublished manuscript in progress, referenced in https://
www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf

Fayer, S., Lacey, A., & Watson, A. (2017). BLS spotlight on 
statistics: STEM occupations-past, present, and future. 
Washington, D.C.: U.S. Department of Labor, Bureau of Labor 
Statistics. https://www.bls.gov

Grover, S., & Pea, R. (2013). Computational thinking in K–12: a 
review of the state of the field. Educational Research, 42(1), 
38–43. https://doi.org/10.3102/0013189X12463051

Hassenfeld, Z. R., Govind, M., de Ruiter, L. E., & Bers, M. U. 
(2020). If You Can Program, You Can Write: Learning 
Introductory Programming Across Literacy Levels. Journal 
of Information Technology Education: Research, 19, 65-85. 
https://doi.org/10.28945/4509

Hermans, F., & Aivaloglou, E. (2017). To Scratch or not to 
Scratch? A controlled experiment comparing plugged first 
and unplugged first programming lessons. WIPSCE 2017. 
Proceedings of the 12th workshop in primary and secondary 
computing education (pp. 49–56).

Kalelioğlu, F., Gülbahar, Y., & Kukul, V. (2016). A framework 
for computational thinking based on a systematic 
research review. https://www.researchgate.net/
publication/303943002_A_Framework_for_Computational_
Thinking_Based_ on_a_Systematic_Research_Review

Lu, J. J., & Fletcher, G. H. (2009). Thinking about computational 
thinking. In ACM SIGCSE Bulletin (Vol. 41, No. 1, pp. 260-
264). ACM. https://doi.org/10.1145/1539024.1508959

Relkin, E. (2018). Assessing young children’s computational 
thinking abilities (Master’s thesis). Retrieved from ProQuest 
Dissertations and Theses database. (UMI No. 10813994).

Relkin, E. & Bers, M. U. (2019). Designing an Assessment of 
Computational Thinking Abilities for Young Children. In 
L.E. Cohen & S. Waite-Stupiansky (Eds.), STEM for Early 
Childhood Learners: How Science, Technology, Engineering 
and Mathematics Strengthen Learning (pp. 85-98). New York, 
NY: Routledge.

types of professional learning that early elementary 
teachers may require to feel comfortable and confident 
when teaching coding and robotics.

The CAL-KIBO curriculum focused on a single robotics 
coding platform, KIBO. We have also developed a version 
of the CAL curriculum that utilizes the free ScratchJr 
introductory programming language and are currently 
conducting studies. Future work will address the relative 
strengths and weaknesses of both curricula regarding 
different coding platforms and develop collaborations with 
other school districts in the U.S. and abroad. We will also 
explore if the CT skills acquired through one programming 
language transfers to another one.
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Introduction
Computing, and the technologies it enables, are playing 
an increasingly important role in society. As such, for 
young learners growing up in this technological landscape, 
being able to recognize the capabilities and limitations 
of computing technologies, think critically about the 
roles computing plays in society, and most crucially, to 
be able to meaningfully participate in a technological 
culture is essential. In response to the growing importance 
of the skills associated with computing and the need to 
broaden participation in the community, it is essential that 
all students have the opportunity to learn the big ideas 
of computing and develop foundational computational 
thinking (CT) skills (National Research Council, 2010; Shute 
et al., 2017; Wing, 2006).

To ensure equitable access to CT learning opportunities, 
CT must be a part of all learners’ K-12 classroom 
experiences. To accomplish this goal, we have developed 
a curriculum, entitled Sphero.Math, in which learners 
explore mathematical concepts and develop CT skills 
by interacting with a spherical robot. The approach 
embeds CT into existing 4th-grade math classrooms and 

has both theoretical and practical motivations. From a 
theoretical perspective, there is a long history of research 
demonstrating the mutually-supportive potential of 
computing and mathematics (e.g., Abelson & diSessa, 1986; 
Kaput et al., 2002; Noss & Hoyles, 1996; Papert, 1972). This 
research shows how computing can serve as a tool for deep 
mathematical exploration and that mathematics as a subject 
can provide a meaningful context to enact computational 
ideas. From a practical perspective, taking this integrative 
approach ensures that all learners will have access to CT 
learning experiences as every school has resources to 
teach mathematics (e.g., teachers, time, classrooms) and 
every student takes mathematics in 4th-grade. Further, the 
Sphero.Math curriculum was co-developed with teachers 
and district curriculum experts as part of a research-practice 
partnership (Coburn & Penuel, 2016), resulting in significant 
institutional support and a curriculum that fits with the 
technology, infrastructure, and professional development 
resources available within the district.

The last decade has seen a flourishing of research 
seeking to bring CT into STEM classrooms of all levels. 
In their review of assessing CT, Tang and colleagues 
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work contributes an empirical example of how to integrate 
CT into elementary classrooms in an equitable, sustainable, 
mutually-supportive way.

METHODS

In this section, we first introduce the Sphero.Math curriculum, 
providing a high-level description of the approach and 
technology to help situate the specific examples provided 
in the Results section. We then describe the study design 
and data collection strategies followed by a presentation 
of the setting in which this research occurred and the 
characteristics of the participants. 

Sphero.Math
The Sphero.Math curriculum consists of 14 lessons that 
engage students in solving math tasks using a Sphero 
(Figure 1a), which is a spherical robot that can be 
programmatically controlled with a tablet or smartphone 
(Figure 1b). Sphero programs take the form of block-based 
scripts (Figure 1c) that can include basic programming 
constructs (e.g., loops, conditionals), commands to control 
the Sphero’s movement and appearance (e.g., roll, 
strobe), and sensor data from the device (e.g., distance 
traveled, speed). The basic movement command for the 
Sphero is the roll command which takes three inputs: 
heading, speed, and time, resulting in a command that 
reads: roll 45° at 100 speed for 3s. The decision to 
use the Sphero for this curriculum was made by the district, 
which had classroom sets of Spheros and tablets available 
for students. The Sphero robot and its accompanying 
programming environment have a number of affordances 
that lend it well to the exploration of mathematical concepts, 
including defining distance as a product of rate and time 
(thus supporting proportional reasoning), recording and 
reporting distance traveled, speed, and acceleration for a 
given program run that can then be recorded and analyzed, 
and interactive input features for expressing mathematical 
concepts, such as an interactive protractor to define angles 
(Figure 1d). Additionally, the physical nature of the Sphero 
supports younger learners in drawing on their bodies 

(2020) identified 96 empirical studies of CT, with roughly 
two-thirds of those studies (67.4%) focused on formal 
education and 21.7% of those studies investigating CT 
integrated with STEM content. The Sphero.Math project 
adds to the growing body of research investigating CT in 
elementary classrooms (e.g., Asbell-Clarke et al., 2020; 
Israel & Lash, 2019; Miller et al., 2020) and adds to it in 
a number of unique ways, including its explicit focus on 
mutual-supportiveness (i.e., a focus on mathematical and 
CT learning), its close collaboration with the school district 
to ensure ease of adoption and continued district support, 
and its focus on broadening participation and equity by 
working in schools that historically have offered few CT 
learning opportunities. 

While there remains an active discussion as to what 
exactly constitutes CT (Grover & Pea, 2013; Shute et al., 
2017), given our focus on CT in elementary mathematics 
classrooms, our conceptualization of CT draws from the 
CT in Math and Science Taxonomy (Weintrop et al., 2016) 
and how it aligns CT to the unique characteristics of the 
disciplines. More concretely, we operationalize CT using the 
PRADA (pattern recognition, abstraction, decomposition, 
and algorithms) model for integrated CT (Dong et al., 2019) 
along with CT practices associated with programming, 
including iterative development and debugging. 

This paper continues with an introduction to the 
Sphero.Math curriculum and a discussion of the context 
in which the study took place and the methodological 
approach used. After that, we present our results in the 
form of two vignettes, showing what the Sphero.Math 
curriculum can look like in practice and how learners have 
opportunities to engage in both mathematics and CT in 
mutually-supportive ways. These vignettes are intended to 
serve as an existence proof that CT and mathematics can 
co-exist and be embedded into elementary mathematics 
classrooms in a way that is consistent with the goals of 
the teacher and district while also engaging learners 
with CT concepts historically absent from such learning 
contexts. The paper concludes by summarizing the 
significance and implications of this work. Collectively, this 
work advances our understanding of how to work within 
existing educational infrastructure to bring high-quality CT 
instruction into urban elementary classrooms. Further, this 

Figure 1. (a) The Sphero robot, (b) programming environment, (c) a sample program, and (d) interactive protractor for defining angles�

(c)(b)(a) (d)
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while not part of the 4th-grade math curriculum, students 
gain insight into covariation (how variables affect each 
other as they change) as they work to understand how 
changing the speed and time variables affects distance. At 
the same time, students develop CT skills, like developing 
algorithms, as they write a program that commands Sphero 
to roll at a certain speed for a certain amount of time, and 
manipulate those variables in the program as necessary. 

Setting and Participants
This study took place over two years in 4th-grade 
mathematics classrooms in an urban public school district 
in the Mid-Atlantic region of the United States. The Sphero.
Math curriculum has been taught in schools across the 
district that serve a range of student populations. In Year 
2 (the 2020-21 school year), we focused on two schools, 
one that serves a predominantly Black student population 
(99% Black student body) and a second that serves a 
predominantly Hispanic/Latino student population (74% 
Hispanic/Latino; 12% White; 11% Black), with both schools 
being designated as Title I by the district, meaning they 
serve a significant number of students from economically 
disadvantaged households. The vignettes presented below 
are from a recorded session with a pair of students in Year 
1, which is a more racially diverse school (51% White, 17% 
Hispanic/Latinx, 15% Black/African American, 9% Asian, 8% 
Mixed Race).

Data Collection
To understand the experiences of students working through 
the Sphero.Math activities, we conducted a qualitative 
classroom study that closely examined how a small group 
of students engaged with the Sphero.Math curriculum. In 
Year 1, we observed Sphero.Math lessons being taught in 
person, and recorded video of students working through 
Sphero.Math activities. For each classroom observation, 
two focal pairs were identified by the classroom teacher. 

and experiences moving through the world as a means of 
translating their intentions into programming commands 
(Bih et al., 2021).

Sphero.Math was developed collaboratively by 
researchers from the project working closely with a 
technology specialist, an instructional coach, and a 4th-
grade teacher from the partnering district. Lessons were 
designed to fit within the time allotted for mathematics 
instruction. Each lesson follows a three-part structure: 
Engage - which situates the lesson’s central problem/
question, Code - during which students author, test, and 
debug programs, and Debrief - during which student review 
their programs, reflect on the process, and discuss the 
mathematical and computing concepts encountered during 
the lesson. Each lesson has both student and teacher-
facing materials, with the teacher-facing materials defining 
a clear objective for the lesson and documenting how the 
lesson aligns to the 4th-grade Common Core Mathematics 
Standards (CCSS, 2010), which are the standards used by 
the district. The lessons also detail what CT students will 
engage with during the lesson, and, when possible, what 
lessons from the district-mandated mathematics curriculum 
the Sphero.Math lesson aligns with. In an effort to provide a 
meaningful and engaging context, the curriculum situates 
each activity in an amusement park theme. 

Central to each lesson is the integration of both 
mathematical and CT concepts. For example, in one lesson 
entitled Roller Coaster Speed Test, students calculate the 
expected distance that the Sphero should travel at speeds 
of 10 and 100 for 1, 2, 3, and 4 seconds. The students then 
compared their calculated distance to the actual distance 
that the Sphero travels for the different speeds and times. 
During the lesson, students examine relationships between 
factors of 10, which is a 4th-grade Common Core Standard 
(CCSS.Math.Content.4.NBTA.1). They also attend to issues 
like mathematical precision, which is Practice 6 of the 
Common Core Standards for Mathematical Practice (CCSS, 
2010), and the various factors that can affect the Sphero’s 
precision (like rolling on tile vs. rolling on carpet). Also, 

Figure 2. Students working on a Sphero�Math activity as seen from (a) the stationary camera and (b) a head-mounted camera�

(a) (b)
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identify the mathematical content and the types of CT and 
programming skills exhibited by the students. As we were 
interested in identifying features of the tools and tasks that 
helped support these moments of mutually-supportive CT 
and mathematics. The research team watched the video 
selections together multiple times until consensus was 
reached on the mathematical ideas and CT used by the 
students. In analyzing these instances of co-expression, 
we matched students’ mathematical skills to the Common 
Core State Standards (CCSS, 2010). In terms of CT, we 
used the PRADA framework (Dong et al., 2019) as a lens to 
identify the different components of CT that students used 
in conjunction with the mathematics. In addition, we looked 
for several key programming skills, including iteratively 
developing a solution and debugging, which are generally 
considered to be important elements of CT (Shute et al., 
2017). Table 1 shows the CT components we focused on, 
how they were operationalized for this work, and examples 
of each from the Sphero.Math curriculum. 

RESULTS

In this section, we present two vignettes of one pair of 
students (shown in Figure 2) working through a summative 
Sphero.Math activity. In the first year of the project, the 
summative Sphero.Math activity asked students to program 
their Sphero to navigate a maze (Figure 3a). However, unlike 
a conventional maze-navigation challenge, students were 

Each focal student wore a head-mounted video camera, 
providing a first-person perspective on their experience 
working with the Sphero and the Sphero programming 
environment (Figure 2b). Additionally, a third, stationary 
camera was used to provide a third-person perspective on 
the pairs’ engagement with the materials (Figure 2a). This 
resulted in three videos for each pair of students working 
through the lesson. At the conclusion of the Sphero.Math 
lessons, brief interviews were conducted with the students 
asking them to reflect on their experiences going through 
the lesson. We did not have the same opportunity to video 
record students in Year 2 due to the COVID-19 pandemic. 
Instead, Sphero.Math lessons were taught virtually by the 
classroom teachers and observed by researchers. 

Data Analysis
The data presented in this paper is from the video-
recorded sessions of student pairs in Year 1. Two members 
of the research team watched and thematically coded 
all three videos of each Sphero.Math lesson (Saldaña, 
2015). In this initial viewing, researchers were specifically 
looking for moments where CT and mathematics were 
co-expressed and mutually-informing (i.e. CT was being 
used to investigate a mathematical concept or mathematics 
was being used to explain a CT idea or outcome). These 
moments of co-expression were then transcribed and 
analyzed by the full team using interaction analysis 
techniques (Jordan & Henderson, 1995), looking to 

Table 1. The definition of computational thinking used in this work�

CT Component Definition Sphero.Math Example

Pattern Recognition Identifying parts of a problem that repeat. 
Repeating steps/concepts can often be 
performed by a computer

Seeing that a series of steps are repeated to 
measure a distance, so putting those steps 
inside a looping block (e.g. repeat)

Abstraction Creating generalizations that are meaningful/
useful or identify the essential parts of a 
problem and re-representing the problem 
including only the relevant parts

Being given the challenge of finding the 
perimeter of a specific rectangle but then 
writing a program that can calculate the 
perimeter of any rectangle

Decomposition Breaking a problem down into smaller parts 
(either sub-problems or specific aspects of 
a problem that can be easily mapped to a 
computational solution)

Breaking down a complex shape into a series of 
line segments and turns which map easily onto 
programming commands far a Sphero

Algorithms Defining a sequence of steps that can be 
followed to achieve some desired outcome

Defining a series of steps that can be executed 
by the Sphero to find the area of your classroom

Programming Skills Definition Sphero.Math Example

Iterative 
development

Developing a solution through incremental 
steps, iteratively refining and revising aspects of 
the solution

Manipulating the duration argument in the roll 
command multiple times to “zero in” on a time 
that will make Sphero roll the desired distance

Debugging A systematic approach to identifying the source 
of undesired outcomes and correcting them to 
achieve desired results

Reading through Sphero code line-by-line and 
acting out the steps to identify the source of an 
error
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to travel just 1 square length is in contrast to trying to 
write a program that travels the full distance of the initial 
segment (3.5 squares). This is significant as it demonstrates 
the students setting out to solve the maze-navigation 
problem by decomposing the maze into reusable 
segments, creating a basic command that travels one 
square, and then reusing it to navigate the maze 

To get their Sphero to roll one carpet square length 
(24 inches as defined by the map), the students start 
by composing a program consisting of the following 
command: roll 0° at 50 speed for.7s. They then 
place their Sphero next to a yardstick and run the program 
(shown in Figure 2a). After their first run, the Sphero 
rolled 32 inches. Realizing their Sphero rolled too far, they 
modify their program, instructing the Sphero to only roll 
for .3 seconds. They re-run their program but this time the 
Sphero only travels 6 inches. They next try .5 seconds and 
re-run the program again, this time the Sphero travels 23.5 
inches, prompting Student One to say “I think [the teacher] 
would give us that”. Student Two replies, “No, because if it 
kept going like that…” then trails off as his partner says, “Ok 
then .573”. They modify the program, changing the third 
argument in the roll command to .573 seconds, and run 
the program for a fourth time. The Sphero travels exactly 24 
inches, prompting Student Two to say, “Right on the dot.”

