
 i

Integrated Software & Systems Engineering Curriculum (iSSEc) Project

Graduate Software Engineering 2009(GSwE2009)

Curriculum Guidelines for

Graduate Degree Programs in Software Engineering

Version 1.0

September 30, 2009

Unlimited Global Distribution

© 2009 Stevens Institute of Technology

 ii

This page intentionally left blank.

 iii

Table of Contents

PREFACE ... V

ACKNOWLEDGMENTS ... VIII

EXECUTIVE SUMMARY... 1

1. INTRODUCTION... 5

2. GUIDANCE FOR THE CONSTRUCTION AND MAINTENANCE OF GSWE2009 9

3. EXPECTED OUTCOMES WHEN A STUDENT GRADUATES ... 17

4. EXPECTED STUDENT BACKGROUND WHEN ENTERING THE MASTER’S PROGRAM 23

5. CURRICULUM ARCHITECTURE .. 27

6. CORE BODY OF KNOWLEDGE (CBOK)... 33

6.1 DEVELOPMENT OF THE CBOK ... 33
6.2 PREPARATION KNOWLEDGE... 34
6.3 CBOK CONCEPTS AND ORGANIZATION ... 36
6.4 CROSSCUTTING KNOWLEDGE ELEMENTS ... 47
6.5 SYSTEMS ENGINEERING ISSUES.. 48

7. ANTICIPATED GSWE2009 EVOLUTION .. 53

APPENDIX A. SUMMARY OF GRADUATE SOFTWARE ENGINEERING PROGRAMS IN 2007 55

A.1. METHODOLOGY .. 55
A.2. PROGRAM CHARACTERISTICS .. 56
A.3. CURRICULUM CHARACTERISTICS ... 57
A.4. CONCLUSIONS ... 58

APPENDIX B. BLOOM LEVELS FOR THE BODY OF KNOWLEDGE .. 59

B. 1 INTRODUCTION ... 59
B. 2 FREQUENTLY ASKED QUESTIONS ... 61

APPENDIX C. DESCRIPTION OF CBOK ELEMENTS NOT FOUND IN THE SWEBOK 63

C.1. ETHICS AND PROFESSIONAL CONDUCT ... 63
C.2. SYSTEMS ENGINEERING ... 67
C.3. ENGINEERING ECONOMICS ... 85

APPENDIX D. SECURITY IN THE SOFTWARE LIFE CYCLE ... 93

APPENDIX E. GSWE2009 OUTCOMES CBOK MAPPING .. 95

REFERENCES .. 99

GLOSSARY ... 105

ABBREVIATIONS ... 105
TERMS ... 109

INDEX .. 113

 iv

List of Figures

FIGURE 1. ARCHITECTURAL STRUCTURE OF A GSWE2009 MASTER‘S PROGRAM ... 27
FIGURE 2. COURSE ALIGNMENT, WHICH MAY OR MAY NOT CORRESPOND TO SPECIFIC TOPICS OR RINGS 29
FIGURE 3. DEMONSTRATION OF HOW A SPECIFIC TRACK MAY FIT WITHIN A PROGRAM ... 30
FIGURE 4. PERCENTAGE DEVOTED TO CORE BODY OF KNOWLEDGE AREAS.. 46
FIGURE 5. ISO LEVELS OF SYSTEM CONTEXT .. 69
FIGURE 6. ISO 15288:2008 GENERIC LIFE CYCLE STAGES ... 74
FIGURE 7. LIFE CYCLE ACTIVITY MAPPING (ADCOCK, 2009) ... 76
FIGURE 8. A CASH-FLOW DIAGRAM .. 86
FIGURE 9. A BUSINESS DECISION-MAKING PROCESS ... 86
FIGURE 10. A FOR-PROFIT DECISION-MAKING PROCESS .. 88

List of Tables

TABLE 1. PREPARATION KNOWLEDGE FOR CORE BODY OF KNOWLEDGE .. 35
TABLE 2. CORE BODY OF KNOWLEDGE ... 36
TABLE 3. PARTICIPATING SCHOOLS ... 55
TABLE 4. EXPLANATION OF BLOOM TAXONOMY COGNITIVE LEVELS ... 59
TABLE 5. EXAMPLE COGNITIVE LEVELS FOR SOFTWARE ENGINEERING .. 60
TABLE 6. SOFTWARE SECURITY AND THE SWEBOK ... 93
TABLE 7. GSWE2009 OUTCOMES-CBOK MAPPING TABLE.. 95

 v

Preface

Software engineering (SwE) is ―the application of a systematic, disciplined, quantifiable

approach to the development, operation, and maintenance of software.‖
1
 SwE principles and

practices are essential for the development of large, complex, or trustworthy systems. In 1989 the

Software Engineering Institute (SEI) published a set of recommendations for creating curricula

for master‘s programs in SwE.
2
 Those recommendations were highly regarded and used by many

universities in shaping their graduate SwE programs.

Since 1989 the way software is developed has changed dramatically. Software‘s scale,

complexity, and criticality have mushroomed, yet no significant effort has been made to revisit

and update the original SEI recommendations. (An updated report was published in 1991, but the

curriculum recommendations were virtually unchanged.) In 2007, a coalition from academia,

industry, government, and professional societies formed the Integrated Software and Systems

Engineering Curriculum (iSSEc) project to create a reference curriculum
3
 that reflects current

development practices and the greater role of software in today‘s systems. The U.S. Department

of Defense‘s (DoD) Office of the Secretary of Defense (OSD) is the principal iSSEc sponsor,

motivated by the many challenges in acquiring, operating, and maintaining defense systems

whose functionality and performance depend heavily on tractable and cost-effective software.

Graduate Software Engineering 2009 (GSwE2009): Curriculum Guidelines for Graduate

Degree Programs in Software Engineering is the first product of the iSSEc project. Until August

2009 it was called the Graduate Software Engineering Reference Curriculum (GSwERC).

GSwE2009 primarily addresses the education of students for a professional master‘s degree in

SwE—that is, a degree intended for someone who is primarily interested in pursuing a career in

the practice of SwE and who is not necessarily interested in pursuing a doctorate in SwE or a

related field. Typically, such students are already (a) professional software engineers employed

by industry or government and who lack a formal graduate education in SwE, or (b)

professionals in another field who are making a career change into SwE. In some cases, those

students will be fresh graduates with a bachelor‘s degree with little or no experience. Their lack

of experience is a challenge in realizing the educational outcomes identified in GSwE2009—a

concern that is explored in several places in this document.

1 IEEE STD 610.12-1990, IEEE Standard Glossary of Software Engineering Terminology, IEEE Computer Society,

1990.

2 Ardis, M. and Ford, G. SEI Report on Graduate Software Engineering Education, CMU/SEI 89-TR-21, Software
Engineering Institute, Carnegie Mellon University, June 1989.

3 A reference curriculum is a set of outcomes, entrance expectations, architecture, and a body of knowledge that

provide guidance for faculty who are designing and updating their programs. That guidance is intentionally

flexible so that faculty can adopt and adapt it based on local programmatic needs. A reference curriculum is not

intended to be used directly for program certification or accreditation.

 vi

GSwE2009 was created to:

• Improve existing graduate programs in SwE from the viewpoint of universities, students,

graduates, software builders, and software buyers;

• Enable the formation of new graduate programs in SwE by providing guidelines on

curriculum content and advice on how to implement those guidelines; and

• Support increased enrollment in graduate SwE programs by increasing the value of those

programs to potential students and employers.