Decomposition, Iterative Development, 
and Debugging: Discussion
In the first vignette, we see two 4th-grade students 
decomposing the maze into segments (CT Practice: 

not allowed to test out their program on the maze directly, 
instead, they were provided a map of the maze (Figure 3b). 
On the map, the path of the maze is overlaid onto a grid with 
the dimensions of the grid provided. To navigate the maze, 
students must calculate the length of maze segments based 
on the provided grid-square dimensions and then program 
their Sphero to travel that distance. Only after the students 
had written the program to traverse the maze based on 
their own measurements and calculations were they able 
to try it out on the actual maze. The activity aligns with 
4th-grade Common Core Mathematics Standards (CCMS) 
asking learners to “Solve problems involving measurement 
and conversion of measurements” and the CT practices of 
Pattern Recognition, Algorithms, Decomposition, along with 
foundational programming practices. These vignettes are 
intended to demonstrate the ways that CT and mathematics 
can be mutually-supportive and highlight the role of the 
Sphero in mediating this co-expression. After each vignette, 
we present a brief discussion highlighting the mathematics 
and CT demonstrated by the students and how the two 
practices are mutually-supportive.

Decomposition, Iterative Development, 
and Debugging
At the outset of the activities, the two boys in our focal 
pair identify the first segment of the maze as consisting 
of three-and-a-half squares and initially develop a plan to 
write a program that has their Sphero travel the length of 
one carpet square and then plan to reuse that command 
throughout the maze. The decision to program the Sphero 

Figure 3. (a) The maze to be completed and (b) the map of the maze, include the  
dimension so the carpet squares (provided inches and centimeters)�

(a) (b)
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Proportional Reasoning, Pattern 
Recognition, and Algorithms: Discussion
In this second vignette, the students start to build their 
algorithm based on the command they authored in the 
first vignette to travel a single map square. They identify 
that their one-square program needs to be repeated 
3.5 times to traverse the first segment of the maze (CT 
Practice: Pattern Recognition). To do so, they develop an 
algorithm that repeats the full square command three times 
and then they devise a fourth command to travel half of 
a map square by cutting the speed in half (CT Practice: 
Algorithms). At the same time, students work with a unit 
of measurement (a grid square) and determine how to 
manipulate the measurement to solve a distance problem 
(Standard: CCSS.MATH.CONTENT.4.MD.A.2). Additionally, 
realizing that cutting the speed in half while keeping the 
duration fixed will result in the Sphero traveling half-as-far 
shows these 4th-grade students conducting multiplicative 
comparisons to solve problems (Standard: CCSS.Math.
Content.4.OA.A.1) and employing proportional reasoning, 
which is not expected of students until grade 6.

Discussion
Across these two brief vignettes, we see instances of 
students engaging in mathematical thinking and CT 
practices and also ways that two are mutually informing: 
the mathematics task is serving as a context for employing 
CT practices and that CT practices serve as a way 
to support and enact mathematical reasoning. One 
important thing to note across these vignettes is that the 
CT practices and mathematical concepts demonstrated 
in these vignettes were all enacted in service of solving a 
specific problem. The assignment was not for students to 
show an understanding of a particular concept, nor did 
they receive direct instruction on how to use, for example, 
proportional reasoning, to navigate the maze or iterative 
development to refine the precision of their program. 
Instead, these practices and concepts emerged in situ, 
informed by the specific constraints of the program and 
affordances of the technology.

The final noteworthy aspect of this work is to reiterate 
the context in which it occurred - an urban elementary 
mathematics classroom. As a result of the way the 
curriculum was designed, through an RPP including input 
from teachers and district administrators, the curriculum 
relied only on materials available to teachers in the district 
and aligned to mathematics standards the students are 
evaluated against. Additionally, the district provided 
time for teacher professional development and helped 
recruit schools and teachers to participate in the project. 
Collectively, the alignment of the goals of the teacher, 
the district, and the researchers led to the creation 
of a curriculum that attends to both CT learning and 

Decomposition) and then attending to issues of precision 
(CCSS Mathematical Practice 6). In their efforts to program 
their Sphero to travel exactly one grid square, the students 
employ a strategy of trying out a duration, recording the 
resulting traveled distance, and then revising the duration 
based on the outcome (CT Practice: Iterative Development). 
While students used an iterative approach, they also 
demonstrated an understanding of place value and 
reasoned about the size of numbers expressed in decimal 
form as they chose .573 for their duration that is both 
greater than .5 and less than .7, the previously attempted 
values. This decimal comparison is a 4th-grade Common 
Core Standard (CCSS.Math.Content.4.NF.C.7) and aligns to 
concepts the 4th-graders learned during their traditional 
math lessons. Also, while not in the curriculum, this lesson 
also allows students to explore covariation, as they change 
the time the Sphero travels to achieve the desired distance. 

A second instance of CT can be seen in the final 
comments from this vignette. In debating whether a “close 
enough” program would work, Student Two comments: 
“No, because if it kept going like that…” This utterance 
demonstrates rather sophisticated reasoning about the 
implications of iteration, grounded in an understanding of 
measurement and additive properties of length. Because 
the pair plans to re-use this program for each square of 
the maze, being off by a little will produce a compounding 
error where their Sphero ends up increasingly off the more 
times this command is executed. In this utterance, we can 
see how the context of programming the Sphero serves as 
a context to reason about and engage with various aspects 
of measurement and precision, which are part of the 4th-
grade math standards.

Proportional Reasoning, Pattern 
Recognition, and Algorithms
Having successfully authored a program to get their Sphero 
to travel one square, the pair returns to the map to figure 
out how to get the Sphero to travel the entirety of the first 
maze segment. Pointing to the start position, Student One 
says “alright, we’ve done one of them, so we’ll do one more”. 
Student Two picks up this idea, “so then we need to go right 
here and right here, and then we need to go half of one” 
moving his finger along the line segment as he speaks. 
After his finger reaches the end of the first segment, Student 
Two says “So we'll just cut the speed in half”, proposing a 
solution to traveling that last half-square. To implement this 
plan, the pair repeats the command they figured out in the 
previous vignette (roll 0° at 50 speed for.573s) 
three times, once each for the full squares of the first maze 
segment. For the final command, they cut the speed in half, 
having the Sphero travel at speed 25 instead of speed 50. 
The resulting program to navigate the first segment of the 
maze is showing in Figure 1c.
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teaching CT in elementary schools that serve economically 
disadvantaged student populations composed of learners 
from populations historically excluded from computing. This 
is a direct result of the close collaboration with the district 
and reflects the district’s commitment to providing enriching 
CT activities to all students across the district. The Sphero.
Math project was conceived through conversations with 
district leadership and co-designed with teachers, enabling 
the voices of both researchers and practitioners to be 
present at each phase of the work. The result is a curriculum 
that aligns with the district's mission of equitable and joyful 
learning opportunities for all learners and delivers on the 
overarching goals of bringing CT to all learners.
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mathematical learning and does so in a way that allows for 
it to be taught in classrooms that historically have had little 
CT or technological components. 

Implications, Limitations & Future Work
There are several implications of this work for both 
researchers and practitioners. Central among them is a 
demonstration of the potential for mutually-supportiveness 
between CT and disciplinary content - in this case, 4th-
grade mathematics. The vignettes above show that CT-
enhanced activities can provide a context for students 
to engage in mathematical problem solving and that 
math problems, like manipulating variables to achieve a 
particular distance, can provide a context for CT learning. 
This is significant as it directly addresses a central (and 
valid) concern of many educators - that there is no room 
for additional content in the already overpacked school 
day (Barr & Stephenson, 2011). It is important to mention 
that bringing a CT-infused curriculum into classrooms 
still requires an investment of time and energy (e.g., 
professional development to train teachers, district logistics 
support to ensure materials are present in each classroom). 
However, when the commitment to bring CT to all students 
is in place, a mutually-supportive curriculum can provide a 
pathway to achieve this goal. 

The second implication of this work is a reimagining 
of what, how, and where students can engage with CT. 
Historically, the concepts and practices associated with CT 
(e.g., debugging, problem decomposition, programming) 
have resided in high school computer science classes. With 
this work, we show what it can look like for these same 
ideas to reside in a very different educational context: 
elementary mathematics classrooms. This serves as a 
demonstration of how an expanded view of CT can be 
integrated into existing subjects, opening new pathways for 
learners, especially younger students, to be introduced to 
the powerful ideas of computing. 

The data presented in this study are intended to serve 
as an existence proof that it is possible to work within the 
constraints of urban, public schools to provide CT learning 
opportunities to young students in a way that aligns with 
the disciplinary goals of the class. Given the nature of the 
data collected (multi-stream video of a small number of 
students), this work cannot make claims about the impact 
of this work across the full set of students or other schools 
that were using the Sphero.Math curriculum. This larger-
scale analysis is a limitation of the present study and is the 
planned course of future work. Our intention with this work 
is to lay the qualitative foundations for the quantitative 
evaluation work to follow.

In closing, this work shows how an integrated approach, 
co-developed with district partners, can bring CT learning 
opportunities to students who historically have had few 
opportunities to engage with computing. In this case, 
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Educational robotics is a popular way to introduce young 
children to computer science and the mathematics inherent 
in computer programming (Anwar et al., 2019; Bers, 2010). 
Papert’s (1980) Mindstorms famously captures the inherent 
potential of educational robotics that is present today —  
when children work with robots, they are challenged to 
think in ways that are analogous to the computer. They 
must visualize the robot’s movements, program the robot 
to make those movements, and continue to test and debug 
until they achieve their goals (Anwar et al., 2019; Yuen et 
al., 2015). These activities position educational robotics as 
a way of meeting the current national priority of improving 
CS education for all in the US.

The process of problem solving inherent in educational 
robotics is commonly referred to as computational think-
ing. Computational thinking is a problem-solving process 
associated with computer scientists in which children use 
computational practices to solve problems (Wing, 2011). 
It consists of skills like decomposing a larger task into sub-
goals, using and designing algorithms to achieve goals 
with precision (i.e., algorithmic thinking), recognizing and 
forming patterns, and iteratively developing a computa-
tional solution through trial and error (Grover & Pea, 2013; 
Wing, 2006). 

Codable robots provide opportunities to apply com-
putational thinking practices within the context of mathe-
matical instruction. For example, when children repeatedly 
test and debug a computer program, they are making 
sense of problems and showing perseverance in solving 

them (Dunbar & Rich, 2020). Programming the robot 
requires children to move between fractional and deci-
mal forms of numbers, including whole numbers, as they 
determine the speed and time needed to move the robot 
(i.e., algorithmic thinking). The robot’s movement can 
support learning the relationship between different angle 
measures (Dunbar & Rich, 2020), the fundamental compo-
nents of coordinate systems (Rich et al., 2020), and even 
proportional reasoning between distance, speed, and 
time (Rich et al., 2020; Yuen et al., 2015). Thus, educational 
robots can provide opportunities to integrate CT within 
K-12 classrooms and support children’s mathematical 
learning (Grover & Pea, 2013; National Science & Technol-
ogy Council, 2018). 

While educational robotics provides an opportunity 
to integrate computer science into the math curriculum, 
elementary teachers often lack the support needed to 
do so successfully. Research has indicated an overall 
lack of access to quality computer science activities and 
the professional learning needed to develop teacher’s 
knowledge and skills with activities like educational 
robotics (Anwar et al., 2019; Yadav et al., 2016; Yuan et 
al., 2019). This often leads teachers to view educational 
robotics as an additional burden that detracts from 
meeting the standards to which they are held accountable 
(Ketelhut et al., 2020). Thus, the question remains how 
to support elementary teachers to integrate CT through 
educational robotics with their math instruction (Lee et al., 
2017; Leonard et al., 2018). 
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Professional Development Framework
Our professional development (PD) focused on the 
knowledge, skills, and attitudes needed to integrate 
educational robotics into the mathematics curriculum. We 
used Ozobot robots because this technology supports 
learning CS concepts from Kindergarten through fifth 
grade. As shown in Figure 1, Ozobots can be programmed 
visually using hand-drawn commands such as following 
solid lines and performing actions through color 
combinations (e.g., red-green-red = go faster). Ozobots 
can also be programmed to move, change speed, turn, and 
perform actions (e.g., zig zag; change color) through block-
based programming (see Figure 2). For younger learners, 
commands are represented visually (e.g., a 90° turn as a 
circle with one quarter filled in) whereas more advanced 
learners can use text-based blocks to enter specific values. 

To address both the technological skills and teaching 
practices needed to integrate CS into the math curriculum 
through educational robotics, we drew on two areas of re-
search: research-based principles of teacher PD in technolo-
gy integration (e.g., Kopcha, 2012; Mouza, 2009) and Smith 
& Stein’s (2011) five practices for mathematical discourse. 

Research-based Technology Integration
PD Principles
Teachers learning to integrate technology face a variety of 
potential barriers, including a lack of knowledge, beliefs, 
time, and support (Kopcha, 2012). Mouza (2009) developed 
a set of research-based principles for technology PD that 
address those barriers. The six principles include: focus 
on teacher knowledge, reform-type activities (e.g., co-
teaching and co-planning), situate activities in teacher 
needs, active learning, extensive duration, and collective 
participation (e.g., regular meetings; inclusion of STEM 
coaches and technology specialists). These principles can 

Professional development (PD) can equip teachers with 
the knowledge and skills needed to integrate educational 
robotics into the elementary curriculum while meeting 
content area standards (Ketelhut et al., 2020; Yuan et al., 
2019). This is important for achieving the national vision 
of CS for all students, particularly in under-resourced 
communities. However, improving a teacher's attitude 
toward and use of educational robotics is particularly 
important. As elementary teachers increase their use of 
educational robotics, students have opportunities to develop 
foundational computational thinking skills at a young age. 
Positive exposure to CT and computer programming at a 
young age can help children view themselves as capable 
of and interested in a career in computer science (Eguchi, 
2014; Karp & Maloney, 2013; Yuan et al., 2019). Given the 
demand for CS education in today’s schools, there is a 
need for research on specific approaches that can support 
teacher integration of CS through educational robotics 
(Anwar et al., 2019; Ketelhut et al., 2020).

This paper reports a PD effort in which 12 elementary 
teachers (K-5) in a rural, under-resourced area learned 
to integrate educational robotics into the regular math 
curriculum. The year-long PD blended research-based 
principles of technology integration PD (e.g., Mouza, 2009; 
Kopcha, 2012) with Smith & Stein’s (2011) five practices for 
orchestrating mathematical discourse to support teachers 
in meeting state standards while engaging students in 
educational robotics. Survey data and lesson plans were 
analyzed to understand how the PD contributed to the 
teachers’ learning and success. The questions guiding this 
study were:

A�  What is the influence of PD on elementary teachers’ 
attitudes toward and knowledge of teaching math 
through educational robotics? 

B�  How did the elementary teachers integrate educational 
robotics to support Smith and Stein’s (2011) 
mathematical practices?

Figure 1. Ozobot programming with  
(a) solid lines and color codes and (b) block-based programming� 

(a) (b)
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educational robotics at the elementary level. For exam-
ple, Ozobot block programming uses circular symbols to 
indicate angle measures, where a 90° turn is represented as 
a circle that is one quarter full. A teacher using the five prac-
tices would anticipate that young children might struggle 
with representing a 90° angle as one quarter of a circle and 
develop questions that encourage students to struggle with 
the concept (e.g., Which block code represents 90°? What 
portion of the circle is represented? How do you know?). 
The teacher could select and sequence examples of that 
concept from student work, building on the idea that two 
90° turns add up to 180°. This connects with the concept of 
fractional addition as represented visually (e.g., two quarter 
circles is half a circle). In this way, the teacher supports stu-
dents in applying mathematical concepts while engaging in 
CT skills like recognizing patterns and engaging in algorith-
mic thinking (e.g., 90° + 90° is half a circle or 180°, which 
can also be expressed as ¼ + ¼ = ½).

Research suggests that the five practices can help teach-
ers sustain cognitive demand around mathematical concepts 
(Boston & Smith, 2009) and support students in deeper 
levels of mathematical reasoning (Ball et al., 2008; Lampert 
et al., 2010). We anticipated that blending Smith and Stein’s 
practices with research-based principles of PD would help 
improve our teachers’ attitudes and skills when integrating 
educational robotics into elementary math curriculum.

METHODS

This study took place in a high-need elementary STEM 
charter school in the rural South. Leadership identified 
improving students’ mathematical skills through CS activity 
as an important goal. The school, which serves over 
300 diverse K-5 students (51% African-American, 38% 
Caucasian, 6% Hispanic), partnered with the university to 
offer PD through a US Department of Education Improving 
Teacher Quality state grant. 

Participants
The participants were 12 elementary teachers. Eight were 
grade-level teachers from first (1 teacher), second (1), third 
(2), fourth (2) and fifth (2) grade. The remaining participants 
included the school library media specialist, who co-taught 
with teachers each week in the media center, and three 
STEM coaches, who regularly provided individual, in-
classroom support to the teachers. Aside from the school 
library media specialist, none of the teachers had prior 
experience with educational robotics. 

Data Collection and Analysis
Teachers completed a survey and test of knowledge 
during the first professional development session as a pre-

help teachers manage barriers such as access, knowledge, 
and skills, which, in turn, improves their technology use in 
the classroom (Kopcha, 2012; Mouza, 2009). 

Our PD emphasized the six principles. It began with a 
week-long summer workshop in which teachers completed 
five activities as if they were the student. We chose this 
strategy to promote active learning as part of our PD. For 
example, the teachers used the robots to draw and name 
geometric shapes for the robot to follow, explore the 
relationship between perimeter and area, and program 
the robot to trace various angle measures, line lengths, 
and regular polygons. These activities were hands-on 
and provided multiple opportunities for the teachers to 
apply computer programming skills and mathematical 
thinking in a similar manner as their students. This strategy 
is similar to that used by Carpenter et al. (1989) who found 
that teachers who engaged in the same activities as their 
students during PD were better equipped to support and 
guide student learning in the classroom. 

As part of the workshop, the teachers also developed 
three lesson plans that integrated educational robotics into 
the math curriculum; the goal was for the teachers to make 
a plan for using the educational robots over the coming 
academic year. This helped them situate the PD in their own 
needs and the needs of their students. Extensive duration 
was achieved through monthly follow-up meetings and 
in-classroom support throughout the year as the teachers 
implemented their lessons. Collective participation was 
established in that teachers received in-classroom support 
from both the researchers and the on-sight math coach 
and technology specialist. In-classroom support, which is 
a reform-type activity, primarily consisted of co-teaching. 
When co-teaching, the teacher led the lesson activity while 
in-the-moment coaching and modeling were provided 
by one of the researchers and/or the math coach or 
technology specialist. That coaching focused primarily 
on pedagogical approaches to supporting mathematical 
thinking through Smith and Stein’s (2011) five practices for 
orchestrating mathematical discourse (see next section).

Five Practices for Mathematical Discourse
Throughout the PD, teacher learning centered on Smith and 
Stein’s (2011) five practices for orchestrating mathematical 
discourse. The five practices encourage teachers to antic-
ipate student misconceptions, monitor student activity for 
those misconceptions, and select and sequence student 
work in a way that supports connecting student thinking to 
larger mathematical concepts. These practices encourage 
teachers to help students solve mathematical problems with-
out providing the information directly by testing conjectures 
mathematically, trying new problem-solving approaches and 
ideas, and struggling productively with math concepts. 

We chose Smith and Stein’s (2011) five practices be-
cause those practices support the teaching of math through 
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on a scale from low (1) to high (3) across five dimensions: 
mathematics, cognitive demand, student access to 
mathematics, student agency, and the assessment. 
Mathematics refers to the way that lesson activities support 
meaningful connections between concepts and procedures 
and offer opportunities to build a coherent understanding 
of math. Cognitive demand refers to the presence of the 
Smith and Stein teaching practices (e.g., anticipating, 
monitoring); this relates to student access in that classroom 
activity structures need to invite and support students’ 
active engagement in core concepts and ideas. Agency 
refers to opportunities for students to conjecture, test, and 
modify ideas, whereas assessment refers to students having 
opportunity to explain their thinking and build off of initial 
ideas or address key misconceptions. Scores were applied 
initially by two independent raters who then compared 
ratings; scores were then averaged between the two 
reviewers so that disagreements between reviewers were 
factored into the final scores.

RESULTS

As shown in Table 1, scores on the five survey items were 
compared before and after the PD using a Wilcoxon 
Signed-Ranks test. Results indicated that teachers 
ranked their ability to use robots to teach math as being 
significantly higher after the workshop (M = 3.83; Mdn = 4) 
than before (M = 2.42; Mdn = 2), W = 0, p < .01. Teachers 
also ranked their ability to help students when having 
difficult with the robot significantly higher after the PD (M= 
3.70; Mdn = 3) than before (M = 2.55; Mdn = 3), W = 1, p < 
.01. Teachers confidence in teaching math through robotics 
was significantly higher after the PD (M = 3.70; Mdn = 3) 
than before (M = 2.55; Mdn = 3), W = 4, p < .01. No other 
statistically significant results were found.

As shown in Table 2, the scores associated with each of 
Smith and Stein’s (2011) practices for orchestrating produc-
tive mathematical discourse were significantly higher after the 
PD than before. This included their ability to anticipate stu-
dent responses and challenges (Mdn = 2 and 0.75, W = 1.5), 
monitoring student work (Mdn = 2 and 1; W = 2), select and 
sequence student work for whole-class discussion (Mdn = 2 
and 0; W = 2), and connecting student ideas with other math-
ematical concepts (Mdn = 2 and 0.75; W = 0). The difference 
in rankings for both CS items was not statistically significant.

As shown in Table 3, teacher lesson plans addressed 
a number of K-5 mathematical concepts (e.g., construct-
ing fractions; calculating distance and perimeter; dividing 
shapes in half). The lesson plans approached a score of 
‘high’ (3.00) with regard to their incorporation of mathe-
matical concepts and ideas (M = 2.78), opportunities to 
conjecture and test or modify ideas (i.e., agency; M = 2.89), 
and assessing learning by building off initial ideas and/or 
misconceptions (M = 2.78). 

measure, then again 10 months later as a post-measure. 
Lesson plans were analyzed at the conclusion of the PD. 
Each form of data collection is described below.

Survey
The survey included five attitudinal items about a teacher’s 
confidence in integrating robotics into the math curriculum. 
Teachers rated their agreement on a five-point Likert scale 
from 1 (Strongly Disagree) to 5 (Strongly Agree). Wilcoxon 
Signed-Ranked tests were conducted on each item to eval-
uate changes from pre- to post-PD. In order to reduce Type I 
error, the significance level was set at .01 by using a Bonfer-
roni correction and dividing .05 by the number of items (5).

Test of Knowledge
The test of knowledge addressed two areas: lesson plan-
ning and computer programming. Teachers first provided a 
short answer in which they applied Smith and Stein’s (2011) 
five practices to a pre-made lesson scenario: “You plan 
to have students program a robot to trace a polygon that 
has three equal sides. To the best of your current knowl-
edge and abilities, complete the elements of the Thinking 
Through a Lesson Plan (Smith & Stein, 2011) protocol that 
are listed below.” Responses were scored from low (1) to 
high (3) evidence of knowledge associated with the five 
practices (anticipating, monitoring, selecting, sequencing, 
connecting). Scores were assigned based on the number of 
accurate possibilities offered (e.g., 2+ was high, 1 was mid, 
inaccurate or no response was low). For example, a high 
score in connect meant teachers noted at least two other 
related math concepts (e.g., the number of degrees in a 
circle; representing parts of a whole circle as a fraction). To 
test CS knowledge, teachers were provided with two exam-
ples of block-based computer code and asked to predict 
the results of that code. The two examples addressed the 
programming of basic movement skills to form a square 
shape and higher levels of logic that included loops and 
conditionals. Teacher responses were scored from high (3), 
or entirely correct, to low (1), or entirely incorrect. 

Throughout the scoring of the test items, two 
independent raters coded the CS test items to establish 
inter-rater reliability, which was 90% and deemed 
satisfactory to proceed with the first rater’s coding. 
Wilcoxon Signed-Ranked tests were conducted on each 
item to evaluate changes from pre- to post-PD. Because of 
the large number of items associated with lesson planning, 
we reduced Type I error by setting the significance level at 
.01 using a Bonferroni correction and dividing .05 by the 
number of items (5).

Lesson Plan Evaluation
Nine unique lessons were created by the teachers in this 
study. Each was evaluated using Schoenfeld et al.’s (2014) 
Teaching for Robust Understanding of Mathematics Rubric 
(TRU). The TRU rubric assesses the strength of a lesson plan 



www.acm.org/education 51

Table 3. Mean TRU Scores by Lesson Plan and Associated CS Activity and Math Concepts

Title Overview Mathematics Grade Math Cog Dem. Content Agency Assess

Fraction 
Bowling

Knock down pins and name score 
as a fraction. Graph / interpret.

Fractions
3-5 3 3 3 3 3

Shape of 
Things

Draw shapes on paper; use color-
codes.

Shapes and 
angles

1-5 2 2 2 3 3

Addition Move through an addition maze. Add within 
100 

1 1 1 2 3 2

Fraction 
Shapes

Create a geometric shape and 
divide into halves and quarters

Express equal 
shares 

1 3 3 3 3 3

Three 
Little Pigs 
Measuring

Create path and measure using a 
non-standard method.

Express length
1 3 2 3 3 3

Multiply 
Maze

Create a path with total product 
< 5,500.

Multiply multi-
digit numbers 

3 2 2 3 2 2

National 
Park Data

Merge two maps to plot course. Read a key, 
interpret data

3 2 3 3 3 3

Santa's 
Dilemma

Plot course and program Ozobot 
to follow.

Multiplication 
and division

3, 5 3 3 3 3 3

Ozobot 
Race

Find the shortest path. Factoring; 
perimeter and 
area

3, 5 3 3 3 3 3

Table 1. Mean and Median Scores by Survey Item

Item Pretest Posttest

Mean Median Mean Median

I can consistently use robots to teach math.* 2.42 2 3.83 4

I can help students when they have difficulty with the robots.* 2.50 3 3.67 3.5

I have the skills necessary to use robotics to teach specific 
math concepts and skills.*

2.42 2 3.67 4

I can regularly incorporate robots into math when appropriate. 3.33 3 4.00 4

I am confident I can teach math concepts/skills with robotics. 4.00 4 4.08 4

* Statistically significant, p < .01.

Table 2. Mean and Median Scores by Test Item 

Item Pretest Posttest

Mean Median Mean Median

Lesson Planning: Anticipating* 0.58 0.75 1.96 2

Lesson Planning: Monitoring* 0.96 1 2.13 2

Lesson Planning: Selecting & Sequencing* 0.25 0 1.75 2

Lesson Planning: Connecting* 0.58 0.75 1.67 2

CS skill: Basic movement 2.21 2 2.54 2.50

CS skill: Loops and conditionals 1.21 1 1.27 1

*Statistically significant, *p < .01, 
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Implications 
The improvements in teacher attitudes and knowledge 
noted in this study suggest how sustained PD with 
reform-type activities (e.g., monthly follow-up meetings; 
in-classroom support) can help teachers develop new 
skills and practices. In the week-long summer workshop, 
teachers engaged in active learning, programming 
the robots themselves to construct geometric shapes, 
explore the relationship between area and perimeter, and 
associate distance with the measurement of length. They 
then planned lessons for their own students (situated in 
their needs). Over the academic year, they met with the 
research team regularly (extended duration) and received 
in-classroom support through co-teaching (reform-type 
activities). These activities are likely to have contributed 
to the teachers’ gains in confidence and knowledge of 
teaching practices associated with educational robotics 
in this study. Similar to the current study, Mouza (2009) 
and Kopcha (2012) both found that ongoing, in-classroom 
support led to improved attitudes toward and practices 
with technology. Likewise, Menekse (2015), reported that 
PD in the context of CS should be sustained over time and 
place emphasis on active learning and teacher’s knowledge 
of effective teaching strategies. 

Conclusion
This paper offers a detailed account of teacher PD in CS 
education that can support teacher change. While the 
sample size is small, it is likely that the approach employed 
in this study can be transferred to a new context to foster 
teacher attitudes and lesson planning skills when using 
educational robots to teach both CS and mathematics. 
Future research on teacher PD would benefit from adding 
teacher observations to see how mathematics is supported 
during educational robotics. Doing so is an important step 
towards increasing participation in CS and making CS 
accessible for all. 
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For example, the lesson, Shape of Things, was created 
by the school library media specialist in collaboration with 
the first grade teacher, then shared with other grades as an 
introduction to visual programming. The overarching goal 
was to use the Ozobot to reinforce key geometry standards 
and concepts. Student agency was strong, as the students 
explored their own shapes and actively talked about the 
connections with geometry based on their own drawings. 

Teachers from the other grade levels used the 
core lesson and modified it to meet the needs of their 
own students. For example, the teachers in grades K-2 
supported agency by planning to ask questions about 
equal and unequal side lengths (i.e., regular vs. irregular 
polygons) and how that equality and inequality might 
change the Ozobot’s movement. The teachers in grades 
3-5 supported agency by planning to use open-ended 
questions to challenge students to draw regular five- and 
six-sided polygons (e.g., “Can you draw a shape with five 
equal sides? How do you know the sides are equal?”). This 
connected with the idea that polygons with more sides are 
comprised of multiple isosceles or equilateral triangles. 

Discussion
Our PD adopted a unique strategy—it combined  
research-based principles of technology integration PD 
with the practices associated with teaching mathematics. 
The results suggest that this approach helped our 
teachers improved their confidence and pedagogical 
knowledge for using educational robotics to teach. 
Those improvements were reflected in their lesson plans, 
which exhibited high levels of mathematical content and 
opportunities to conjecture about mathematics. Our 
results support others who found that active learning 
and follow-up support can lead to changes in classroom 
practices and behaviors that support CS education 
(Clark & Hollingsworth, 2002; Goode & Margolis, 2011). 
This is an important step towards reducing a teacher’s 
perception that CS activities like educational robotics are 
a burden and increasing the integration of CS into the 
elementary curriculum (Ketelhut et al., 2020).

Teachers in our study did not improve their CS 
knowledge at a significant level. One reason may be that 
the teachers in our study preferred to focus on visual 
coding techniques with their students rather than a block-
based programming environment. This would make 
sense in lower grade levels, where it would be easier for a 
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and Nouri (2019) who found that advanced programming 
skills are challenging for teachers to incorporate in their 
instruction and often overlooked because students struggle 
with them. As such, it is not surprising that CS knowledge 
did not see any significant gains in this study. 
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While the integration of computational thinking (CT) into 
science, technology, engineering, and mathematics (STEM) 
education has been well studied (Jona et al., 2014; Sengup-
ta et al., 2018; Weintrop et al., 2016), there is a smaller but 
growing body of work on CT and literacy integration (Jacob 
et al., 2018; Burke & Kafai, 2012; Kafai et al., 2020; Vogel 
et al., 2020). There are several affordances to engaging 
diverse learners when combining CT and literacy instruc-
tion. Programming in narrative genres may foster literacy 
development and technological fluency while motivating 
students who may not otherwise identify with computer sci-
ence (CS; Burke & Kafai, 2012). This can facilitate the kinds 
of inquiry, cultural and community engagement, and social 
recognition that are integral to fostering identity develop-
ment in STEM (National Research Council [NRC], 2014).

Computational thinking and literacy integration is 
particularly beneficial in elementary grades, as instructional 
minutes allotted to STEM are extremely limited, especially 
for students who are second language learners (Dorph et 
al., 2011). While the value of focusing on language and 
literacy instruction in early grades is undisputed, integration 
of CT within the language arts curriculum can provide a way 
to overcome STEM instructional time constraints, allowing 
students to get vital early exposure to CS while also 
supporting their language development.

This paper describes the implementation of an English 
Language Arts (ELA)-focused curriculum to support 
learning and positive identification with CS among 

multilingual elementary school students. We first describe 
the model of computational literacies we draw on and 
then describe the curriculum that forms the basis of the 
intervention and study.

We address the following research question:
A�  What strategies are used by upper elementary teachers 

to integrate CT into literacy and language instruction?
B�  How does applying the CT and literacy framework 

advance our understanding of how to leverage 
multilingual students’ literacy resources to develop 
their computational thinking skills?

Computational Literacies
Our study draws from Jacob and Warschauer’s (2018) model 
of computational literacy, which situates computational 
thinking as a fundamental literacy required for full societal 
participation (cf. diSessa, 2000; Wing, 2006). This model 
proposes three dimensions for 1) characterizing the 
relationship between computational thinking and literacy 
(i.e., computational thinking as literacy), 2) examining how 
students’ existing literacy skills can be leveraged to foster 
computational thinking (i.e., computational thinking through 
literacy), and 3) discussing the ways in which computational 
thinking skills foster literacy development (i.e., literacy 
through computational thinking; Jacob & Warschauer, 2018; 
see Figure 1). 

Sharin Rawhiya Jacob, Miranda C. Parker, and Mark Warschauer, University of California, Irvine
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This paper describes the development and implementation of a yearlong integrated English Language Arts 
(ELA) and computational thinking (CT) curriculum that has been adapted to meet the needs of multilingual 

students� The integration of computational thinking into K-12 literacy instruction has only been examined in a 
handful of studies, and little is known about how such integration supports the development of CT for multilingual 
students� We conducted a qualitative case study on curricular implementation in a general education classroom 
with large numbers of students designated as English learners� Results from detailed field notes revealed that 
the strategic application of instructional practices was implemented in the service of building on students’ 
existing literacy skills to teach CT concepts and dispositions� The CT and literacy framework put forth in this 
study can be used as an analytic framework to highlight how instructional strategies mobilize the existing 
literacy and CT resources of linguistically diverse students� Based on our findings, we discuss recommendations 
for future integrated ELA-CT curricula�
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was actually programmed as "the monkey disappears when 
it touches the hunter." Results such as these suggest that 
students' existing literacy skills can be mobilized to develop 
their computational thinking skills. 