GSwE2009 builds on the SEI curriculum foundations plus those of other initiatives, such as the

Guide to the Software Engineering Body of Knowledge (SWEBOK)
4
 and Software Engineering

2004: Curriculum Guidelines for Undergraduate Degree Programs in Software Engineering

(SE2004)
5
. iSSEc followed an iterative, evolutionary approach in creating GSwE2009, beginning

with the formation of an Early Start Team (EST) of authors, since renamed the Curriculum

Author Team (CAT). First established in July 2007, the CAT is a set of invited experts from

industry, government, academia, and professional associations. CAT membership grew as

GSwE2009 matured.

The CAT met in workshops approximately every three months between August 2007 and

September 2009, leading to the release of GSwERC 0.25 in February 2008, GSwERC 0.5 in

October 2008, and GSwE2009 1.0 in September 2009. The SwE community was invited to

review versions 0.25 and 0.5 to provide the necessary feedback to develop the current version

(1.0). The review of version 0.5 generated more than 800 individual review comments, which

were adjudicated for use in creating version 1.0. The detailed comments and their adjudication

can be found at www.GSwE2009.org.

Professional society participation in the creation of GSwE2009 has been essential to ensuring

that GSwE2009 will have the desired impact on global graduate education. Both the International

Council on Systems Engineering (INCOSE) and the U.S. National Defense Industrial

Association (NDIA) Systems Engineering Division were early participants in GSwE2009, and

each contributed authors. In 2008, the Institute of Electrical and Electronics Engineers (IEEE)

Computer Society Education Activities Board became an official participant. In 2009, that

participation elevated to the Computer Society level and both the Association for Computing

Machinery (ACM) and the Brazilian Computer Society (BCS) also chose to participate.

Discussions are underway with the ACM, IEEE Computer Society, and INCOSE in the hope that

they will jointly take on the evolution and maintenance of GSwE2009. Finally, GSwE2009‘s

4 SWEBOK, Guide to the Software Engineering Body of Knowledge, P. Bourque & R. Dupuis (Eds.), IEEE

Computer Society Press, 2004.

5 ACM/IEEE-CS Joint Task Force on Computer Curricula, Software Engineering 2004, Curriculum Guidelines for

Undergraduate Degree Programs in Software Engineering, August 2004.

 vii

success has motivated the start of related efforts to create a Systems Engineering Body of

Knowledge and a Graduate Systems Engineering Reference Curriculum—each with an

―appropriate‖ amount of SwE perspective and content. Those efforts should lead to version 1.0

products in 2012.

The following authors contributed to the creation of GSwE2009:

1. Rick Adcock, Cranfield University and INCOSE

representative, UK

2. Edward Alef, General Motors, USA

3. Bruce Amato, Department of Defense, USA

4. Mark Ardis, Stevens Institute of Technology,

USA

5. Larry Bernstein, Stevens Institute of Technology

USA

6. Barry Boehm, University of Southern California,

USA

7. Pierre Bourque, École de Technologie

Supérieure and SWEBOK volunteer, Canada

8. John Brackett, Boston University, USA

9. Murray Cantor, IBM, USA

10. Lillian Cassel, Villanova and ACM

representative, USA

11. Robert Edson, Analytic Services Inc., USA

12. Richard Fairley, Colorado Technical University,

USA

13. Dennis Frailey, Raytheon and Southern

Methodist University, USA

14. Gary Hafen, Lockheed Martin and NDIA, USA

15. Thomas Hilburn, Embry-Riddle Aeronautical

University, USA

16. Greg Hislop, Drexel University and IEEE

Computer Society representative, USA

17. David Klappholz, Stevens Institute of

Technology, USA

18. Philippe Kruchten, University of British

Columbia, Canada

19. Phil Laplante, Pennsylvania State University,

Great Valley, USA

20. Qiaoyun (Liz) Li, Wuhan University, China

21. Scott Lucero, Department of Defense, USA

22. John McDermid, University of York, UK

23. James McDonald, Monmouth University, USA

24. Ernest McDuffie, National Coordination

Office for NITRD, USA

25. Bret Michael, Naval Postgraduate School,

USA

26. William Milam, Ford, USA

27. Ken Nidiffer, Software Engineering Institute,

USA

28. Art Pyster, Stevens Institute of Technology,

USA

29. Paul Robitaille, Lockheed Martin & INCOSE

representative, USA

30. Mary Shaw, Carnegie Mellon University, USA

31. Sarah Sheard, Third Millenium Systems, USA

32. Robert Suritis, IBM, USA

33. Massood Towhidnejad, Embry-Riddle

Aeronautical University, USA

34. Richard Thayer, California State University at

Sacramento, USA

35. J. Barrie Thompson, University of

Sunderland, UK

36. Guilherme Travassos, Brazilian Computer

Society, Brazil

37. Richard Turner, Stevens Institute of

Technology, USA

38. Joseph Urban, Texas Tech University, USA

39. Ricardo Valerdi, MIT & INCOSE

representative, USA

40. Osmo Vikman, Nokia, Finland

41. David Weiss, Avaya, USA

42. Mary Jane Willshire, Colorado Technical

University, USA

viii

Acknowledgments

The reference curriculum is the product of many authors from more than 24 organizations who

came together selflessly to improve global SwE graduate education. Those authors are listed

individually in the preface along with their supporting organizations. Special thanks go to team

leaders Dennis Frailey, Tom Hilburn, Jim McDonald, and Bret Michael, who took on the added

burden of organizing teleconferences, drafting sections of the document, and helping to pull

together the current document and its earlier versions. It is hard to single people out because so

many contributed so much. Nevertheless, I want to especially thank Mark Ardis, Larry

Bernstein, Barry Boehm, John Brackett, Richard Fairley, Phil Laplante, Mary Shaw, Richard

Thayer, J. Barry Thompson, Massood Towhidnejad, Richard Turner, Mary Jane Willshire, and

Joe Urban who continuously provided deep and thoughtful comments throughout the CAT‘s long

discussions. Pierre Bourque offered invaluable coordination with independent efforts now

underway to update the Software Engineering Body of Knowledge. Appendix C.2, which is a

description of systems engineering that is critical to GSwE2009, is largely the writings of Rick

Adcock, Barry Boehm, Richard Fairley, Tom Hilburn, and Ricardo Valerdi. We are grateful to

the following for hosting workshops that were critical to creating GSwE2009: Analytic Services

Inc. and Robert Edson; the National Coordination Office for the Networking and Information

Technology Research and Development (NITRD) Program and Ernest McDuffie; Stevens

Institute of Technology; the Naval Postgraduate School and Bret Michael; Mary Jane Willshire

and Richard Fairley and Colorado Technical University; Massood Towhidnejad, Tom Hilburn

and Embry-Riddle Aeronautical University; Mary Shaw and Carnegie Mellon University; and

Jim McDonald and Monmouth University. INCOSE and the NDIA Systems Engineering

Division both endorsed this effort long ago and provided valued members to the author team.

(Originally, Paul Robitaille represented INCOSE, followed by Ricardo Valerdi and Rick

Adcock. Gary Hafen has represented the NDIA throughout.) Boots Cassel represented the ACM

and Greg Hislop represented the IEEE Computer Society. Guilherme Travassos represented the

Brazilian Computer Society. The three graduate students who most supported this effort,

Devanandham Henry, Nicole Hutchison, and Kahina Lasfer, all did a terrific job of collecting

and analyzing data, consolidating inputs from various authors, handling workshop logistics, and

a million other activities. Graduate students Sarah Sheard and Jimmy Gandhi also helped early in

the project.