The CS-ELA Integrated CT Curriculum
Elementary schools with large percentages of multilingual 
students, not surprisingly, devote large amounts of 
instructional time to improving students’ English skills. This 
makes it challenging to introduce non-core curriculum, 
such as CS. Indeed, research has shown that science, let 
alone CS, is rare in high-ELL schools and districts (Gomez-
Zwiep, 2017). Our project has addressed this challenge 
by adapting the Creative Computing Curriculum (Brennan 
et al., 2014) for integration into ELA instruction. The 
curriculum--called Elementary Computing for All--exploits 
the affordances of Scratch for learning to decode and 
code stories of the same genres that are emphasized in 
traditional narrative and informative texts in elementary 
school. It also integrates age-appropriate readings about 
diverse pioneers in CS, thus strengthening the connection 
to reading while also providing culturally relevant support. 
In this way, STEM identity is developed as children learn 
about diverse computer scientists and code stories about 
their own lives and communities.

The storybooks integrated into the curriculum teach 
not only computational thinking concepts but also key 
dispositions that foster student success in computing. In 
2011, the International Society for Technology in Education 
(ISTE) and the Computer Science Teachers Association 
(CSTA) outlined specific dispositions or mindsets that are 
fundamental to student success in computational thinking 
including 1) confidence in dealing with complexity, 2) 
persistence in working with difficult problems, 3) tolerance 
for ambiguity, and 4) the ability to deal with open ended 
problems (ISTE & CSTA, 2011). The storybooks in our 
curriculum teach these dispositions in culturally and age 
appropriate ways. For example, students read The Most 
Magnificent Thing, a storybook about a young girl who, 
through engaging in making activities, acquires positive 
dispositions and approaches to computing. The protagonist 
of the book desires to construct a computational artifact 
for her dog. Throughout the design process, she abstracts 
her model, decomposes her problem, implements her 
solutions, debugs her errors, and engages in iterative 
problem solving to arrive at a “magnificent” solution. To this 
end, the storybook teaches both computational thinking 
concepts such as abstraction, iteration, decomposition, and 
debugging as well as dispositions that enable students to 
become successful computational thinkers. The big idea 
of the story, having a growth mindset, is operationalized 
through examples of the protagonist dealing with complex 
problems, persisting through mistakes, and tolerating 
ambiguity. Storybooks such as these provide affordances 

For the purpose of this paper, we focus on the second 
component of the computational thinking and literacy 
framework: computational thinking through literacy. To 
this end, we examine how students leverage their existing 
literacy skills as a mechanism for learning computation-
al thinking. Integrating computational thinking into ELA 
content has multiple affordances for CT learning. Evidence 
suggests that learning to read and write and to code can 
go hand in hand (Peppler & Warschauer, 2011; Bers, 2019). 
The several interlocking features of coding and literacy 
draw children’s attention to symbol-meaning relationships. 
For example, students interact with text in multiple ways as 
they use Scratch and leverage their knowledge of multi-
modal signifiers to assemble programs. These relationships 
offer a highly engaging and supportive environment for 
children with emerging literacies to demonstrate their skills 
and abilities (Peppler & Warschauer, 2011). 

Additionally, informational and narrative genres capture 
the semiotic process related to computing. To illustrate, 
Burke and Kafai (2012) leveraged students' knowledge 
of the writing process (i.e., drafting, revising, editing) to 
engage them in designing computational artifacts (i.e., 
(design, troubleshooting, debugging). Similarly, De Souza 
et al. (2011) compared students' narrative accounts of 
programming games to their design process, paying 
specific attention to verbal structures. Findings indicated 
that at first students used transitive verb based narrative 
accounts to design games, and over time they began to use 
intransitive verbal structures that more closely resembled 
programming languages For example, A typical student 
characterization of a game "the hunter killed the monkey" 

Figure 1. A Three-Dimensional Framework for Understanding 
Computational Thinking and Literacy (Jacob & Warschauer, 2018)
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for language use (NRC, 1996) while making instruction 
more engaging, concrete, and meaningful for multilingual 
students (Janzen, 2008; NRC, 2012; Rosebery & Warren, 
2008). Computer science disciplinary activities and learning 
goals are aligned with standards to guide teachers (see 
Table 1 for an example).

Second, the revised curriculum encourages rich 
classroom discourse through explicit suggestions of 
collaborative activity formats to invite students to use 
their everyday sense-making and disciplinary language in 
multiple contexts (Shea & Shanahan, 2011).

Third, strategies that teachers can use to build on 
students’ existing resources (i.e., cultural, linguistic, 
semiotic, embodied) to acquire proficiency in language 
and CS are explicitly stated in the curriculum and during 
professional development. For example, the curriculum 

Table 1. Sample Learning Goals That Integrate Grade 4 Common Core ELA, English Language Development, and Computer Science 
Teachers Association Standards

Activity: Students program a story about their lives, families, or communities

Computer Science Concepts: Loops, Sequences, Conditionals

Computer Science Teachers Association (CSTA) Standards

CSTA 1B-AP-10 Create programs that include sequences, events, loops, and conditionals

CSTA 1B-AP-13
Use an iterative process to plan the development of a program by including 
others’ perspectives and considering user preferences

CSTA 1B-AP-15 Test and debug a program or algorithm to ensure it runs as intended

English Language Development (ELD) Standards

Emerging Expanding Bridging

3. Offering opinions
Negotiate with or persuade others 
in conversations using basic 
learned phrases (e.g., I think) as 
well as open responses in order to 
gain and/or hold the floor.

3. Offering opinions
Negotiate with or persuade others 
in conversations using a variety 
of learned phrases (e.g., That’s a 
good idea. However…) as well as 
open responses, in order to gain 
and/or hold the floor.

3. Offering opinions
Negotiate with or persuade others 
in conversations using a variety of 
learned phrases (e.g., That’s a good 
idea. However…) as well as open 
responses in order to gain and/or 
hold the floor, elaborate on an idea, 
and provide different opinions.

11. Supporting opinions
Offer opinions and provide good 
reasons (e.g., My favorite book 
is X because X) referring to the 
text or to relevant background 
knowledge.

11. Supporting opinions
Offer opinions and provide good 
reasons and some textual evidence 
or relevant background knowledge 
(e.g., paraphrased examples from 
text or knowledge of content).

11. Supporting opinions
Offer opinions and provide good 
reasons with detailed textual 
evidence or relevant background 
knowledge (e.g., specific examples 
from text or knowledge of content).

Corresponding English Language Arts Standards

CCSS.ELA-L.SL.4.1

CCSS.ELA-L.SL.4.4

CCSS.ELA-L.SL.4.6

CCSS.ELA-L.W.4.9

Engage effectively in a range of collaborative discussions with diverse partners, 
building on others’ ideas and expressing their own clearly. Report on a topic 
or text, tell a story, or recount an experience in an organized manner, using 
appropriate facts and relevant, descriptive details to support main ideas or 
themes; speak clearly at an understandable pace. Differentiate between 
contexts that call for formal English (e.g., presenting ideas) and situations where 
informal discourse is appropriate (e.g., small-group discussion); use formal 
English when appropriate to task and situation. Draw evidence from literary or 
informational texts to support analysis, reflection, and research.

for teaching both the computing concepts necessary for 
learning the discipline as well and dispositions that foster 
successful computational thinkers.

Linguistic Scaffolding
Researchers and practitioners worked collaboratively 
to develop additional language scaffolding to amplify 
the curriculum’s effectiveness with multilingual students, 
following effective practices recommended by a national 
panel (National Academies of Science, Engineering, and 
Medicine [NASEM], 2018). First, the revised curriculum 
integrates CS and ELA tasks to engage students in 
disciplinary practices. Students explore and modify existing 
programs before creating their own projects. These kinds 
of structured inquiry-based science approaches provide 
a powerful mechanism for providing authentic contexts 
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Thus, we analyze structured notes from weekly classroom 
observations. For each field observation, two researchers 
took detailed field notes on teachers’ instructional moves, 
students’ interaction, and computing tasks and activities. 
Four Ph.D. students and three undergraduates observed 
teachers’ classes when they integrated CT and literacy 
lessons. All lessons were audio recorded and transcribed.

These data were analyzed through open coding in 
iterative cycles. Two researchers collaborated to assign 
initial codes to excerpts of text that pertained to strategies 
used by teachers to integrate CT and ELA content (Hsieh & 
Shannon, 2005), paying specific attention to instructional 
practices that are effective for engaging multilingual 
students in STEM (NASEM, 2018). After coding 25% of field 
notes, the researchers met to combine, split, and categorize 
codes based on initial findings. After this discussion, the 
first author applied the consolidated codes to the rest of 
the data, generating new codes when they were pertinent 
to the research questions. After coding all of the field 
notes, two researchers (first and second author) randomly 
selected 10% of the data to conduct an interrater reliability 
check and achieved 83% agreement. The two researchers 
then met to discuss differing codes and redefine each of 
the codes. After revising the codebook, they reapplied the 
modified codes and reached 94% agreement. 

RESULTS

All the teachers in our study were able to successfully teach 
the curriculum and carry out appropriate strategies for 
students designated as English learners that integrated CT 
and ELA in the classroom (see Table 3). To illustrate this, 
we present a case from one classroom taught by Jenny 
(pseudonym), which was a general education classroom of 
predominantly Latinx and low-income students designated 
as English learners. 

and professional development include tips for teacher 
“talk moves'' (Michaels & O’Connor, 2015), namely asking 
for clarification and leveraging students’ own ways of 
explaining to guide them towards more formal language 
and advanced CS concepts.

Fourth, visualizations and physical, unplugged activities 
are built into the curriculum to engage students in multiple 
modalities, including linguistic modalities of talk and 
text, as well as nonlinguistic modalities such as gestures, 
pictures, and symbols, to better teach key academic 
vocabulary and CT concepts (cf. Lee et al., 2019).

Fifth, the curriculum provides explicit focus on how 
language functions in the discipline by providing language 
frames to teachers for use by students during peer 
feedback and pair programming, and while asking for 
assistance (see example in Table 2).

METHODS

Researchers at Western University (pseudonym) and 
educators in a large urban school district joined together 
in a research-practice partnership to iteratively develop 
and implement the curriculum. The district has among 
the highest percentages in the nation of Latinx students 
(93%), low-income learners (89.7% receiving free or 
reduced-price lunch), and students designated as English 
language learners (62.7% in the elementary grades). 
Ordinary elementary school teachers in the district taught 
the curriculum in their own classes after a one-week 
professional development program in the summer that 
taught them about Scratch, computational thinking, equity 
issues in CS education, and the CT-ELA approach.

Though broader data were collected for the larger 
study, in this paper we only focus on the instructional 
strategies carried out by teachers to integrate CT and ELA 
instruction that meets the needs of multilingual students. 

Table 2. Computer Science Language Functions

Teacher Activities
Student Discourse CS Concepts 

(Language Function)Emerging Expanding Bridging

Remind students 
to think about the 
events that will 
cause each action 
to happen in their 
project, which 
programs will run 
parallel to each 
other, and how 
their project will 
reset once it has 
finished running. 

I need help with __.

__ caused __ to 
happen.

__ and__ are running at 
the same time.

I used __ to reset the 
program.

I am having difficulty 
with __.

__ is the event that 
caused __ to happen.

__ and __ are running 
parallel to each other.

I used __ to initialize 
the program.

Could you help me fix 
the following challenge 
in my code __?

The event that caused 
__ to happen is __.

__ and __ are running 
parallel to each other/
simultaneously/at the 
same time.

__ caused the program 
to initialize.

Debugging, events, 
initialization, 
parallelism (Describing, 
comparing) 
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characters, setting, conflict, resolution), and invoking the 
big idea (i.e., identifying the main idea of the lesson). 

Jenny also facilitated student discourse by engaging 
them in collaboration during pair programming activities. 
For example, she instructed her students to provide 
constructive feedback to their peers, even if their peers’ 
projects contained mistakes. This helped to normalize the 
making of mistakes in the classroom and foster persistence 
in the face of challenges. Another strategy Jenny used 
was the activation of prior knowledge, which involves 
priming students’ existing knowledge and providing 
prerequisite knowledge for students to understand lesson 
concepts. To this end, Jenny would reference previous CT 
lessons to connect to the current lesson she was teaching. 
This strategy is essential to providing a foundation for 
multilingual students to assimilate new information (Lee & 
Fradd, 1998; Turner & Bustillos, 2017). Jenny also promoted 
the use of discipline-specific discourse by fostering 
interaction, prompting student reflection during whole 
group discussion, and modeling the use of CS language 
during whole group instruction. 

Applying a CT and Literacy Framework 
Through CT-ELA Integration 
We present a vignette that explores how the instructional 
moves employed by Jenny apply the CT and literacy 
framework (Jacob & Warschauer, 2018) to integrate CT-ELA 

Table 3. Coding Framework Excerpt

Categories
Strategies for 

Activating Prior 
Knowledge

Strategies for Asking 
Questions

Strategies for Providing 
Direct Instruction

Strategies for Providing 
Language Support

Sample 
Codes and 
Definitions

Leveraging Students’ 
Background Knowledge 
Applying students’ 
existing knowledge to 
lesson content.

Building on Students’ 
Personal Experiences 
Connecting lessons 
to students’ personal 
experiences.

Using Questions to 
Foster Higher Order 
Thinking  
Asking higher order 
questions (i.e., analysis, 
evaluation) instead of 
recall of comprehension 
checks.

Using Questions to 
Make Interdisciplinary 
Connections  
Asking how one subject 
is similar to another 
(e.g., using elements of 
storytelling to describe 
coding processes). 

Using Questions to Elicit 
Big Idea  
Asking how instructional 
materials relate to the big 
idea of the lesson.

Discussing 
Computational Concepts  
Discussing 
computational concepts 
(i.e., abstraction, 
algorithms) and 
programming concepts 
(i.e., sequence, loops, 
conditionals).

Pre-Teaching Lesson 
Vocabulary  
Introducing lesson 
vocabulary in multiple 
modalities at beginning 
of lesson.

Facilitating Discourse 
Through Collaboration 
Engaging students in 
peer-to-peer or teacher-
student-student talk 
to build on students’ 
existing resources. 

Prompting Students to 
Use Sentence Frames 
Using sentence frames 
as prompts to provide 
language support, 
guidance, and to 
encourage elaboration. 

Encourage Students to 
Use CS Language During 
Reflection  
Encouraging students 
to use CS language 
gradually on their own.

Strategies Used for CT-ELA Integration
Jenny’s most frequently used strategy included multiple 
questioning techniques, and she made a point to integrate 
ELA reading strategies with CT lessons. For example, 
after reading The Most Magnificent Thing to her students, 
she used questioning techniques to check students' 
understanding of key computational thinking concepts 
such as sequencing, decomposition, debugging, and 
abstraction. She also used questions to elicit big ideas, 
such as developing a growth mindset. To illustrate, after 
the protagonist of the story The Most Magnificent Thing 
finished designing her computational artifact, the teacher 
asked: “Was it perfect?” The students responded: “No!” 
Then the teacher asked, “But did it do the job?” and 
the whole group responded “Yes!” In this example, she 
underscored for her students the idea that while they can 
always improve their work, they should also be proud of 
the artifacts that they have created. Research corroborates 
the idea that the design process is iterative and emphasis 
should be placed on process over product when 
developing computational artifacts (Ryoo et al., 2015). 
Finally, Jenny’s use of multiple questioning techniques 
facilitated comprehension of CT and literacy content by 
providing opportunities for students to experience ideas 
in multiple ways. She primarily questioned students during 
whole group activities and used specific techniques related 
to ELA instruction such as encouraging higher order 
thinking (i.e., providing supporting evidence), elaborating 
components of storytelling (i.e., students identify plot, 
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& Gotwals, 2018) allows Jenny’s students to check her 
students’ understanding of CT and literary concepts, 
through whole group interaction that is broken down 
into meaningful chunks. Through her questions, Jenny 
encourages students to engage in several CT concepts 
and practices, including sequences (“What happened 
next?”), abstraction (“What did she notice about all of 
those things?”), and experimenting and iterating (“Was it 
perfect?”). With this process she simultaneously teaches 
literary themes (i.e., plot, character development, conflict, 
resolution, theme), CT concepts (i.e., iteration, testing, 
debugging, design process), and positive attitudes and 
dispositions towards CT (i.e., growth mindset, confidence, 
perseverance). In her next lesson, Jenny moves on to apply 
the idea of a growth mindset to students’ programming 
tasks, encouraging students to iterate and debug 

instruction for multilingual students. The purpose of this 
section is to advance our understanding of how teacher 
moves can benefit culturally and linguistically diverse 
students in a CT-ELA integrated curriculum. 

Teaching CT and Literacy in Jenny’s Diverse General 
Education Classroom
In the excerpt below (Table 4), Jenny reads The Most Mag-
nificent Thing to her students and pauses the story multiple 
times to question her students to emphasize the key idea.