Over the course of the project, more than 100 people contributed reviews. We are grateful for

their thoughtful contributions:

1. K.K. Aditya, Satyam Computer Services Ltd.,

India

2. Da Shasbikant Albal, SSN School of Advanced

Software Engineering, India

3. Michael Barker, Nara Institute of Science and

Technology, Japan

4. Adeline Beaulac, Retired, USA

5. David Belanger, AT&T, USA

6. Oddur Benediktsson, University of Iceland,

Iceland

7. Brian Berenbach, Siemens Corporate Research,

Inc., USA

8. Jean Bezivin, University of Nantes, France

9. Ilia Bider, IbisSoft, ab, Sweden

ix

10. Shawn Bohner, Rose-Hulman Institute of

Technology, USA

11. Grady Booch, IBM, USA

12. Juris Borzovs, University of Latvia, Latvia

13. Nick Brixius, Embry-Riddle Aeronautical

University, USA

14. Ann E. Broihier, Southern Methodist University,

USA

15. Luigi Buglione, Engineering IT (Italy), Italy

16. Robert C. Burns, The Boeing Company, USA

17. Joseph Carl, Riverside Research Institute, USA

18. Steve Chenoweth, Rose-Hulman Institute of

Technology, USA

19. Boris Cogan, London Metropolitan University,

UK

20. Tony Cowling, University of Sheffield, UK

21. Brad Crabtree, Raytheon, USA

22. David A. Dampier, Mississippi State University,

USA

23. Yvonne Delaney, University of Limerick, UK

24. Audrey Dorofee, Software Engineering

Institute, USA

25. Weichang Du, University of New Brunswick,

Canada

26. Sheryl Duggins, Southern Polytechnic State

University, USA

27. Christof Ebert Vector, Germany

28. Amr El-Kadi, The American University in

Cairo, Egypt

29. Geoff Ewens, AITEC Corporate Education &

Consulting, Australia

30. Alain Faisandier, INCOSE MAP Systems, USA

31. Stuart Faulk, University of Oregon, USA

32. John Favaro, Self employed, Italy

33. Tim Ferris, University of South Australia

(SEEC), Australia

34. David Luigi Fuschi, Intelligent Media systems

and Services (IMSS)–School of systems

engineering, University of Reading, UK

35. Keith Garfield, Embry-Riddle Aeronautical

University, USA

36. Kirti Garg, International Institute of

Information Technology, Hyderabad, India

37. Robert Glass, Griffith University Brisbane,

Australia

38. Hassan Gomaa, George Mason University, USA

39. Janusz Gorski, Gdansk University of

Technology, Poland

40. Doug Grant, Swinburne University of

Technology, Australia

41. Frank Gutcher, Boeing, USA

42. Hans Hadderingh, Logica Public Sector CMG,

Netherlands

43. Gary Hafen, Lockheed Martin, USA Jon Hagar,

Lockheed Martin, USA

44. Haitham S. Hamza, Cairo University, Egypt

45. John Harauz, Jonic Systems Engineering, Inc.,

USA

46. Cecelia Haskins, Geoff Sharman Birkbeck

College, London, UK

47. Kojun T. Hatta, Carestream Health, Inc. USA

48. Orit Hazzan, Technion - Israel Institute of

Technology, Israel

49. Rick Hefner, Northrop Grumman Corporation,

USA

50. Peter Henderson, Butler University, USA

51. Watts S. Humphrey, Software Engineering

Institute, USA

52. Mario Jino, University of Campinas, Brazil

53. Ron Kenett, KPA Ltd., Israel

54. John Klein, Software Engineering Institute,

USA

55. Peter Knoke, University of Alaska Fairbanks,

USA

56. Supannika Koolmanojwong, University of

Southern California, USA

57. Carl Landrum, Honeywell Aerospace, USA

58. Richard LeBlanc, Seattle University, USA

59. Bob Lechner, University of Massachusetts

Lowell, USA

60. Cuauhtémoc Lemus Olalde, Centro de

Invistigacion en Matematicas, A. C.

(CIMAT),Mexico

61. Tim Lethbridge, University of Ottawa, Canada

62. Hareton Leung, Hong Kong Polytechnic

University, Hong Kong

63. Fengqi Li, Dalian University of Technology,

China

64. Qiaoyun (Liz) Li, Wuhan University, China

65. David Long, Vitech, USA

66. Paul E. MacNeil, Mercer University, USA

67. Spiros Mancoridis, Drexel University, USA

68. Dino Mandrioli, Politecnico di Milano, Italy

69. Frank Maurer, University of Calgary, USA

70. Bruce Maxim, University of Michigan

Dearborn, USA

71. John McDermid, University of York, UK

72. Andrew McGettrick, University of Strathclyde,

UK

73. Nancy Mead, Carnegie Mellon University, USA

x

74. Luisa Mich, University of Trento, Italy

75. Alan Milewski, Monmouth University, USA

76. Nilofer Mohammed, Satyam Computer Services

Ltd., India

77. Mike Murphy, Southern Polytechnic State

University, USA

78. Mary Poppendieck, Poppendieck LLC, USA

79. Xue Qiang, Dalian University of Technology,

China

80. Fabio Queda Bueno Da Silva, Federal

University of Pernambuco, Brazil

81. Damith C. Rajapaske, National University of

Singapore, Singapore

82. A.R. Thuasi Ram, Satyam Computer Services

Ltd., India

83. Ita Richardson, University of Limerick, UK

84. Richard Riehle, Naval Postgraduate School,

USA

85. Steve Roach, University of Texas El Paso, USA

86. Pierre N Robillard, Ecole Polytechnique de

Montreal, Canada

87. Howard Rosenberg, NetSearchers Inc, USA

88. Mel Rosso-Llopart, Carnegie Mellon

University, USA

89. P. Srinivala Ruo, Satyam Computer Services

Ltd., India

91. Michael Ryan, Dublin City University, UK

92. Vladimir O. Safonov, St. Petersburg University,

Russia

93. Andy Sage, George Mason University, USA

95. Salamah Salamah, Embry-Riddle Aeronautical

University, USA

96. Alberto Sampaio, Instituto Superior de

Engenharia do Porto (ISEP), Portugal

97. L. Sasidhav, Satyam Computer Services Ltd.,

India

98. Hasan Sayani, University of Maryland

University College, USA

99. Geoff Sharman, Birkbeck College, London,

UK

100. Peraphon Sophatsathit, Chulalongkorn

University, Bangkok, Thailand

101. Diomidis Spinellis, Athens University of

Economics and Business, Greece

102. Richard Stansbury, Embry-Riddle

Aeronautical University, USA

103. Sara Stoecklin, Florida State University, USA

104. Steve Tockey, Construx Software, USA

105. Richard Torkar, Blekinge Institute of

Technology, Sweden

106. Guilherme Horta Travassos, COPPE/Federal

University of Rio de Janeiro, Brazil

107. Nicolas Treves, CNAM, France

108. Giuseppe Valetto, Drexel University, USA

109. Ann Vu, IEEE Computer Society

110. Yingxu Wang, University of Calgary, Canada

111. Larry Wear, University of Washington

Tacoma, USA

112. Ye Yang, Institute of Software Chinese

Academy of Sciences (ISCAS), China

113. Liguo Yu, Indiana University South Bend, USA

114. Ming Zhu, School of Software of Dalian

University of Technology, China

115. Jürgen P. Znotka, University of Applied

Sciences Gelsenkirchen, Germany

We are also grateful to Kristen Baldwin, Bruce Amato, Scott Lucero, and others in the U.S.

Office of the Secretary of Defense for their leadership and financial support for this effort.

Paramount to our success has been Ms. Baldwin‘s early and consistent recognition that a

reference curriculum for SwE would be of most benefit to the defense community if it were not

biased toward defense applications. Finally, we thank Stevens Institute of Technology, especially

the School of Systems and Enterprises and its dean, Dinesh Verma, for supporting this effort

from the very beginning.

Art Pyster

GSwE2009 Editor

1

Executive Summary

The Graduate Software Engineering 2009 (GSwE2009): Curriculum Guidelines for Graduate

Degree Programs in Software Engineering is a set of recommendations for a master‘s level

graduate program in software engineering (SwE), together with implementation guidance for a

university to satisfy those recommendations. Earlier versions of this work were called the

Graduate Software Engineering Reference Curriculum (GSwERC).

The program described by GSwE2009 is for a professional master‘s degree, analogous in many

ways to a master‘s of business administration. GSwE2009 is envisioned as a living document

that will be revisited regularly and updated when necessary to ensure relevance to the rapidly

evolving software engineering discipline. This document includes the curriculum

recommendations and materials describing their creation, implementation, and evolution.

GSwE2009 includes the following:

• A set of outcomes to be fulfilled by a student who successfully completes a graduate

program based on the curriculum (see summary below)

• A set of student skills, knowledge, and experience assumed by the curriculum, not

intended as entrance requirements for a specific program, but as the starting point for the

curriculum‘s outcomes (see summary below)

• An architectural framework to support implementation of the curriculum

• A description of the fundamental or core skills, knowledge, and experience to be taught

in the curriculum to achieve the outcomes. This is termed a Core Body of Knowledge

(CBOK) and includes topic areas and the depth of understanding a student should

achieve.

Additional materials included in this document:

• The fundamental philosophy for GSwE2009 development as described in a set of guiding

principles (see summary below)

• A discussion of how GSwE2009 will evolve to remain effective

• A mapping of expected outcomes to the CBOK and to the total GSwE2009 program

recommendations

• A description of Knowledge Areas (KAs) discussed in GSwE2009 that are not yet fully

integrated into the current version of the Software Engineering Body of Knowledge

(SWEBOK)

• Glossary, references, and other supporting material.

Summary of Guidance for Creating GSwE2009

The following guidance, established early in the development of GSwE2009, came primarily

2

from SE2004
6
 and the deliberations of the GSwE2009 authors.

• Create a set of recommendations for developing and improving curricula for master‘s level

software engineering education.

• Target a professional degree for practicing software engineers.

• Require about as many credit hours as typical programs do now.

• Recognize software engineering as a distinct discipline with a rich body of knowledge,

practice, and theory.

• Recognize that software engineering is founded on a wide variety of disciplines, with

deepening ties to Systems Engineering (SE).

• Require that all software engineering students be able to integrate theory and practice.

• Foster ongoing review and revision of the curriculum because of rapid evolution in

software engineering.

• Be sensitive to changes in technologies, practices, applications, pedagogy, and the

importance of lifelong learning.

• Offer significant guidance in individual curriculum components through a CBOK that all

students are expected to master.

• Identify fundamental skills and knowledge that all software engineering master‘s program

graduates must possess.

• Use a flexible curriculum architecture and recognize existing bodies of knowledge,

modified and enhanced as required.

• Limit common knowledge required for all students to no more than 50% of total

knowledge taught.

• Be broadly based and international in scope.

• Include exposure to aspects of professional practice as an integral component of the

graduate curriculum.

• State strategies and tactics for implementation.

• Distinguish clearly between SE2004 and GSwE2009.

• Identify expected knowledge and experience for students to enter a master‘s program in

software engineering.

6 ACM/IEEE-CS Joint Task Force on Computer Curricula, Software Engineering 2004, Curriculum Guidelines for

Undergraduate Degree Programs in Software Engineering, August 2004.

3

Summary of Outcomes

Graduates of a master‘s program that satisfies GSwE2009 recommendations will:

• Master the CBOK.

• Master software engineering in at least one application domain, such as finance, medical,

transportation, or telecommunications, and one application type, such as real-time,

embedded, safety-critical, or highly distributed systems. That mastery includes

understanding how differences in domain and type manifest themselves in both the software

itself and in its engineering, and includes understanding how to learn a new application

domain or type.

• Master at least one KA or sub-area from the CBOK to at least the Bloom Synthesis level.

• Be able to make ethical professional decisions and practice ethical professional behavior.

• Understand the relationship between SwE and SE and be able to apply SE principles and

practices in the engineering of software.

• Be an effective member of a team, including teams that are international and geographically

distributed, effectively communicate both orally and in writing, and lead in one area of

project development, such as project management, requirements analysis, architecture,

construction, or quality assurance.

• Be able to reconcile conflicting project objectives, finding acceptable compromises within

limitations of cost, time, knowledge, existing systems, and organizations.

• Understand and appreciate feasibility analysis, negotiation, and good communications with

stakeholders in a typical software development environment, and be able to perform those

tasks well; have effective work habits and be a leader.

• Be able to learn new models, techniques, and technologies as they emerge, and appreciate

the necessity of such continuing professional development.

• Be able to analyze a current significant software technology, articulate its strengths and

weaknesses, compare it to alternative technologies, and specify and promote improvements

or extensions to that technology.

Summary of Expected Background

GSwE2009 presumes that an entering student has:

• The equivalent of an undergraduate degree in computing or an undergraduate degree in

an engineering or scientific field and a minor in computing,

4

• The equivalent of an introductory course in software engineering, and

• At least two years of practical experience in some aspect of software engineering or

software development.

These presumptions about entering students are designed to achieve the 10 outcomes previously

described. However, it is recognized that individual schools may start with a student population

that has characteristics that are different from what GSwE2009 presumes here. Such schools will

likely have to lengthen their master‘s programs in order for their students to achieve all 10

outcomes—or the schools will deliberately choose not to adopt some outcomes. In fact, schools

may even add other outcomes to favor their particular markets and institutional emphases.

GSwE2009 is not intended for use to certify or accredit either programs or individuals. It is a set

of recommendations that must be tailored by each adopting university.

The process of developing this report has been highly inclusive. It has been widely reviewed by

academics and practitioners through a public draft process. We have also held feedback sessions

at conferences and meetings, including the annual American Society for Engineering Education

(ASEE) meeting, the International Symposium of the International Council on Systems

Engineering (INCOSE), the International Conference on Software Engineering (ICSE), the

Conference on Software Engineering Education and Training (CSEET), and various smaller

meetings in Europe, Asia, and various parts of the United States. These meetings have provided

us with critically important feedback that we have used to shape the final report.

From the beginning it was intended for GSwE2009 to be a living document, with a broad,

responsible, and knowledgeable community of practice. It was anticipated that after Version 1.0

was published, Stevens Institute of Technology, which has managed the original development,

would identify a steward who would assume responsibility for maintaining and refining the

model and expanding and focusing implementation guidance based on experience and feedback

from the supporting community and academia, industry, and students. Effort is now underway

for a combination of the ACM and the IEEE Computer Society to become that steward. As of the

writing of this document, discussions are underway for those two organizations to take over

maintenance responsibility for GSwE2009 within the first 6 months of the release of Version 1.0,

with INCOSE playing a supporting role.