In this excerpt, Jenny is teaching computational thinking 
through literacy by leveraging students' knowledge 
of storytelling and narrative devices to engage them 
in productive discussion of computing concepts and 
dispositions. Using well-established techniques such as 
making predictions and discussing main ideas (Wright 

Table 4. Audio Transcript of Jenny Teaching The Most Magnificent Thing

Speaker Audio Transcript

Jenny: (teacher pauses story) Why is she quitting? Talk to your partner. Why is she quitting? Tell me, why is she 
giving up? (students are busy discussing with one another)

Student 1: It is too hard…

Student 2: Not the way she wants it to be…

Student 3: Maybe because what she is thinking it is not possible because it is hard (teacher resumes story then 
teacher pauses story again)

Jenny: So tell me first of all, what was the problem with what she was building? What was she building? 

Student 4: A robot…

Student 5: A car…

Jenny: (Jenny plays the story to find out what she is building) What did she do? What happened first? What did 
she do first?

Student 4: She got mad.

Jenny: What happened next? Did she just stay mad and give up? What happened next?

Student 3: She took her dog out for a walk and saw all that she did and what she gave up.

Student 6 So she looked at all of her work that she thought was wrong.

Jenny: And what did she notice about all of those things?

Student 3: There were pieces that she liked.

Student 7: There were the right pieces that she made.

Jenny: So she had to do what? To her thinking? She had to do what to her thinking? 

Student 8: She had to look at her invention.

Student 9: Think more…

Student 10: Think about her problems so that she could fix them…

Student 3: Rethink her model…

Jenny: And what happened at the end?... 

Student 8: She found out that she used different things but then she went back to change it and made it right.

Jenny: Think about that last page. Was it perfect?

Whole Class: No!!

Jenny: But did it do the job?

Whole Class: Yes!!!
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language, and literacy skills. Practitioners who integrate CT 
curricula with narrative genres can use students' knowledge 
of storytelling devices to teach CT concepts. When serving 
multilingual students, teachers should also be aware of 
students' heterogeneous backgrounds. For students who 
are learning English and their home language at the same 
time, instruction that leverages their everyday language 
solidifies CS knowledge in preparation for engaging 
students in more demanding scientific and technical 
language. Finally, CS content should not be taught to the 
exclusion of the dispositions that will enable students to 
develop a sense of efficacy and belonging as computer 
scientists. Therefore, supplementing the curriculum with 
instructional materials, such as children’s books, about 
diverse pioneers in the field of CS who persevere in the 
face of adversity is an excellent way to foster student 
identification with the discipline.
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Introduction
Computational thinking (CT) is increasingly making its way 
into the elementary grades. It is commonly defined as “an 
approach to solving problems, designing systems and un-
derstanding human behavior that draws on concepts fun-
damental to computing” (Wing, 2006; 2008, p. 3717). The 
K-12 Computer Science Framework describes several core 
practices, with CT comprising four of these practices: Rec-
ognizing and defining computational problems; develop-
ing and using abstractions; creating computational artifacts; 
and testing and refining computational artifacts (K-12 CS 
Framework, 2016). CT can, thus, be considered “both a skill 
to learn and a way to learn--to create, discover, and make 
sense of the world, often with computers as extensions and 
reflections of our minds” (Digital Promise, 2017, p. 21). 

In the elementary grades, CT is often integrated into 
the core content areas (e.g., Fofang et al., 2019; Sherwood 
et al., 2021). There are three main justifications for this 

approach to CT integration: (1) practical considerations 
(e.g., there is not enough time for stand-alone CT 
instruction), (2) pedagogical rationale (e.g., teaching CT 
in the context of other disciplines offers a unique way for 
students to learn, create, and problem solve), and (3) equity 
(e.g., embedding CT into core academic content provides 
CT access to all learners (Fofang et al., 2020). Additionally, 
CT integration is informed by conceptual frameworks of 
integration used across other content areas. The level of 
integration can range from disciplinary instruction, where 
no integration occurs, through trans-disciplinary instruction, 
where students create new knowledge that transcends 
the individual disciplines (Vasquez et al., 2013). Despite 
conceptual and theoretical models offered by Vasquez and 
others, the term “content integration” is often used as a 
catch-all for all such instructional experiences (Tytler et al., 
2019). Thus, when teachers describe content integration, 
they may mean a range of approaches. For example, 
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study were: (1) What barriers teachers report related to 
integrating CT into elementary instruction? (2) Are barriers 
related to the type of instructional context and professional 
development provided to the teachers? 

Setting and Participants
Three elementary schools in a large urban school district 
in the Northeast participated in this study. Table 1 provides 
school demographic information. These schools were 
recruited because they were involved in a CSforAll school-
wide initiative in which they integrated CT into instruction. 

All three schools received professional development 
(PD) for integrating CT into their school curriculum. 
However, each school approached integration in a different 
manner. School A had a lead teacher who taught all the 
students in the school for CT integration activities within 
science instruction. This teacher was the STEM teacher 
for the school. Although other teachers participated in 
PD and CT activities, the primary driver of CT integration 
was the STEM teacher. Their PD consisted of a structured 
schedule of afterschool workshops with coaching sessions 
between these workshops. The PD provider initially focused 
on helping teachers conceptually understand CT but 
later shifted to more hands-on practical CT integration 
approaches. School B and C had a more whole-school 
approach although their PD models differed. In School B, 
the PD provider went through a scaffolded “I do, we do, 
you do” approach where they modeled CT instruction, 
followed by collaboratively teaching CT, and then the 
teacher took ownership of CT instruction. School B also 
utilized a structured workshop approach with coaching 
occurring between these workshops. School C used 
an embedded coaching model wherein the CT coach 
spent time with teachers to slowly integrate CT into their 
instructional practice, beginning with a focus on use of CT 
academic language and moving towards more authentic 
unplugged and then plugged CT integration activities. 
Although School C also had structured workshops, because 
the coach spent more time in the school, the coach could 
also collaborate on lesson implementation, provide more 
frequent feedback, and give more consistent support. 

All teachers who participated in the CT integration 
activities were asked to participate in the research. Of the 
ones who provided informed consent, all were asked to 

Table 1. School Demographic Information

School Number of 
Students

% Students 
with high 
economic 

need

% English 
language 
learners 

% Teachers 
with 3+ years 

teaching 
experience

Teacher participants: 
Surveys/Interviews

A 500 84.6 33.8 67 8 surveys; 1 interview 

B 1600 72.0 29.6 83 12 surveys; 4 interviews 

C 1625 86.5 31.4 71 26 surveys; 6 interviews 

Sherwood and colleagues (2021) describe CT integration 
ranging from using academic language that crosses 
disciplinary areas (e.g., the term decomposition across 
CS and math instruction) to using complex integrated 
computer-based activities. 

Given this ambiguity, the existing research highlights 
that teachers feel underprepared to teach CT (Yadav et 
al., 2018). And, to complicate matters further, literature in 
science, technology, engineering, and mathematics (STEM) 
integration suggests instructional concerns such as practi-
cal difficulties in creating integrated instructional activities 
(Hobbs et al., 2018), concerns about inequity between 
the disciplinary areas (Vasquez et al., 2013), and lack of 
consensus about what integration looks like during instruc-
tion (English, 2016). Given both the ambiguity of what CT 
integration looks like at the elementary level and the lack 
of resources to support CT integration, school leaders 
and teachers must make instructional decisions without 
guidance from the literature. Additionally, little research 
exists about the barriers that teachers face when trying to 
integrate CT into their instructional practice. This literature 
primarily focuses more on barriers to technology integra-
tion (e.g., Ertmer, 1999; Ottenbreit-Leftwich et al., 2018; 
Pittman & Gaines; 2015). Although this literature provides a 
framing for considering barriers to CT integration, there is 
a need for additional research on challenges that teachers 
face as they attempt CT integration. Therefore, the purpose 
of this paper is to unpack barriers that teachers face when 
integrating CT into their elementary instruction and to pro-
vide guidelines for addressing those barriers. 

METHODS

This mixed methods study employed a concurrent 
triangulation design (Creswell & Plano-Clark, 2017), 
with qualitative data serving as the primary source 
of information which was reinforced and confirmed 
through quantitative data. Specifically, we engaged in 
an approach where we triangulated data by source (i.e., 
teacher interviews and surveys). In such triangulation 
designs, researchers collect and analyze the qualitative 
and quantitative data separately and then synthesize that 
data to interpret the research findings (Creswell & Plano-
Clark, 2007). The two research questions that guided this 
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This item was worded as, “To what extent do you 
anticipate the following challenges will interfere with 
the implementation of CS and CT in your classroom? 
Example items included lack of curricular materials, lack 
of administrative support, lack of student interest in CS 
and CT. This scale ranged from not at all to a great extent. 
Cronbach’s Alpha value for the survey items is 93%, which 
indicates high internal consistency of the survey items.

Data Analysis. Qualitative data analysis involved an 
inductive coding using a constant comparative approach 
(Glaser, 1965) within the Dedoose qualitative coding 
software. The research team developed a structured 
coding scheme that involved the code name, operational 
definition, and code example (see Table 2). 

All the interview data was coded by two researchers 
in three phases. Phase 1 involved collaboratively coding 
teacher interviews and developing the code book. In phase 
2, once the code book was established, data was divided 
among the coders for individual first-pass analysis. Data 
that was analyzed individually was entered into a table 
and checked for agreement with the other coders in the 
second-pass analysis. When differences emerged, codes 
were compared and discussed for agreement. When 
necessary, the code scheme was revised for clarification 
and data was recoded based on the new coding criteria. All 
data was checked again for accuracy to ensure that analysis 
reflected any changes that resulted from the constant-
comparative process. Analysis of the surveys involved 
frequency counts of the Likert scale items to ascertain the 
barriers that were identified as most prevalent among 
the survey items. Finally, interview and survey data were 
compared as a means of triangulating data sources. 

RESULTS

Interview Results
Teachers across all three schools described five primary 
barriers to CT integration (See Table 3): 

complete the surveys. Given the varying approaches to 
integration, a different number of teachers in each school 
were selected to participate in interviews. The STEM 
teacher was interviewed in School A as she was the primary 
driver of CT integration at her school. In school B, there 
were only two teachers per grade level who integrated CT 
into instruction so these two teachers per grade level were 
interviewed (4 teachers). In School 3, which was the largest, 
two teachers per grade-level were randomly chosen to be 
interviewed (6 teachers). 

CT Integration Approaches. Across the schools, the teach-
ers had different approaches to integration based on the 
approaches provided by the PD providers. In School A, the 
STEM teacher integrated CT into science instruction across 
all the grades in the school. In Schools B and C, the teach-
ers integrated CT primarily in literacy and math instruction 
as these were the areas of priority for the schools. The 
PD providers encouraged the teachers to use academic 
language associated with computational thinking (e.g., se-
quencing, decomposition, debugging) as well as a combi-
nation of unplugged and plugged activities.

Data Collection. Data included teacher surveys and semi-
structured interviews across all three schools. Interviews 
and surveys took place after the initial year of CT 
integration. This way, the teachers were able to describe 
the barriers they faced during the process. The interview 
questions were designed to be open ended and allow 
teachers to describe their experiences with teaching CT 
and the barriers that they encountered. Initial questions 
focused on asking the teachers to share their experiences 
with teaching CT in general rather than on barriers. In 
this way, we avoided leading the teachers to discuss 
barriers. If they described barrires, the semi-structured 
interview protocol allowed for follow-up questions 
specific to barriers. After this set of questions, the teachers 
were asked one question specific to any barriers they 
encountered when implementing lessons or activities to 
teach CT. 

Surveys included 12 five-point Likert-scale items related 
to anticipated barriers.

Table 2. Example Codes, Operational Definitions, and Example Interview Quotes

Example Code Definition Example quotes from interviews

CS/CT is a new 
instructional area

Teacher describes the process of 
learning how to teach CS/CT 

“I’m kind of like learning and I’m still learning the Scratch 
skills myself and there’s a lot of times that I end up saying 
to the kids, like, “You probably know how to do it better 
than I do, so that’s okay,” like we’re learning together”.

Integration of CT 
into content areas

Teacher describes bringing CT concepts 
and practices into the content areas

“What the best way is to put these into different subject 
areas and to integrate it….I think it’s something that you 
teach with the concept that you're teaching…How do we 
mix it into the curriculum so that it doesn’t become an 
extra thing”.
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academic instruction alongside CT as well as in how to 
provide enriching CT instruction to all their learners. 

Limited teacher buy-in. Although buy-in emerged as a 
barrier to implementation, there were a range of reasons 
for this limited buy-in. The most common for this was 
unease with the amount of work it would require to 
introduce CT into the content areas. The teachers described 
limited energy, resources, and will for implementing 
something new, given all of their instructional demands. 
Another reason expressed by the teachers was skepticism 
about whether CT integration would result in academic 
benefits for their learners. Simply put, there was not enough 
research about the efficacy of CT integration to make it 
worthwhile for some teachers to invest time and energy to 
introduce it into their teaching. 

Survey Results
Survey results showcased similar findings to those in the 
interviews. Barriers reported in the surveys included lack 
of time to implement CT (n=26) and lack of available 
curricular materials (n=17). In addition to these barriers that 
appeared in both the interviews and surveys, the survey 
data also revealed barriers not described in the interviews: 
Lack of alignment between CT priorities and teacher 
evaluation (n=17); competing priorities between CT and 
other school priorities (n=33). Figure 1 provides the list of 
areas the teachers indicated on the survey were barriers 
to a moderate or great extent. As Figure 1 also shows, the 
one area where teachers across all schools indicated that 
student interest in CS and CT was not a barrier. 

Differences among the schools. Although teachers across 
schools indicated similar barriers, because of different PD 
and integration approaches, some differences emerged.

Table 3� Barrier Categories from the Teacher Interviews

Barrier # Teachers (n=11) Illustrative Quotes

Limited knowledge 
related to how to teach 
CT in their classrooms. 

8
“I think the biggest challenge was it was a very steep learning curve...
So as I was teaching the students and I’m still learning the Scratch skills 
myself.”—School C

Finding time for CT in 
the school day

6
“In the beginning, you're thinking about time. I don’t have time...Even 
in these 10-minute engaging activities, where does that come from the 
day?—School B

Lack of CT assessment 
knowledge and tools

5
“I think the biggest challenge if I had to root it in CT is that there's still not 
concrete performance indicators.”—School A

Challenges with meeting 
students’ diverse needs 
in computing

5
“I think just with the different levels of students, I think it’s hard for some 
classes. Just that they don’t have the foundations from the previous 
grade and they come already into second grade lacking that.”—School C

Limited teacher buy-in 
about teaching CS/CT

5
“I think the biggest challenge would be having teachers that are willing 
to implement something new. I think that’s the hardest part about, you 
know, introducing anything.”—School B

Limited knowledge related to how to teach CT in their class-
rooms. When the teachers described lack of knowledge of 
CT, they did so both from the perspective of having a limited 
understanding of CT concepts (e.g., decomposition,  
abstraction) and how to teach these concepts in the context 
of integrating CT into academic content areas such as lit-
eracy, math, or science. Teachers’ lack of expertise encom-
passed three interrelated areas: CT concepts, pedagogical 
approaches for introducing CT to their learners, and integra-
tion of CT into the core academic content areas. The teach-
ers, thus, indicated that they taught CT integrated lessons 
in an instructionally ambiguous situation wherein they were 
unsure what and how to teach CT in an integrated manner. 

Finding time to teach CT. Teachers indicated that a major 
barrier to CT integration was finding time to teach CT 
during the school day when there was already limited 
time for the core content areas, primarily reading and 
mathematics. Teachers also described difficulty finding time 
learn the content well enough to teach it to their learners. 

Lack of knowledge of and access to CT assessment. This 
barrier specifically addressed how teachers would know 
whether the students learned the CT concepts that were 
being introduced in class. They indicated that they had no 
performance indicators, no ways of understanding how 
students can apply skills learned to new problems, or no 
understanding of what assessments might look like in the 
context of CT integration. 

Challenges with meeting the needs of students with a 
wide range of learning needs. Teachers indicated that their 
student population is diverse and includes students who 
are emergent bilingual learners, students with disabilities, 
and students who were struggling for other reasons. 
They expressed a tension between providing basic core 
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curricular materials and none of the teachers in this school 
indicated a lack of computer hardware, software, or internet 
access. They had the most access to tools and technologies, 
compared to the other schools. In interviews, they stated 
that they had access to all necessary technologies to 
implement CT integration. 

School C. School C teachers described lack of time 
as a barrier related to finding time during the school 
day, but they did not indicate planning time as a major 
barrier as their PD provider provided them with lesson 
plans that could be implemented without a great deal 
of development work. The teachers explained that the 
administrators allowed them to use existing planning 
time for CT integration planning and working with their 
PD providers. Compared to Schools A and B, teachers in 
School C had the lowest proportion of teachers who stated 
that they had a limited understanding CS and CT as well as 
pedagogical approaches and ways of integrating CS and 
CT into their own instructional settings. This finding was 
unsurprising as they had the most access to PD as part of 
their PD implementation initiative. 