To support and enable wide acceptance of GSwE2009, two companion documents—

Comparisons of GSwE2009 to Current Master’s Programs in Software Engineering and

Frequently Asked Questions on Implementing GSwE2009– are being prepared concurrently with

the release of GSwE2009. They will be available in Fall 2009 at www.GSwE2009.org and

updated regularly.

http://www.gswe2009.org/

5

1. Introduction

Software is a critical component in new products worldwide—often the critical component

distinguishing products in the marketplace. Software enables technological advances that lead to

new, high-performance products and systems in every commercial sector, including medical

devices, automobiles, aircraft, power generation systems, mobile phones, and entertainment

systems. Automobiles now have millions of lines of embedded code, enabling everything from

voice-activated navigation systems for convenience, to anti-lock brake systems for safety, to

engine control for fuel efficiency. In fact, one of the primary ways manufacturers now

differentiate their cars is through functionality implemented largely through sophisticated

software, such as Global Positioning System (GPS) navigation systems.

As product and system functionality grow, so does the need to efficiently and correctly

implement the complex software that enables that growth. Sophisticated systems are critical for

any large company or government agency in managing their projects and organizations. Such

systems support essential business and technical processes, such as recordkeeping and data

warehousing, logistics, manufacturing, coordination with suppliers, and customer relationship

management. Systems engineers (not always by that name) are typically responsible for the

design and development of such complex systems, but because a large part of the functionality is

usually implemented in software today, a large part of the implementation responsibility

typically falls on software engineers. Indeed, the fields of SwE and systems engineering (SE) are

becoming increasingly intertwined and it is vital that corresponding educational programs reflect

this.

Because of software complexity and the inherent difficulties of software development, most of

the ―surprises‖ that occur during system integration, and after product shipment and system

deployment, can be traced back to incorrect software implementation and integration, such as

poor requirements or faulty software upgrades in the field. Often these problems show up as

interoperability issues between system components that otherwise seem correct in isolation. The

common practice of repurposing legacy software for new applications simply adds to the

challenges. Robert Glass,
7,8

 Nancy Leveson,
9,10

 and others have documented countless examples

of failures resulting from poor SwE and/or poor communication between systems and software

7 Glass, R. L., Computing Calamities: Monumental Computing Disasters, Prentice Hall Professional Technical

Reference, 1998.

8
 Glass, R. L., Software Runaways: Monumental Software Disasters, Prentice Hall Professional Technical

Reference, 1997.

9 Leveson, N. G., Safeware: Systems Safety and Computers, Addison-Wesley, 1995.

10 Leveson, N. G., ―The Role of Software in Spacecraft Accidents‖. AIAA Journal of Spacecraft and Rockets, 41(4),

July 2004.

6

engineers. The U.S. Government Accountability Office
11,12,13

 regularly issues reports recounting

the challenges the U.S. government faces in creating large-scale, reliable, software-intensive

systems on schedule, on budget, and with expected functionality.

SE is the discipline through which large-scale, trustworthy, and complex systems are developed,

while SwE is the discipline by which the software portions of these systems are developed. Many

universities teach SE and SwE at the undergraduate level. Over the years, a few well-known

efforts have created guidelines and sample curriculum for SwE. Most notably, more than 100

colleges and universities helped create curriculum guidelines for undergraduate SwE education

that the ACM and IEEE Computer Society published in SE2004. Many universities offer a

master‘s degree in SE and/or SwE, but there are no widely accepted curriculum guidelines for

graduate education in SE (although INCOSE has published a high-level curriculum
14

). In 1989

the Software Engineering Institute (SEI) of Carnegie Mellon University published a landmark

report on graduate education in SwE.
15

 A fresh look at curriculum guidance in these fields is in

order, considering the reliance of the world economy on the quality of senior SE and SwE

professionals, the dramatic changes that the Internet has brought about in how software is

created, and continuing global problems in producing satisfactory software.

The iSSEc (Integrated Software and Systems Engineering Curriculum) project was formed in

July 2007 to create and promulgate a series of graduate-level reference curricula
16

 related to SwE

and SE. Led by Stevens Institute of Technology with dozens of experts from other universities,

industry, government, and professional societies, iSSEc‘s first product is this volume, Graduate

Software Engineering 2009 (GSwE2009): Curriculum Guidelines for Graduate Degree

Programs in Software Engineering, reflecting new understandings in how to build software, how

SwE depends on SE, and how SwE education is influenced by application domains, such as

telecommunications and defense systems. A study of existing graduate programs in SwE

11 GAO, Defense Acquisitions: Assessment of Selected Major Weapons Programs, U.S. Government Accountability

Office, GAO-08-467SP, March 2008.

12 GAO, Information Technology: Inconsistent Software Acquisition Processes at the Defense Logistics Agency

Increase Project Risks, U.S. Government Accountability Office, GAO-02-9, January 2002.

13 GAO, Information Security: Agencies Face Challenges in Implementing Effective Software Patch Management

Processes, U.S. Government Accountability Office, GAO-04-816T, June 2004.

14 Jain, R. and Verma, D., A Report on Curriculum Content for a Graduate Program in Systems Engineering: A

Proposed Framework, INCOSE International Symposium, 2007.

15 Ardis, M. and Ford, G., SEI Report on Graduate Software Engineering Education, CMU/SEI 89-TR-21, Software
Engineering Institute, Carnegie Mellon University, June 1989.

16 A reference curriculum is a set of outcomes, entrance expectations, architecture, and a body of knowledge that

provide guidance for faculty who are designing and updating their programs. That guidance is intentionally

flexible so that faculty can adopt and adapt it based on local programmatic needs. A reference curriculum is not

intended to be used directly for program certification.

7

revealed their diversity and helps motivate GSwE2009.
17

 (A short version of the study report is

included in Appendix A.) Prior to August 2009, GSwE2009 was known as the Graduate

Software Engineering Reference Curriculum (GSwERC).

GSwE2009 is targeted at a university education leading to a professional master‘s degree in

SwE—that is, a degree intended for someone who will either enter the workforce as a software

engineer or someone who is already in the workforce and is seeking to gain a formal education in

SwE to advance his or her career. GSwE2009 does not explicitly target graduate programs for

those who seek a doctorate and a career in research. In some cases, entering students will be

fresh graduates with a bachelor‘s degree with little or no experience. Their lack of experience is

a challenge in realizing the educational outcomes identified in GSwE2009—a challenge that is

explored in several places in this document.

There is tremendous diversity in markets that universities serve, educational systems in which

universities operate, accreditation programs, size of student body and faculty, and many other

factors that affect program content and delivery. GSwE2009 respects and enables that diversity.

GSwE2009 is a broad set of recommendations to guide universities in building and updating

their graduate programs. As a reference curriculum, it identifies a core that should be included in

all programs and an extensive envelope that allows and encourages variation among programs. It

provides wide flexibility in how those recommendations are implemented: for example,

GSwE2009 includes a core body of knowledge (CBOK) that all students should master (Section

6), but GSwE2009 does not prescribe a particular course
18

 packaging to deliver them.

Reflecting its purpose as part of a reference curriculum, the CBOK has been limited in scope so

that a student should spend no more than half of his or her class time learning it. This gives both

individual universities and students a great deal of flexibility in how they round out the master‘s

program to achieve GSwE2009 outcomes, as well as achieve university and individual outcomes.

Two companion documents aid faculty in adapting and adopting GSwE2009. The first of these

documents, Comparisons of GSwE2009 to Current Master’s Programs in Software Engineering,

explains how well current university programs align with GSwE2009 recommendations. The

second companion document, Frequently Asked Questions on Implementing GSwE2009, offers

specific advice on such topics as identifying faculty who are best able to teach classes that

implement GSwE2009 recommendations.

17 Pyster, A., et al., ―Master‘s Degrees in Software Engineering: An Analysis of 28 University Programs,‖ IEEE
Software, September-October 2009, 94-101.