Discussion
This study highlights the common barriers faced by 
elementary teachers who were integrating CT into their 
instruction. Although all three schools offered PD and had 
resources for implementing CT, all the teachers indicated 
that this work was difficult and time consuming, similar 
to findings by Yadav and colleagues (2016). Although we 

School A. The primary CT integration driver in School 
A was the STEM teacher. When interviewed, she indicated 
that although other teachers in the school attended PD, 
the other teachers did not develop or implement the CT 
lessons without her involvement. Thus, the STEM teacher 
had CT integration responsibilities beyond her own 
classroom CT activities. When the STEM teacher described 
time, it was time to work with the PD provider to design 
instruction for both her own class as well as time for 
implementing CT instruction in the other classrooms. She 
stated, “I think that time is the biggest factor in developing 
a new curriculum [at all grade levels].” School A also had 
a higher proportion of teachers who indicated limited 
understanding of CS and CT content, as well as how 
to implement CS and CT in their classrooms, including 
which pedagogical approaches are effective in teaching 
integrated CS and CT. Given that these teachers were not 
primarily responsible for CT instruction, this finding was 
unsurprising. 

School B. The teachers in School B primarily described 
lack of time as finding time in the school day to teach CT. 
The PD providers helped to co-construct lessons with the 
teachers, so the teachers had to find time to both work 
with the PD providers and teach the lessons. The school 
administrators allowed teachers and PD providers to use 
instructional planning time for co-planning. One teacher 
in School B explained, “Finding that balance of how you 
can integrate the CT and still do everything that you need 
to do throughout the day.” Teachers in School B had the 
lowest proportion of teachers who stated that they lacked 

Figure 1. Percentage of Teachers Reporting Factors that were Moderate or Great Barriers



www.acm.org/education 69

leadership engage with teachers can help address some 
of these barriers (DeLyser et al., 2018). For example, 
the SCRIPTS process that the CS for All Consortium 
facilitates may assist district and school leadership towards 
addressing both the first and second order barriers found 
in this study. 

It is interesting that some barriers reported in the survey 
were not reported in interviews. For example, 17 teachers 
responded on the survey that there was a lack of alignment 
between CT priorities and criteria used by administrators 
to evaluate teacher effectiveness. Similarly, 12 teachers 
reported a lack of administrative support as a barrier. 
However, this was not a major theme in the interviews. 
It could be that the teachers did not feel comfortable 
sharing concerns related to their administration with the 
researchers in the interviews, but they were comfortable 
reporting these results in an anonymous survey. Future 
research should, therefore, address barriers in a manner 
that maintains teacher anonymity during the research 
process. Lastly, all the teachers in this study had access to 
ongoing support and PD to develop their CT integration 
knowledge and skills. Despite this support, they still 
reported multiple barriers. However, in many cases, 
teachers are faced with integrating CT into their instruction 
on their own and taking on the leadership for both 
increasing their own capacity and providing professional 
support to other teachers in their buildings. Given the 
findings of this study, especially as related to lack of time 
and knowledge, this CT integration work should not be 
placed on one or two teachers, but should take on a 
systems approach (DeLyser et al., 2020).

Limitations. Several limitations should be acknowledged 
within this study. First, this study took place within one 
district that had a range of CS and CT instructional 
resources available to the teachers. Although PD differed 
among the schools, all teachers had access to PD and the 
necessary tools for implementing CT. These conditions 
are not likely generalizable to smaller school districts 
or those without a K-12 CS initiative. Second, this study 
did not triangulate findings about barriers with the data 
from administrator interviews. Although administrators 
were involved in the CT integration within their schools 
by helping to develop the vision and participating in 
leadership decision-making, they were not used as a 
specific data source related to the barriers reported 
by the teachers in order to honor the confidentiality of 
the participants. Future research should explore how 
administrators view CT initiatives in light of the competing 
priorities described by the teachers. Lastly, this study did 
not investigate the extent to which previous experience 
with teaching CT influenced the teachers’ perceived 
barriers to implementing CT integration. Given that 
disciplinary experience with CT likely shapes level-two 
barriers, this connection should be explored further. 

expected a great deal of variation among the barriers 
reported by teachers at the different schools, there were 
more commonalities than differences. The differences 
that emerged could be aligned with the different PD 
approaches. For example, School C had the most intensive 
PD and coaching approach, so teachers indicated greater 
understanding of CT integration. 

Previous research on content integration (e.g., Tytler et 
al., 2019) and specifically integration of CT into instruction 
(e.g., Yadav, 2018) highlight both the ambiguity of what is 
meant by content integration and the difficulty that teachers 
face in integrating CT into their classroom instruction. 
This challenge was evident in teachers’ discussion of 
their lack of expertise related to CT integration in three 
ways: (1) CT understanding, (2) understanding of effective 
pedagogies for teaching CT, and (3) ways to bring CT into 
their core academic areas. Even with robust professional 
development, teachers struggled with identifying the 
connections between their core content instructional 
goals and CT concepts and practices. These CT integration 
challenges must also be viewed in light of other challenges 
faced by elementary teachers including teaching multiple 
subjects, classroom management, and insufficient planning 
time (e.g., Conway, 2001; Feiman-Nemser et al., 1999; 
Lortie, 1975; Veenman, 1984).

Barriers reported by the teachers were consistent 
with first and second order barriers to technology 
implementation reported in the literature (Ertmer, 1999). 
First order barriers (i.e., institutional barriers) are extrinsic 
to the teachers and include both lack of time to teach and 
plan integrated CT instruction as well as the competing 
priorities that the teachers indicated on the surveys. These 
barriers can result in significant challenges for teachers 
because of lack of resources, support, and other aspects 
outside of the teachers’ control. Second order barriers 
(i.e., personal barriers) relate more to teachers’ underlying 
beliefs about their own capacity to teach CT instruction 
as well as the importance of such instruction. In this study, 
the teachers described a lack of content, pedagogy, and 
assessment knowledge as well as lack of buy-in for teaching 
CS and CT. Although on the surface, the first order barriers 
may seem like the more challenging ones to address, it 
may actually be these second order barriers that are the 
more difficult to address given that they require teacher 
learning and change (Ertmer, 2005). Thus, it is important to 
consider teacher learning and beliefs along a continuum 
so that what is defined as successful CT integration for a 
teacher new to CT will look different from CT integration for 
a teacher who has prior CT teaching experience. 

Although the teachers did not rank lack of 
administrative support as a major barrier, the types of 
barriers they did report were those that administrators 
can influence. For example, survey results indicated that 
competing priorities and time were both major barriers. 
A team-based approach where district and school-based 
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Implications for Practice: Suggestions for 
Teachers New to CT Integration
We propose several strategies for addressing barriers to 
CT integration based on the findings of this study. First, 
it is essential to build a school culture of CT integration 
that includes a plan for CT integration, building time 
into the work day for planning, and promoting ongoing 
professional learning (Israel et al., 2015). If the school 
provides common planning time, teachers can use that time 
to develop lesson plans that infuse CT into curricula, share 
instructional strategies, and reflect on teaching experience. 
Next, joining and participating in face-to-face and online 
professional learning communities (Han & Liu, 2021) can 
enhance teachers’ engagement in CT learning and provide 
both local and remote colleagues to support learning, 
provide resources, and help address implementation 
barriers. There are a number of communities that can 
help CS teachers feel less isolated, provide resources 
and strategies, and address common barriers. These 
communities include: (1) the Computer Science Teachers 
Association (CSTA) national and state divisions (https://
www.csteachers.org/), (2) the CSTA K-8 Facebook page, 
and (3) Twitter chats such as #CSK8 and #CSforAll. Next, 
as it is important to consider a systems-approach to 
proactively plan for introducing CT into classroom contexts, 
supporting teachers in gaining the skills necessary to do so, 
and then sustaining CT instructional initatives. Tools such as 
the CS for All SCRIPT (Strategic CSforALL Planning Tool for 
School Districts) program, which is a framework that guides 
teams through visioning, goal setting, and planning for 
CS education implementation, can provide the necessary 
guidance. Lastly, many elementary teachers are novice to 
CT, so it is important to find resources online. There is a 
growing list of online resources for CT integration. Below 
are a couple integration-specific resources: 

•  Project GUTS elementary modules (https://
teacherswithguts.org/welcome) provide integrated CT 
and science instruction. 

•  EverydayCS Action Fractions (http://
everydaycomputing.org/) is a Scratch-based 3rd and 
4th grade integrated fractions and CT curriculum. 
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Strengthening Early STEM Learning  
by Integrating CT into Science and  
Math Activities at Home

Introduction 
Five years ago, the ‘Computer Science for All’ initiative 
was launched to “empower all American students to be 
equipped with the computational thinking skills they 
need [and] to be active citizens in our technology-driven 
world” (White House, 2016). Although much of the early 
attention on computational thinking (CT) in K-12 has 
focused on resources for secondary school students, 
new tools and activities directed to elementary children 
have also proliferated in recent years with the creation 
of environments focusing on programming (e.g., Scratch 
Jr., Kodable, HopScotch); activity sequences (e.g., ‘Hour 

of Code’ by Code.org); apps (e.g., Daisy the Dinosaur); 
and tangible programmable robots (e.g., Bee-Bot, Dash 
& Dot). Most of these approaches seek to introduce 
children to fundamental ideas of algorithmic thinking 
and its elements—sequence, conditional thinking and 
repetition. Few, however, have examined CT at the 
preschool level, and especially the synergistic—or mutually 
supportive—integration of CT learning with other early 
childhood learning domains. Studies have shown that 
children’s experiences in preschool math, English, and 
science can strongly predict later academic success, 
and not just in these subjects (Duncan et al., 2007). As 
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Abstract

While understanding in the field of how CT can be used in early childhood is limited, current CT definitions 
include skills and practices that align with early mathematics and science learning goals outlined in 

national frameworks (e�g�, Head Start Early Learning Outcomes Framework) and state standards� In order to 
understand which elements of CT align with the abilities and interests of young children and how they can 
be integrated with early science and math experiences in a mutually supportive manner, we partnered with 
preschool teachers and families to co-design and pilot test hands-on (unplugged) and digital activities for 
classrooms and homes� 

Our collaborative research identified the following CT skills as productive starting points for our co-design 
work: (1) problem decomposition; (2) algorithmic thinking; (3) abstraction; and (4) testing and debugging� 
This paper describes our approach to operationalizing CT for early learning and our empirical research 
around activities designed to understand how CT can be linked with math and science to create powerful 
learning experiences for preschool learners� Our work involves actively fostering a home-school connection for 
promoting CT and prioritized designing for activities that fit the ecology of preschool classrooms and homes 
(with special attention to family activities)� With a view to designing equity-oriented experiences, we partnered 
with preschools serving historically underserved communities, and centered families' funds of knowledge� 
This paper focuses specifically on the home component of the program and shares data and analyses about 
children's and parent's experiences at home—which activities were more successful and resonated with children 
and families, and which specific synergies emerged between CT skills, math and science concepts and practices� 

Our findings highlight the promise of introducing early CT to support early learning, and especially involving 
families in the process� Results from our research also identified challenges that should be addressed in future 
iterations of this design research We believe our family connection activities are not only a unique part of the 
research but also an exemplar of what should be an essential piece of STEM education for young learners�
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learning (Leibham, Alexander, Johnson, 2013). Given 
the persistent problems of inequity in STEM, efforts to 
promote integrated STEM learning are especially needed 
in public preschool programs serving children from 
historically underserved communities. Recent advances in 
our understanding of the building blocks of CT and of the 
capabilities of young learners make the integration of CT 
with early STEM activities ripe for exploration. 

Some researchers have explored non-programming 
activities for building CT skills and practices in preschool, 
but evidence evaluating children’s learning from the 
activities designed is limited. Mittermeir (2013) found that 
a small group of preschoolers could articulate algorithms 
for sorting tasks. Calderon, et al. (2015) shared a prototype 
idea for pattern recognition among children ages 3 to 5. 
Horn, AlSulaiman, and Koh (2013) developed an interactive 
storybook that leveraged family language and literacy 
practices to help preschool and elementary students apply 
ideas about sequences and loops. Emerging research 
indicates that preschoolers are able to learn CT skills such 
as sequence, modularity, and debugging in the context 
of simple, engaging hands-on classroom math activities 
(Lavigne et al., 2020). 

Our work involves actively fostering a home-school 
connection for promoting CT and prioritized designing for 
activities that fit the ecology of preschool classrooms (e.g., 
circle time, small group activities, learning centers) and 
homes (e.g., board games, paired/family activities). This 
draws on the strong evidence in early learning literature 
about the positive impact of family involvement in early 
STEM learning. Based on a meta-analysis of 46 studies, 
Ma et al. (2016) found a strong and positive correlation 
between learning outcomes and parental involvement, 
and that the role of parents (family involvement) was 
more important for STEM learning than the role of 
schools and communities (partnership development). 
The authors argued that to develop a strong relationship 
between learning outcomes and parental involvement, 
home supervision, behavioral involvement, and home-
school connection were the keys from family involvement. 
Additionally, scholars studying equity in computing 
education more broadly suggest that connecting 
computational experiences to family and community is 
part of culturally responsive computing pedagogy (Scott, 
Sheridan, & Clark, 2015) and is an equitable approach 
to teaching computing (Pinkard et al., 2020). Roshan, 
Jacobs, Dye, and DiSalvo (2014) argued that parents 
in economically depressed communities struggle to 
negotiate what roles they can play in their children’s 
computational learning experiences, and how they can 
help their children access computing-related learning 
resources. We believe our family connection activities are 
not only a unique part of the research but also an exemplar 
of what should be an essential piece of STEM education for 
young learners.

educators explore how CT can be integrated meaningfully 
to support learning, it is important to investigate how 
elements of CT best align with the abilities and interests of 
preschool children. In what contexts can CT be promoted 
in a meaningful and consequential way? How can CT 
activities be integrated into common preschool classroom 
activities and home learning experiences to strengthen 
young children’s STEM learning, especially for children in 
historically underserved communities? These questions 
provided the motivation for this research.

This paper describes our research activities that 
aimed to understand how CT can be linked with math 
and science to create powerful learning experiences for 
preschool learners. Our research centers equity; it involves 
(a) purposefully partnering with preschools serving 
culturally and linguistically diverse families in low-income 
communities (Nasir et al., 2020) and (b) co-designing with 
and drawing from families’ funds of knowledge (Moll, 
2015; Moll et al., 1992). We start by framing our work in the 
dual contexts of early STEM learning research, including 
evidence highlighting the importance of home-school 
connections, as well current CT frameworks K-12 learning. 
We, then, briefly discuss how we operationalize CT for 
early learning and describe our approach to iteratively 
co-design activities (Penuel, Roschelle, Shechtman, 2007), 
which involved bringing together public preschool 
teachers, families, curriculum and media designers, and 
CS education and early learning researchers. A series of 
design-based research activities (DBR; Sandoval & Bell, 
2004), including observations, surveys, interviews, and 
assessments, aimed to examine how CT activities at home 
support young children’s learning. In this paper, we discuss 
findings from a culminating field study involving public 
preschool classrooms and homes and discuss implications 
and learnings for the field as well as our ongoing and 
future efforts. 

The Early Learning Context
The early childhood education field is increasingly aware 
of the need for and value of promoting early learning 
in STEM (Schweingruber, Duschl, & Shouse, 2007; U.S. 
DHHS, 2015). This recognition emerged from research 
determining that (1) young children are interested in and 
have a right to engage in mathematics and science as a 
way of exploring and understanding the world around 
them, (2) learning mathematics and science often includes 
exploratory and play-based activities that resonate with 
developmentally appropriate preschool practices, (3) 
scaffolding young children’s mathematics and science 
learning can promote the reasoning skills and learning 
dispositions crucial for later school success (Clements 
& Sarama, 2014; Gelman, & Brenneman, 2004), and 
(4) promoting mathematics and science can result in 
increased interest in and better preparation for later STEM 
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Operationalizing CT, Connecting to Early 
Math and Science, and Co-Designing 
Activities
Early co-design work helped identify target content and 
initiate the design of the learning blueprints that in turn helped 
curricular design of activities. As part of the initial stages of  
co-design (Figure 1), our team identified the following CT 
skills as productive starting points for our work: (1) problem 
decomposition; (2) algorithmic thinking; (3) abstraction; 
and (4) testing and debugging. These were identified as 
promising entry points for exploring integration with other 
STEM areas by the co-design team and project advisors based 
on their own prior research and design experiences in early 
math and science (Presser et al., 2019; Vahey et al., 2018), 
existing research evidence (described above), and alignment 
with current early childhood standards (e.g., Head Start 
Early Learning Outcomes Framework and state standards 
such as California’s Preschool Learning Foundations).

A ‘learning blueprint’ (Vahey et al., 2018) was gener-
ated to list developmentally appropriate learning goals 
for each of the identified CT skills and delineate possible 
connections to early mathematics and science. For instance, 
algorithmic thinking was tagged in relation to counting 
and visual spatial skills common in navigational activities, 
abstraction activities were tagged as possibly related to 
science practices such as comparing, and sorting based on 
key characteristics and debugging seen as tying to scientific 
experimentation. Additionally, we aimed to give familiar 
children’s activities a goal- or problem solving- orientation. 
Children would not merely sort objects, but sort and label 
in ways that help them build something more efficiently. For 
example, an object with red blocks would be more efficient-
ly built if blocks were sorted by color and building an object 
with square blocks would benefit from sorting by shape. 