18 The term course refers to a collection of materials, exercises, and assessments for which academic credit is

awarded. A program is a collection of courses leading to a degree—the specific interest here being in a master‘s

degree. Often programs have one or more specific orientations called tracks that allow a student to specialize in an

area of interest such as real-time systems, security, or Web applications.

8

Despite the freedom that universities have in how they implement GSwE2009, there are several

constants. For example, a program that fully satisfies GSwE2009 recommendations will enable

its students to achieve all the outcomes listed in Section 3 and will follow the curriculum

architecture found in Section 5.

This document, which provides the GSwE2009 recommendations, has six sections:

 Section 1 is this introduction.

 Section 2 contains general guidance for those who authored and will maintain

GSwE2009.

 Section 3 states the outcomes that a student is expected to achieve immediately upon

graduation.

 Section 4 explains the background that students are expected to have when entering a

master‘s program that satisfies GSwE2009 recommendations.

 Section 5 presents the curriculum architecture that any curriculum following these

guidelines should satisfy. That architecture supports three levels of knowledge—

knowledge that all students should master in every university, knowledge that an

individual university program requires for its students, and knowledge that an individual

student elects to learn.

 Section 6 is the CBOK that all students in every university should learn. It includes

specific knowledge units and the expected Bloom level for each unit. The Bloom

Taxonomy offers a six-level scale for competency mastery that is commonly used for

curriculum development, further elaborated in Appendix B. Most knowledge units are

based on SWEBOK, but others have been added where the Curriculum Author Team

(CAT) felt the SWEBOK omitted critical material.

9

2. Guidance for the Construction and Maintenance of GSwE2009

This section describes the foundational guidance used when developing GSwE2009—the

guiding principles, assumptions, and context for the entire GSwE2009 effort. The 17 numbered

guidance statements are primarily written in future tense, reflecting their role as requirements for

the GSwE2009 development effort. The elaboration following each guidance statement speaks to

how GSwE2009 satisfies those requirements.

The guidance was strongly influenced by the principles stated in SE2004; in some cases, it

repeats verbatim the wording of those principles. Differences arise primarily by distinguishing

the higher expectations of graduate education from those of undergraduate education and by

more explicitly recognizing how the SwE discipline ties to other disciplines, notably SE.

Moreover, we recognize that this guidance is, in many cases, not unique to SwE curricula. It is

valid for virtually all engineering disciplines. For example, guidance statement [6] is ―All SwE

students must learn to integrate theory and practice.‖ Substituting ―mechanical,‖ ―electrical,‖ or

any other engineering discipline for ―software‖ would not change its validity. Nevertheless, these

statements were helpful to those developing GSwE2009 and are therefore included here. Note

that these statements are numbered for ease of reference only. The numbering does not signify

relative importance.

[1] The principal purpose of GSwE2009 will be to provide a set of tailorable recommendations

for developing and improving curricula that provide software engineering education at the

master’s degree level. It is not intended to be the basis for accreditation.

GSwE2009 supports the needs of industry and government for software engineers by

helping universities equip software engineers with the most current theory and practice,

and helping them develop their ability to lead in addressing the future challenges of

software development. GSwE2009 is a reference curriculum, not a single definitive

curriculum. It provides a set of common recommendations for faculty at different

universities to use when constructing individual curricula for a master‘s degree in SwE—it

should be tailored to each program. Universities give their degrees different names, often

with no pedagogical implications; e.g., Stevens Institute of Technology offers a Master of

Science (MS) in Software Engineering, while Embry-Riddle Aeronautical University offers

a Master of Software Engineering (MSE). GSwE2009 is suitable for programs that educate

software engineers regardless of the degree name.

GSwE2009 should not be used to score, appraise, accredit, or certify programs for

compliance. Phrases such as ―GSwE2009-compliant‖ are not used herein. Instead, the

softer term ―satisfies GSwE2009 recommendations‖ periodically appears. The latter term

has no precise meaning, but is intended for a program that follows most GSwE2009

recommendations. The program may deviate from some recommendations: for example, a

program may choose to omit some of the 10 outcomes found in Section 3,or even add one

10

or two new outcomes based on local preferences. It may admit students who do not meet

the entrance expectations found in Section 4. It may deviate from the recommendations in

Section 6 on core knowledge that every graduate should master. Clearly, there is a point at

which a university tailors too much. After all, GSwE2009 reflects the collective wisdom of

a broad community of authors and reviewers about graduate SwE education. However, that

point of ―too much‖ tailoring is not precise and is not prescribed here.

[2] The master’s degree described by GSwE2009 will be a professional degree targeting

practicing software engineers. With modification, GSwE2009 may serve as the foundation

for those with a research interest who ultimately seek a doctoral degree; however,

GSwE2009 is designed specifically to support professional degrees.

The vast majority of students who earn a master‘s degree in SwE do not become

researchers. They are practicing professionals or aspiring practicing professionals seeking

to improve their skills and career opportunities. GSwE2009 will target practicing

professionals because that is where the greatest need is.

[3] A master’s program that satisfies GSwE2009 should require about as many credits
19

 as

typical programs do now.

A minimum number of credits are necessary to convey the breadth and depth of the

requisite knowledge and to develop the desired skills in students. Universities will

individually decide how to package those credits into courses, although the two companion

documents to GSwE2009 offer packaging observations and recommendations. The 2008

study of 28 SwE graduate programs described in Appendix A and more fully in (Pyster, et.

Al., 2009) that the average master‘s program requires between 33 and 36 graduate course

credits, typically packaged into 11 or 12 3-credit semester courses using the common U.S.

education model. This would roughly equate to 66 to 72 European Credit Transfer and

Accumulation System (ECTS) credits for those universities following the Bologna

Declaration.
20

 One graduate course credit nominally equates to approximately 13 to 14

contact hours between faculty and student, plus homework. Full-time students normally

complete such programs in 18 to 24 months. The need to achieve a master‘s level of

professional achievement with this amount of study leads to expectations about what

students should be capable of doing when entering a program that attempts to satisfy

GSwE2009 recommendations.

19 Typically, a program requires a certain number of credits for graduation, awarded by taking courses, each of
which has an associated number of credits. Historically, the number of credits per course has often aligned with

the number of hours of lecture per week, but with online and other non-traditional formats increasingly popular,

the rules for assigning credits to a class have become more varied.

20 Joint Declaration of the European Ministers of Education, ―The European Higher Education Area,‖ Convened in
Bologna on June 19, 1999.

11

[4] Software engineering is a distinct discipline with a rich body of knowledge, practice, and

theory.

SwE does not have the long history of many other engineering disciplines, such as

electrical and mechanical engineering. Nevertheless, SwE has matured relatively quickly.

Since 1968, when the term ―software engineering‖ was coined, the discipline has spawned

numerous journals, conferences, professional societies, undergraduate and graduate

programs, professional certifications, bodies of knowledge, and standards—all geared

toward establishing broadly achievable levels of performance, all hallmarks of a scientific

or engineering discipline.

[5] Software engineering draws its foundations from a wide variety of disciplines, with

deepening ties to systems engineering.

GSwE2009 concentrates on the knowledge and pedagogy associated with a graduate SwE

curriculum. Where appropriate, it shares or overlaps with material contained in other

ACM/IEEE Computing Curriculum reports
21

 and it offers guidance on its incorporation

into other disciplines.

Graduate study in SwE relies on many areas in computer science for its theoretical and

conceptual foundations, but it also draws from other fields, including statistics, logic,

calculus, discrete mathematics, formal languages, and other mathematical specialties, and

from economics, project management, general engineering, and one or more application

domains.