Prototype hands-on activities were pilot tested in two 
classrooms and three homes to inform next DBR iterations. 
22 classroom and 6 home hands-on activities emerged 
from revisions. Table 1 shows a list of sample activities, 
target CT skills, and mappings to math and science1. Two 
digital games were designed and iterated on (and are now 
freely available for iOS and Google mobile devices) for 
use in home and school. In City Walk (Figure 2), children 
create a sequence of instructions to help their robot 
navigate a route to deliver gifts to friends around town. 
Through appropriate scaffolding, the app progressively 
introduces more complex tasks and provides visual and 
audio feedback to help children learn how to debug errors. 
In Better Building (Figure 2), children sort and label groups 
of blocks based on characteristics such as shape, color, and 
size, to help the robot build structures more efficiently. 

Framing Computational Thinking
CT has been described as a composite set of problem-
solving skills associated with computer science but with 
overlapping roots in mathematics and engineering. Wing 
(2006) described CT as a universal skill for all in today’s 
world, as computing has become a pervasive part of life. 
Researchers focusing on primary and secondary computer 
science education have further articulated the problem-
solving strategies that comprise CT as including algorithmic 
thinking, decomposition, abstraction, pattern recognition, 
generalization, systematic error detection and debugging, 
and evaluation of solutions (Grover & Pea, 2013, 2018). 
More recently, Dong et al. (2019) synthesized various 
articulations of CT, including those catering to STEM 
integration contexts (e.g., Weintrop et al., 2016) to propose 
PRADA—Pattern Recognition (observing and identifying 
patterns, trends, and regularities in data, processes, or 
problems), Abstraction (identifying the general principles 
and properties that are important and relevant to the 
problem), Decomposition (breaking down data, processes, 
or problems into meaningful smaller, manageable parts), 
and Algorithms (developing step by step instructions for 
solving [a problem] and similar problems). 

Although research on CT in early childhood is sparse, 
current CT definitions resonate with school readiness 
goals delineated by preschool programs and policies. For 
example, the Head Start Outcome Framework’s Reasoning 
and Problem-Solving subdomain indicates that young 
children need to learn to use a variety of problem-solving 
strategies, and reason and plan ahead to solve problems 
(DHHS, 2015). Research that examines how these CT skills 
align with the abilities and interests of young learners 
and uniquely support their school readiness is thus timely 
and needed. Our work on integrating CT into preschool 
learners’ STEM activities drew on these frameworks, 
but also required that we find age-appropriate ways of 
accomplishing our goals and identifying productive points 
of synergy among elements of CT and early STEM learning 
goals. Through this project we are developing a deeper 
understanding of what CT looks like in its simplest form, 
and how it can enrich math and science for preschoolers.

METHODS 

The research presented in this paper is part of a broader 
effort that aims to examine how we can bring CT into early 
learners’ lives through curricular activities that integrate CT 
with familiar preschool science and math activities and play 
in ways that fit seamlessly into classroom as well as home 
routines; and familiarizing teachers and parents/caregivers 
on what CT is and preparing them to implement the activi-
ties at school and home, respectively. This paper focuses on 
the home component of the program and shares findings 
about children's and parent's experiences at home. 

1  For more details on these activities, including lesson plans, please visit  
https://digitalpromise�org/initiative/learning-sciences/preschool-
computational-thinking/activities/

https://digitalpromise.org/initiative/learning-sciences/preschool-computational-thinking/activities/
https://digitalpromise.org/initiative/learning-sciences/preschool-computational-thinking/activities/
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F�  Robot in the City: As an unplugged complement to 
City Walk, this activity involves children practicing with 
directional arrows in order to follow a short sequence 
of directions on a small city map printed as a 3x3 grid.

Additionally, we developed a playful task-based 
assessment to measure CT learning. However, its use in 
this research was mainly to pilot the assessment while also 
gathering data for iterative refinements. Sample assessment 
items are described in Table 2.

The 6 hands-on home activities (listed in the shaded 
rows in Table 1) are briefly described below:

A�  Playdough Workshop: In this activity, children make 
a playdough creation, such as a rainbow or pizza (see 
Figure 3) and engage with problem decomposition by 
identifying the smaller parts they need to make in order 
to tackle their big creation. 

B�  Cereal Necklace: This activity centered on children 
learning to identify and follow a sequence of steps 
(algorithms) to make a necklace out of cereal (or pasta).

C�  Grocery Store Trip: The goal of this activity was to help 
families plan what they need at the grocery store and 
sort items on their grocery list by category (such as 
fruits, dairy, vegetables, cereal) to make the search at 
the store easier.

D�  Getting Ready for Bed: As children create their own 
book to tell the story of their bedtime routine, they 
learn to identify the big task and the smaller, sub-tasks. 

E�  Playing with Dice: In this activity, children learn to cre-
ate instruction codes with loops to play a fun game with 
numbers and activity dice. Children paired the number 
on the dice to repetition of actions such as clapping, 
jumping, etc.

Figure 1. Activity co-design with parents/teachers and caregivers

Figure 2. Digital apps/games for : (Left) City Walk (for algorithmic thinking) and (Right) Better Building (for abstraction)

Figure 3. Problem decomposition through  
creations in Playdough Workshop

http://www.acm.org/education
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Table 1.  Sample Activities, formats, and locus along with CT/Science/Math alignments  
(Blue rows indicate activities designed for families and homes)

Sample Activities  
Format/Locus

CT Skills Mathematics  
Concepts/Skills

Science  
Content/Skills/Practices

City Walk  
Digital/Home & School

Algorithms 
Debugging

Spatial reasoning/ 
visual spatial 

Better Building  
Digital/Home & School

Abstraction Recognizing shapes Practices: Classifying & sorting, Comparing 
& contrasting

Carmella’s Apple Store 
Unplugged/School

Problem 
Decomposition, 
Testing/Debugging

Measurement  
Counting, 
Cardinality 

Sink and float, ramps & pathways. 

Practices: Observation, Developing & 
planning investigations; Cause & effect

Robot in the City 
Unplugged/Home & School

Algorithms 
(Sequences); 
Debugging

Spatial reasoning/ 
visual spatial 

Playing with Dice 
Unplugged/Home & School

Algorithms  
(Loops)

Number sense  
(quantity)

Cereal Necklace 
Unplugged/Home 

Algorithms number, first,  
next, Patterns

Playdough Workshop 
Unplugged/Home & School

Problem  
Decomposition 

Shapes, Counting, 
Cardinality 

Practices: Observing & describing

Grocery Store Trip 
Unplugged/Home Abstraction, Pattern 

Recognition
Counting

Practices: Observing & describing, 
Classifying & sorting, Comparing & 
contrasting, 

Content: Food/Nutrition; Animals 
classification

Our Very Own Zoo 
Unplugged/School

Getting Ready for Bed 
Unplugged/Home

Problem  
Decomposition

Counting,  
Cardinality 

Content: Hygiene, nutrition

Getting Ready for School 
Unplugged/School

Table 2. Sample Assessment Items 

Item  CT Skill/Practice Description Response Format

3 Algorithms (sequence) Interpret (or follow) code to navigate a small 
map. Code involves pictures. 

Verbal response, point or indicate

5 Algorithms (repetition/looping) Generate code that includes a loop. Jump 
three (3) times.

Tangible Manipulative placement

7 Abstraction (sorting) Sort toy vehicles for a given purpose. (two 
variables - color and vehicle type)

Tangible Manipulative placement

12 Testing and Debugging Debug a mistake (made by assessor) in 
navigation of a small map. 

Verbal response, point or indicate

13 Abstraction (labeling) Label sorted groups of blocks for a given 
purpose. (one variable - color)

Tangible Manipulative placement

15 Problem Decomposition Decompose steps to build a simple structure 
with blocks. 

Verbal response, point or indicate
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examples (e.g. we engage in algorithmic thinking when 
following a recipe with clear, sequential instructions), and 
a walkthrough to introduce hands-on and digital activities 
(see examples in Table 1) that families were asked to try out 
at home. 

Data Measures. The following data were collected:
•  Home observations. We conducted home observations 

with detailed notetaking (Emerson, Fretz, & Shaw, 
2011). Researchers met with each family three times 
over the course of the field study (once for each CT 
unit: abstraction, problem decomposition, algorithmic 
thinking). During the family meetings, researchers 
took notes on families’ experiences with the hands-
on activities and digital apps, and documented 
their feedback. Family meetings in VA took place at 
the preschool. In CA, family meetings took place in 
a variety of settings: outdoor space on the school 
premise (one family); home (one family); and local 
library (two families).

•  CT Assessment. Approximately 8 children per classroom 
were selected to be assessed in a post-intervention 
assessment using a stratified random sampling 
procedure. An equal number of 3- and 4-year-old girls 
and 3- and 4-year-old boys were randomly selected 
from each participating classroom. The assessment was 
used as a measure of CT learning with a view to also 
pilot-testing the assessment.

•  Post-Study Parent/Caregiver Surveys and Interviews. To 
gather information about their experiences (successes 
and challenges), parents/caregivers completed a survey 

Field Study 
The activities and resources developed throughout the proj-
ect were examined in a small quasi-experimental field study 
over a six-week period conducted in both classrooms and 
homes. In this paper, our data and findings focus on examin-
ing implementation in homes, with a view to understanding 
(a) how we can engage families in such activities, and (b) 
parent/caregiver experiences with CT and its integration 
with math and science. This paper shares the research guid-
ed by the specific research question: How can we integrate 
CT for preschoolers into activities at home and what are 
parent/caregivers’ experiences with such integration?

Sample. A total of 7 public preschool classrooms 
consented to be part of the field study; 5 classrooms were 
assigned to the intervention condition and 2 classrooms 
were assigned to a comparison condition. A total of 
2 families (consisting of at least one parent/caregiver 
and preschool aged child) in each of the intervention 
classrooms were randomly selected to be part of the home 
intervention (N=10 families; 4 based in California and 6 in 
Virginia). All families belonged to minority ethnic groups 
in the US— 6 were Hispanic/Latino, 3 were Black and 1 was 
Asian. Parents‘/caregivers‘ highest level of education was 
either high school or college (Table 3).

Resources and Supports for Families. In preparation 
for the field study, the team also prepared professional 
development materials for two meetings which includ-
ed documents, an infographic video describing CT skills 
(https://vimeo.com/561877371/9959d88a08) with relatable 

Table 3. Demographic Characteristics of Families in Field Study

Characteristic California Virginia Total sample

n % n % n %

Ethnicity

Hispanic or Latino 4 100 2 33.3 6 60

Not Hispanic or Latino 0 0 3 50 3 30

Race

American Indian or 
Alaskan Native

0 0 0 0 0 0

Asian 0 0 1 16.7 1 10

Black or African American 0 0 3 50 3 30

Native Hawaiian or  
Other Pacific Islander

0 0 0 0 0 0

White 3 75 2 33.3 5 50

Highest educational level

Some high school 0 0 0 0 0 0

High school 2 50 2 33.3 4 40

Some college 2 50 3 50 5 50

College 0 0 1 16.7 1 10

http://www.acm.org/education
https://vimeo.com/561877371/9959d88a08


Computational Thinking in PreK-5: Empirical Evidence for Integration and Future Directions78

learner and parent/caregiver experiences with our activity 
suite. The two researchers jointly reviewed the responses 
and identified themes described in the section below on 
why some activities worked (more than others). They then 
coded the responses independently based on the themes, 
and then met again to discuss and reach agreement.

Enactment of Home Activities 
Based on the review and qualitative analysis of researcher 
notes during family visits, as well as comments during the 
interviews, the following feedback emerged on family 
experiences with each of the activities. Activities such as 
Grocery Store Trip and Getting Ready for Bed could not be 
observed, and the researchers relied on parents/caregivers’ 
descriptions of how those activities went. 

Findings from the family visits, surveys, and interviews 
indicated that, overall, families really enjoyed doing 
the activities and reported engaging in many of them 
repeatedly with their children: 

“Really good experience. Helps kids with focus and 
has good directions on what to learn. My daughter is now 
following directions better. Also really like the Playdough 
Workshop. She likes to make every item on the cards.”

Everything was great. [Child name] and I both like to do 
a lot of different things, so this was great for us. [Child name] 
enjoyed everything.

“It is a really great family project. My older kids were 
helping and playing with [child name]. So it was great to 
have these games and materials to use at home together.”

“[Child name] really loved the activities. She liked to try 
all of them. She especially loved the Bedtime book and has 
asked to read it often at night. She also liked making her 
own book, and is enjoying going back and adding to the 
book. She is excited to make another book about Getting 
Ready for School. She did this at school, but would like to 
make another one at home.”

Generally, families appreciated that the activities involved 
formats familiar to them (e.g., grocery shopping, book 
reading, cooking, routines, etc). Families also reported that 
their children liked playing the digital games; all parents/
caregivers reported their children used the apps during the 
study. 78% of parents/caregivers indicated their child using 
the program’s apps at least three times a week. Moreover, all 
9 parents/caregivers who completed the post-study survey 
reported introducing CT to their child as “very valuable” on 
the survey with nearly all (n=8) expressing highest levels of 
interest in continuing to teach CT to their child. The following 
sections provide deeper insights into these findings of family 
experiences with three of the unplugged activities (one 
each for our 3 target concepts: Problem decomposition, 
Algorithms, and Abstraction) and the two digital apps.

•  Playdough Workshop (Problem decomposition): The 
Playdough Workshop activity resonated with families, 

at the end of the 6-week implementation period. The 
survey included 5 Likert-scale questions specifically 
pertaining to the intervention:
1�  How important/valuable do you think it is to introduce 

Computational Thinking to your child?
2�  Would you be interested in teaching Computational 

Thinking to your child in the future?
3�  On a scale from 1 to 5 (1 means not very helpful and 

5 means very helpful), how much do you think the 
Better Building app helped your child learn about 
Abstraction and Sorting?

4�  On a scale from 1 to 5 (1 means not very helpful 
and 5 means very helpful), how much do you think 
the City Walk app helped your child learn about 
Algorithms and Math?

5�  During the study period, about how often did your 
child use the program’s apps? [Every day, 3-4 times a 
week, 1-2 times a week]

There were also 2 open-ended response questions:
1�   Which of the hands-on activities you tested did you 

and your child enjoy the most? 
2�   Which of the hands-on activities you tested did you 

and your child enjoy the least? 

The post-survey was followed by a semi-structured 
interview to gather deeper feedback and detail on survey 
responses, and specific feedback on the two digital apps—
City Walk and Better Building.

Mixed-Method Analyses and Results 
Home visit and family meeting observation notes were used 
to document implementation successes and challenges 
of hands-on and digital activities; the degree of children’s 
engagement with the activities; children’s and adults’ 
conversations while completing activities; and the scaffolds 
needed for children to participate successfully in activities 
(e.g., instructions, feedback, modeling). The purpose of the 
family meetings was to provide an overview of the CT skill 
and share the related hands-on activities and digital app 
games for families to try together on their own or during 
the meeting. In addition to the family meetings, 9 out of the 
10 parents/caregivers responded to the survey and 8 out of 
the 10 parents/caregivers could be interviewed post-survey. 
This section presents findings from the survey analyzed 
quantitatively, and qualitative coding (by 2 researchers) 
of the home observation notes and post-interview 
responses to questions pertaining to parents/caregivers’ 
overall experience with the activities, explanations of why 
an activity was most enjoyable or least enjoyable, and 
what they thought of the CT resources shared with them. 
Given the sample size, the coding was done with a view 
to identifying dominant and recurring themes across the 
interviews and observations that could provide insights into 
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because I realized that I go to many grocery stores, for 
many different items. At first it was hard to think about 
how to engage [child name], but then she was able to 
draw the pictures of the items she wanted to add to 
the list, and then categorize. Then, when shopping she 
could help figure where to get the items she wanted 
based on the categories (e.g. strawberries in fruits 
and goldfish in snacks).” However, another family 
remarked on how the activity helped the child, as the 
child continued to sort unprompted while at the store, 
noticing the characteristics of the items and sorting 
into groups by type or color (like in the Better Building 
abstraction app game): “I feel like it’s helped him a 
lot, especially the one with the grocery store. Now he 
wants to put it in sets like colors and fruits. He even 
brings it up without me telling him about. It takes us 
longer at the grocery store now [because he brings it 
up]. He goes, “Mommy, let me help you.” I was getting 
vegetables and he wanted me to put in the bag telling 
me they were green ones. He was sorting the fruits 
separately in piles on the register.”

•  City Walk App Game (Algorithms & Debugging): Seven 
out of nine parents/caregivers rated the City Walk 
digital game a 5 when asked how much they thought 
City Walk helped their child learn about algorithms 
and math on a scale from 1 (not very helpful) to 5 (very 
helpful); the other two rated it a 4.

especially given children’s familiarity with playdough. 
Five families named this activity as the one they enjoyed 
the most on the survey. When prompted to elaborate 
on this during the interview, a few mentioned the 
creativity aspect of the activity and noted that the 
child was excited to share their creations. However, 
the emphasis appeared to be on working together or 
discussing the sequence of steps, and the emerging 
conversations tended to focus on sequencing and math 
concepts, such as counting and shape identification. 
The focus on problem decomposition was not always 
evident. The following quote provides a sense of the 
kinds of experiences parents shared:

“She really enjoyed working with all of the playdough. 
She was excited about the different cards with ideas 
of what to make, and had fun making all of them. She 
wanted to do each one by herself. Mom went to the dollar 
store and got some tools so that she could make some 
shapes easier and use little plastic knives, etc. She was 
so proud of the things that she created in this activity, 
and also asks to play with the materials often.”