SE is a special case. In the past, many universities have made only cursory ties between

SwE and SE, reflecting the ―old school‖ view that SE is driven by hardware considerations

and SwE is just one of many ―specialty‖ disciplines. As explained in Section 1, that view

no longer serves either the SE or the SwE communities well. GSwE2009 provides strong

explicit linkage between SE and SwE.

[6] All software engineering students must learn to integrate theory and practice.

Students must be able to recognize the importance of abstraction and modeling for software

architecture, design, and specification; to be able to acquire special domain knowledge

beyond the computing discipline in order to support software development in specific

domains of application; and to appreciate the value and attributes of good design. They

should be expected to solve real-world problems, relying on the underlying principles

taught in their graduate education.

21 Shackelford, R., et al., Computing Curricula: 2005 Overview Report, ACM, 2006.

12

[7] The rapid evolution and professional nature of software engineering require ongoing

review and revision of the corresponding curriculum.

Universities, industry, and government, in cooperation with professional associations in

this discipline, must establish an ongoing review process that allows individual components

of the curriculum recommendations to be updated on a recurring basis. Also, because of the

special professional responsibilities of software engineers to the public, the curriculum

guidance could support and promote effective external assessment and accreditation of

graduate SwE programs. Nevertheless, accreditation is outside the scope of GSwE2009,

and it should not be used directly for accreditation. GSwE2009 is a snapshot of

recommendations suitable for today and should define mechanisms for ongoing revision as

SwE evolves. If current efforts to migrate the maintenance of GSwE2009 to the

Association for Computing Machinery (ACM) and IEEE Computer Society are successful,

the standards mechanisms those two professional societies operate should provide periodic

revision of GSwE2009 as required.

[8] GSwE2009 will be sensitive to changes in technologies, practices, and applications, new

developments in pedagogy, and the importance of lifelong learning.

The principles underlying SwE change relatively slowly, but the technology through which

SwE is practiced keeps changing at breakneck speed. Educational institutions must adopt

explicit strategies for responding to changing technology without being caught in the trap

of simply ―training‖ the latest technology. A key to this is organizing the curriculum

around enduring principles and planning to change the example technologies regularly.

Institutions must recognize the importance of remaining abreast of well-established

progress in both technology and pedagogy, subject to the constraints of available resources.

SwE education, moreover, must seek to prepare students for lifelong learning, which will

enable them to move beyond today‘s technology to meet the challenges of the future.

GSwE2009 reinforces that recognition and preparation by specific outcomes identified in

Section 3.

[9] GSwE2009 will go beyond knowledge elements to offer significant guidance on individual

curriculum components.

GSwE2009 assembles knowledge elements into reasonable, easily implemented learning

units. Articulating a set of well-defined curriculum units makes it easier for institutions to

share pedagogical strategies and tools. It also provides a framework for publishing

textbooks and other materials. However, GSwE2009 does not mandate a specific way of

aggregating those learning units into courses. Nevertheless, the two companion documents

to GSwE2009 describe example implementations that show possible ways of constructing

courses that satisfy GSwE2009 recommendations.

13

[10] GSwE2009 will identify the fundamental skills and knowledge that all graduates of a SwE

master’s degree program must possess.

GSwE2009 defines 10 outcomes that all graduates should achieve. They range from the

highly technical to ―soft skills‖ around communication and ethics. Additionally,

GSwE2009 defines a specific CBOK that every student should master by graduation. That

knowledge contributes to the 10 outcomes. However, only students who go well beyond

the content of the CBOK can achieve the 10 outcomes.

[11] GSwE2009 will be based on a flexible curriculum architecture and on recognized bodies of

knowledge. The latter will be modified and enhanced as required.

The description of CBOK will be concise, appropriate for graduate education, and will use

the work of previous studies on relevant bodies of knowledge and curricula, especially

(Ardis and Ford, 1989), SWEBOK, SE2004, and INCOSE
22

. A Guide to the Project

Management Body of Knowledge (PMBOK
®

 Guide)
23

 was originally considered as a

primary source document. However, in developing the CBOK, the CAT recognized that the

SWEBOK already incorporated much of the relevant material from the PMBOK
®

 Guide

and decided not to use the PMBOK
®

 Guide directly as a primary reference.

As new studies emerge, they will be incorporated into subsequent versions of GSwE2009.

For example, the IEEE Computer Society is now updating SWEBOK,

 and subsequent

versions of GSwE2009 will incorporate those updates. Bodies of knowledge from related

disciplines are included as appropriate, such as INCOSE‘s Systems Engineering Body of

Knowledge
24

 and especially the INCOSE Handbook
25

.

[12] GSwE2009 will honor individual program and student flexibility by limiting the common

knowledge required for all students to no more than 50% of the total knowledge taught in a

master’s program.

The CBOK is recommended for all graduate SwE degrees. That core knowledge has broad

acceptance by the SwE education community and related communities. Despite the

tendency to squeeze more and more into the required core, GSwE2009 must accommodate

wide variations in program focus and individual student interest. No more than 50% of the

22 Jain, R., and Verma, D., A Report on Curriculum Content for a Graduate Program in Systems Engineering: A

Proposed Framework, INCOSE International Symposium, 2007.

23 Project Management Institute, A Guide to the Project Management Body of Knowledge (PMBOK® Guide), 3rd
edition, 2004.

24 INCOSE, Guide to Systems Engineering Body of Knowledge (G2SEBoK), International Council on Systems

Engineering, 2004.

25 Haskins, C. (ed.), INCOSE Systems Engineering Handbook, Version 3.1, INCOSE-TP-2003-002-03.1, August

2007.

14

content of a master‘s program must be required in order to allow enough flexibility for

universities and students.

[13] GSwE2009 will be broadly based and international in scope.

Despite the challenge that curricular requirements differ from country to country,

GSwE2009 must be useful to SwE educators around the world. Where appropriate, every

effort has been made to ensure that the curriculum recommendations are sensitive to

national and cultural differences so that they are internationally applicable. The

involvement by national computing societies and volunteers from all countries was actively

sought and welcomed. Despite this effort, the clear majority of the GSwE2009 authors are

from the United States. GSwERC 0.25 was sent for limited review to more than 100

reviewers, who were chosen for their leading roles in SwE education and, in some cases,

because they reside outside the United States. Additional international authors were

recruited for GSwERC 0.50 to help avoid a U.S.-centric view. Faculty from outside the

U.S. contributed analyses of their programs with respect to recommendations. Those

analyses are in Comparisons of GSwE2009 to Current Master’s Programs in Software

Engineering. Finally, a review workshop was held in Hyderabad, India in February 2009,

bringing in more perspectives from outside the U.S.

[14] GSwE2009 will include exposure to non-technical aspects of professional practice as an

integral component of the graduate curriculum.

The professional practice of SwE encompasses a wide range of non-technical issues and

activities, including general problem solving, management, ethical and legal concerns,

written and oral communication, working as part of a team, and recognizing the need for

other expertise in a rapidly changing discipline. Those issues and activities are explicitly

recognized in several GSwE2009 outcomes expected of all graduating students.

[15] GSwE2009 will include discussions of strategies and tactics for implementation, along with

high-level recommendations.

Although it is important for GSwE2009 to articulate a broad vision of SwE education, the

success of any real university curriculum depends heavily on implementation details. The

companion volume, Frequently Asked Questions on Implementing GSwE2009, provides

institutions with advice on the practical concerns of setting up a curriculum that satisfies

GSwE2009 recommendations. That advice recognizes that academic institution and

department visions and missions vary widely and may require different approaches to

develop and maintain a graduate SwE curriculum. For example, programs may differ in

student demographics, teaching/research/professional focus, delivery mechanisms, external

constituents, infrastructure, regulations and accreditation issues, and many other program

characteristics and constraints. The core knowledge required of all students and the

implementation guidance accommodate such differences, including guidance on how

15

programs might extend the core to incorporate institution-specific needs (e.g., focus on a

particular applications domain or on particular types of students).