•  Cereal Necklace (Algorithms & Patterns): Although 
only one parent/caregiver indicated this activity as their 
favorite on the survey, two other parents/caregivers 
explicitly also cited this activity as a favorite in their 
interview. The families whose children found the activity 
enjoyable noted in their interviews that their children 
liked to create patterns; in one instance, the child sorted 
the cereal prior to making the patterned necklace: “Told 
her to choose her favorite cereal. We have the different 
colored cheerios and the regular cheerios so she sorted 
the colors. I put it in one big bowl and then she sorted 
into three smaller bowls. We made a pattern and looped 
it through the thread.”

The parent/caregiver of another child reported how 
the activity helped her child focus and better follow 
directions. These observations illustrate the synergy be-
tween CT (algorithms) and math (patterns) in this activity 
and the feasibility of successfully linking CT with math. 

•  Grocery Store Trip (Abstraction) resonated with all 
families during the initial family visit—they all made 
some connection with how they might fit the activity 
into their typical family routines related to grocery 
shopping. However, when parents/caregivers’ shared 
feedback about this activity after they tried it out or 
reviewed it in more detail, two families mentioned 
they were unsure about how best to engage children 
in the activity, which suggests this may be challenging 
for some to implement. One parent, who identified 
this activity as the most challenging in the interview, 
modified the activity by having the child draw the 
items to add to their grocery list and then sort into 
groups. This proved helpful once they were at the 
grocery store since the child could determine where 
to find the items on the list: “This one was difficult 
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to jointly engage in gameplay with siblings or family 
members. In addition, for one family in particular, the 
child’s gameplay sparked math related conversations 
around counting/cardinality and shape identification. 
There were also a few instances where we observed 
parents/caregivers taking an active role in mediating 
their child’s gameplay by either providing “in the 
moment” scaffolding or posing questions to their child. 

Why Certain Activities Worked 
(More or Less Than Others)
The survey asked parents/caregivers to specify which activity 
(or activities) their child enjoyed the most and least. For 
most enjoyable, the Playdough Workshop activity ranked the 
highest (5 out of 9 parents/caregivers); 3 out of 9 marked 
the Playing with Dice activity; and Cereal Necklace and 
Getting Ready for Bed received 1 vote each with one family 
reporting two favorite activities. These numbers changed 
slightly during the interviews with 3 parents/caregivers 
mentioning Cereal Necklace as the most enjoyable. Parents/
caregivers were probed during the interview of their overall 
impressions of the activity suite, why a particular activity 
was their child’s favorite (or least favorite), and their specific 
feedback on City Walk and Better Building digital apps. It is 
interesting to note that many parents/caregivers spoke of 
their children continuing to do the activity, suggesting that 
that was an indicator by which the activity was judged. We 
coded the responses for themes as the insights are valuable 
in future iterations and activity designs and help shine a light 
especially on those features of activity designs unique to 
home and family involvement. 

The following key themes emerged from coding 
parents/caregivers’ explanations of why a particular activity 
was most enjoyable. We have added a few parent/caregiver 
quotes that embody the sentiment: 

•  Familiarity with materials (playdough or cereal) or 
activity theme (such as shapes) and/or alignment with 
usual home routine (how they did grocery shopping or 
got ready for bed).

[Playdough Workshop] “First of all, my kids in 
general already like playdough. For them, it wasn’t like 
“Oh, we’re going to learn.” It was something that we’re 
able to do and they still continue to do.”

•  Level of difficulty� Too much challenge (as in Grocery 
Store Trip) or too little challenge (as in Better Building) 
was a problem for promoting engagement. 

[Grocery Store Trip] “Grocery list was too hard. She 
did not understand what to do.”

[Better Building] “I think only sorting 2 colors has 
gotten too easy for her. Including more shapes to make 
it more difficult.”

•  Levels of support needed� While age-appropriateness 
was a consideration in our activity designs throughout, 
some activities were less engaging likely because ideas 

Parents/caregivers expressed that their child found 
this game enjoyable with some repeatedly returning 
to it or continuing to play for an extended period. 
While the game mechanics were generally intuitive 
for children, three parents/caregivers noted their child 
needing more extensive support throughout their 
gameplay. One parent explicitly said their child liked it 
more than Better Building (which was also very well-
liked). “He liked this one more than the building one. I 
feel like maybe this was a little harder/more challenging. 
The Better Building was more fast [got through that 
game more quickly]. He got through it [City Walk], but it 
took longer.”

The type of scaffolding parents provided varied 
depending on whether the child needed assistance 
with either correctly identifying directional arrows or 
providing directions with multiple directional arrows 
(visual and spatial thinking). For a couple of parents/
caregivers, observing their child’s struggles with the 
game unearthed the concepts (e.g., navigation) they 
thought they needed to explicitly teach.

•  Better Building App Game (Abstraction & Pattern 
Recognition): When asked how much they thought 
Better Building helped their child learn about 
abstraction and sorting, all parents reported a 5 rating. 
Based on parent/caregivers’ feedback during the 
interview and researcher observations of children’s 
gameplay, children enjoyed the game and easily played 
the game independently. For example, “First time, he 
ever did that app, he was able to grasp that sorting really 
well. With his toys, he puts them back and puts them 
into the categories we did at home. Better organization 
for when they need to find something. He really enjoyed 
the sorting. He liked getting to build his pattern. He was 
engaged in this one a little more.” Children’s successful 
completion of levels and the extent to which they 
needed additional support seemingly corresponded 
with their familiarity of the characteristics of objects 
being sorted within the game (e.g., shape, color, and 
size). One parent/caregiver initially thought the game 
would be easy for her child given the child’s familiarity 
with shapes and color yet found the game appropriately 
challenging as the child needed scaffolding at times 
around the characteristic the object was being sorted 
by. Another parent/caregiver highlighted the benefit 
of the categories and/or labels within the game, noting 
this similarity to the Grocery Store Trip activity (which 
is also an abstraction-focused activity). To increase 
game complexity, some parents/caregivers suggested 
including more difficult levels or involving less familiar 
shapes: “That one was also pretty easy for her to do so 
adding difficulty levels (different colors and shapes). She 
goes more to the City Walk.”

Similar to the hands-on activities, there were 
opportunities across both digital games for children 



www.acm.org/education 81

“Video is a good way to walkthrough; can repeat it 
whenever you need a refresher.”

“I know you told me the definitions, but seeing 
the examples helped me understand it more. These 
activities can show parents what children know and don’t 
know, be involved with them. It gave me an idea of what 
my son should practice.”

“The activities really help children and parents 
engage together at home. And it is really great for the 
Head Start center to have this partnership. Really hope 
that the program continues and more children/families 
get an opportunity to participate!”

“I’m not sure if there’s any way to make it more 
available [to more parents].”

CT Learning
The assessment data gathered from the CT assessment 
designed as part of the project was used to examine pre-
post changes in student learning. A summated score was 
used to exploratorily examine the promise of the resources 
developed; the estimated reliability of the summated score 
was 0.72 at pre-test and 0.78 at post-test. The distribution 
of the data was examined to ensure there were no outliers 
and a simple regression model with two predictors 
only (pre-test score and condition) was conducted to 
examine children’s change in post-test scores. Significant 
improvements were detected from pre to post for children 
who participated in the home+school connection condition, 
relative to the comparison classrooms (t = -3.056 (45),  
p <.005). Interestingly, a significant effect was not detected 
for children who participated in the classroom only 
condition, relative to the comparison condition. These 
findings (albeit with a small sample) when combined with 
the overwhelmingly positive feedback from families makes 
this a salient result, given that involving families was a 
unique element of this design research.

Discussion 
Our research presents family experiences with integrating 
CT activities into their homes as part of a broader effort to 
integrate CT into children’s early STEM learning in school 
and home. Our qualitative research analyzing the home 
component provides thick data and rich insights into family 
experience and provides many learnings and ideas for 
the broader field and educational goal for strengthening 
early STEM learning. The benefit of involving the family 
was apparent in parents’/caregivers’ comments that clearly 
indicated how they enjoyed it as a “family project”. Our 
findings highlight the promise of introducing early CT to 
support early learning, and especially involving families 
in the process. Results from our research also identified 
challenges that should be addressed in future iterations of 
this design research. Parents/caregivers were enthusiastic 
about the intervention and they appreciated being 

therein required high levels of scaffolding for the child 
as in Robot in the City (as well as directional arrows in 
City Walk for a few children). 

[City Walk] “She also had a hard time with the 
different directions. She may just need more practice, 
but for now it seems a bit advanced.”

•  Creativity/creating something (as opposed to 
enacting)� The two most popular activities—Playdough 
Workshop and Cereal Necklace involved children 
creating physical artifacts. Many parents/caregivers 
expressed creativity or creating things as a positive 
feature when explaining why these activities were 
enjoyable. 

[Cereal Necklace] “She was so proud of the things 
that she created in this activity, and also asks to play 
with the materials often.” 

[Playdough Workshop] “I feel like it worked well 
because it was more sharing who was gonna do what, 
specifying who’s going to do this. Also used him to use 
his creativity. He asks me ‘Can I use this color?’ and he 
uses the color he wants.”

•  Family / siblings joining in the activity� Parents/
caregivers often mentioned siblings playing with 
the activity or joining in to engage jointly with the 
activity. Activities that fostered this were seen as more 
enjoyable, most notably, Playdough Workshop, Playing 
with Dice, and Cereal Necklace.

[Playdough Workshop] “It’s helped not only him, but 
also my younger daughter. Telling each other who is 
going to do what. I really like that one.”

[Playing with Dice]”This one my older children really 
liked playing together. It got them all moving and they 
had fun.”

[Digital Apps] ”I feel like in my opinion both 
activities, you know how I said before he’s second year 
in preschool, it’s like a practice he continues to do. He 
just turned 5 and my son teaches my daughter. She’s 
adapting to what he teaches.“

In addition, other themes worth noting were:
•  The home-school connection was reinforced in some 

activities� For example, children were excited about 
making the Getting Ready for Bed book because 
of the Getting Ready for School book they made in 
school. Better Building was enjoyable for some children 
because of its familiarity having been introduced to it 
in class.

•  Parents were very appreciative of the CT training and 
resources provided to them� None was familiar with the 
term “Computational Thinking” prior to the intervention, 
and they all appreciated the video and the connections 
the examples made with activities familiar to them. They 
welcomed the partnership with their child’s school and 
were also keen for other parents/caregivers and families 
to experience it.
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Walk - such as directions (left/right)— came in handy for 
children as they played Robot in the City. Our data suggest 
that this was because Robot in the City required the adult 
to situate the materials and explicitly facilitate/scaffold the 
activity. This distinction in experience between digital and 
unplugged activities covering the same concept highlights 
what kind of activities can leverage and benefit from digital 
affordances (as City Walk does).

Lastly, holding children’s attention is important and 
some activities were clearly better on this criterion than 
others. However, we found that unexpected factors can play 
a role in addition to the level of challenge; sometimes other 
distractions come in the way of implementation especially 
with an audience of preschool learners. For example, other 
happenings around the library (where the family meeting 
was taking place with the researchers) would draw the child 
away; or a robot figurine in Robot in the City would distract 
the child from focusing on the solution to the navigational 
problem. This is perhaps a relevant takeaway for children in 
the lower primary age group as well. 

Implications 
 Our project helps contribute much-needed evidence to 
the research base on early CT and inform future develop-
ment of evidence-based home and school resources for 
children to learn CT, mathematics and science through 
integrated activities and helps surface both successful 
approaches as well as challenges. The prototype activities 
we co-designed, developed, and empirically investigated 
help improve our understanding of productive integration 
points, activity formats familiar to preschoolers that support 
the integration of CT and STEM, as well as how digital tools 
complement and strengthen the learning resulting from 
hands-on activities in early childhood. It is important to 
note that our work focused on a subset of CT skills and that 
future research is needed to explore how a wider set of CT 
skills can be meaningfully promoted in early learning.

Combining family involvement with school-based 
activities was a uniquely successful element of this research 
that has lessons for CT learning at elementary and other 
K-12 levels as well. It underscores the benefits of culturally 
responsive and relevant teaching that involves families and 
communities and gives due credence to learners’ cultures 
and practices in the learning process. Findings from our 
study also highlighted that families welcomed and valued 
support for them to promote early CT at home—resources 
to help parents and caregivers understand what CT is 
and recognize when they naturally engage in CT in their 
everyday lives was particularly helpful to them. Parents 
and caregivers noted that visual and engaging formats are 
especially helpful and appreciated the introductory video 
co-designed as part of the project. It is worth noting that 
meetings with parents/caregivers had to be scheduled 
around their availability and this sometimes happened 

introduced to the new idea of “Computational Thinking.” 
High learner engagement levels in homes underscore the 
value of co-designing activities with parents/caregivers 
(and teachers) that naturally fit the ecology of preschool 
homes (and classrooms). Our findings on successful 
engagement with abstraction and debugging are resonant 
with recent findings (e.g., Yadav et al., 2019) that indicate 
that while young children may be able to engage in coding 
and algorithmic thinking, other CT skills may be productive 
entry points for young learners and more naturally aligned 
with the hands-on activities young children experience at 
home and school. 

The overwhelmingly positive response from parents/
caregivers and the significant pre-to-post finding in the 
home+school condition underscores the importance of 
efforts that link home and school to support preschool 
children’s STEM learning. Valuing learners’ ways of talking, 
thinking, and interacting in schools that are consonant 
with the practices that they bring from home is an equity-
centered pedagogical practice (Nasir et al., 2020) that 
can enrich STEM and CT learning in elementary and 
secondary levels too. Our approach also helps families 
from economically disadvantaged communities be better 
prepared to support and strengthen their child’s out-of-
school STEM learning.

While some reasons for the overall success of the 
activities— such as, alignment with home routine, familiarity 
with materials, involvement of parents/caregivers and 
siblings, appropriate levels of difficulty and scaffolding—
were intuitive and to be expected, the following findings 
were interesting and merit attention. (1) Algorithmic 
thinking in K-12 classrooms is often fostered through 
navigational activities—in physical or virtual space. This has 
perhaps been influenced by the ideas of turtle geometry 
that motivated Papert (1980)’s work with Logo and 
children’s programming. However, amongst our unplugged 
activities, the navigational activity (Robot in the City) was 
not very popular with families when compared with Cereal 
Necklace and Playing with Dice, which involved creating 
artifacts or engaging in movement in fun and engaging 
ways. The overwhelming success of Playdough Workshop 
also underscored the value of activities that involve 
creativity and creating artifacts. Perhaps it was because the 
navigational directions and instructions in Robot in the City 
were harder to implement and needed more scaffolding. 
This suggests that educators and designers should expand 
the repertoire of algorithmic activities beyond navigational 
ones to include those that involve creating artifacts, and 
preferably with materials familiar to young children. (2) 
It was interesting that though unplugged activities often 
provide a scaffold for digital interactions (in the context of 
programming, e.g. Grover, Jackiw, & Lundh, 2019), Robot 
in the City (which was meant to be the unplugged activity 
to scaffold the City Walk digital app) seemed harder for 
preschool children than City Walk; and elements of City 
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exploratory approach for investigating the integration of 
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Leibham , M. B., Alexander, J. M., & Johnson, K. E., (2013). 
Science interests in preschool boys and girls: Relations 
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parental involvement during early childhood education and 
early elementary education. Educational Psychology Review, 
28(4), 771-801.
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outside the home—at a local library or playground. Such 
flexibility is required when working with parents/caregivers, 
but it sometimes introduces additional distractions and 
attendant challenges in enacting activities with the little 
ones. Nevertheless, this project reinforces earlier findings 
on the positive impact of family involvement on children’s 
early STEM learning. We encourage educators and 
designers to engage families in the design and use of CT 
and computing-related activities that will fit into the cultural 
milieu of learners. 

We experimented with known as well as hitherto un-
explored operationalizations of CT for early learners with 
new learnings from each. For example, our use of arrows 
for navigational activities is inspired by other tools (such as 
LightBot Jr. and Scratch Jr.). Our findings of young learn-
ers’ struggle with directionality is one with broad impli-
cations. Conversely, our success in activities that involve 
algorithmic thinking through creating artifacts was promis-
ing and merits attention. Our operationalization of abstrac-
tion as observing key characteristics of classes of shapes 
for making block building activities serves as an exemplar 
(as it also potentially connects to future CT and program-
ming through helping learners develop valuable founda-
tional skills of functional abstraction related to objects and 
classes in object-oriented programming). Future research 
efforts will continue to explore broader design principles 
that can inform the development of both activities with 
tangible materials and digital activities to inform the de-
sign of additional CT resources for teachers and families of 
preschool learners. 
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