[16] The distinction between SE2004 and GSwE2009 will be clear and apparent.

Compared to SE2004, which are the IEEE Computer Society and ACM recommendations

for undergraduate SwE curricula, GSwE2009 content is more narrowly focused on SwE

and related disciplines. GSwE2009 expects much greater sophistication in student

reasoning about SwE principles, and expects students to demonstrate their accumulated

skills and knowledge in a more significant capstone experience (project, practicum, or

thesis) than does SE2004. The courses, evaluations, and the capstone will generally be

more demanding because GSwE2009 is a graduate curriculum—SE2004 is an

undergraduate curriculum—and GSwE2009 assumes that students enter the program with

at least two years of relevant software development experience.

The distinction between GSwE2009 and SE2004 is quite clear when they are viewed

through the lens of Bloom‘s Taxonomy (see Appendix B for more information). SE2004

requires students to master topics at Bloom‘s Taxonomy levels 1, 2, or 3—knowledge,

comprehension, or application. For several topics, such as Requirements Analysis,

GSwE2009 recommends mastery at level 4—analysis, and for one topic area in which the

student specializes it recommends level 5—synthesis. SE2004 recommends mastery of

many topics at level 1. Every topic in GSwE2009 must be mastered at level 2 or higher.

Moreover, many more topics in GSwE2009 require mastery at level 3 than does SE2004;

e.g., in SE2004, the topic of software process is addressed only at levels 1 and 2. In

GSwE2009, the same topic is covered at levels 2 and 3.

[17] GSwE2009 will identify expected knowledge and experience for students to enter a

master’s program in software engineering.

Undergraduate computing programs and industry experience in SwE vary greatly. To help

institutions build programs that address the needs of the broad SwE community,

GSwE2009 recommends minimum prerequisite knowledge and experience. This minimum

prerequisite knowledge and experience is determined by the level of proficiency (described

in Section 3) expected from students within the limited amount of time, study, and units

allowed in a typical master‘s program. Students who enter a graduate program lacking

those prerequisites will generally find it harder to succeed. Of course, universities may

choose to offer leveling courses,
26

 internships, and other means to help such students at the

beginning of their graduate education. Such steps, while valuable, would clearly lengthen

the time a student spends seeking a master‘s degree.

26 A leveling course helps a student who does not have the expected proficiency level in a topic; e.g., a student who

lacks the expected background in discrete mathematics could take a course to provide the requisite knowledge,

skills, and abilities. Leveling courses are sometimes also called preparatory or bridging courses.

16

This page intentionally left blank.

17

3. Expected Outcomes When a Student Graduates

This section describes what students should be capable of when they graduate from a program

that satisfies GSwE2009‘s recommendations.
27

 It establishes the expected outcomes required for

a professional practice. It specifies a mix of 10 technical, ethical, learning, and other outcomes,

reflecting the diverse skills that graduates require in order to become successful as software

engineers. The CBOK Outcome is perhaps the most clearly technical, being tied directly to

mastery of the CBOK. As shown in Comparisons of GSwE2009 to Current Master’s Programs

in Software Engineering, many existing programs address this outcome fairly well. In contrast,

the Ethics Outcome is among the least technical. It addresses mastery of ethical decision-making,

which relatively few existing programs cover well. The curriculum authors deliberated at length

about these outcomes to strike the right balance between technical and non-technical skills. Few

existing programs cover all 10 outcomes well. That is, of course, not surprising. On the other

hand, as articulated in Comparisons of GSwE2009 to Current Master’s Programs in Software

Engineering, over time existing programs should be able to reduce and even eliminate the gap

between themselves and GSwE2009.

Several reviewers of GSwE2009 version 0.5 (called GSwERC version 0.5 at the time)

recommended making these 10 outcomes more objectively testable. The authors weighed those

recommendations carefully and provided some additional elaboration in the current version.

However, the authors also felt that an extensive elaboration would be too limiting, since there are

many ways to achieve these outcomes. Moreover, GSwE2009 is not intended to be used directly

for accreditation. Instead, the companion volumes present guidance on achieving the outcomes

and provide comparisons between GSwE2009 recommendations and actual master‘s programs.

The order in which the outcomes are listed is not important. It does not reflect a priority among

the outcomes. Graduates of a master‘s program that satisfies GSwE2009 recommendations will:

CBOK Master the Core Body of Knowledge

The CBOK specifies a Bloom Taxonomy level for each included knowledge area

(KA), subarea, topic, and subtopic. Mastering the CBOK requires learning

principles exemplified through practice. A graduating student will have

demonstrated that he or she can perform at the specified Bloom level, which

ranges from knowledge (the lowest level) up through analysis (the fourth level).

Such performance is the definition of mastery used herein. By way of comparison,

the undergraduate reference curriculum, SE2004, only expects performance

through the third level, application.

27 These outcomes were significantly influenced by a report from Carnegie Mellon University: Shaw, M. (Ed.),

Software Engineering for the 21st Century: A Basis for Rethinking the Curriculum, Technical Report CMU-ISRI-

05-108, Carnegie Mellon University Institute for Software Research, March 2005.

18

GSwE2009 does not state how the demonstration of mastery will be performed.

That decision is left up to the implementing university. However, the hypothetical

implementations of GSwE2009 in Frequently Asked Questions on Implementing

GSwE2009 offer approaches for such demonstration. A student who has mastered

the CBOK will be able to develop a modest-sized software system of a few

thousand lines of code from scratch, be able to modify a pre-existing large-scale

software system exceeding 1,000,000 lines of code, and be able to integrate third-

party components that are themselves thousands of lines of code. Development

and modification include analysis, design, and verification, and should yield high-

quality artifacts, including the final software product.

DOMAIN Master software engineering in one application domain, such as finance, medical,

transportation, or telecommunications, and in one application type, such as real-

time, embedded, safety-critical, or highly distributed systems. That mastery

includes understanding how differences in domain and type manifest themselves

in both the software itself and in its engineering, and includes understanding how

to learn a new application domain or type.

Only a student who enters a master‘s program already an expert or near expert in

an application domain will depart that program as an expert. The Domain

Outcome does not require a student to become a true expert in an application

domain, an achievement that normally takes many years of experience and

education. However, SwE only becomes tangible when practiced in an application

domain, where software brings real value and where software engineers face, on a

daily basis, the characteristics and peculiarities of that domain. Priorities,

vocabulary, paradigms, technologies, tools, and a myriad of other factors vary

from domain to domain; for example, security and privacy are typically extremely

important in financial transactions, but less important in the embedded software of

an automobile braking system. For the latter, safety is much more important.

Development standards are very important in defense applications, but less

important in software used to create special effects in movies. As a reference

curriculum, GSwE2009 gives each program the flexibility to emphasize its

defining characteristics. Nevertheless, depth in an application domain and

application type requires knowing how to apply several of their significant tools

and technologies. For example, someone gaining an in-depth understanding of

Web applications in 2009 would almost certainly need to be able to use several

common Web technologies, such as .Net or Java, and would need to understand at

least one toolset for specifying, developing, integrating, modifying, and testing

code using those technologies. Additionally, the student should appreciate the

intersection of technology with the business/mission drivers of the domain.

19

There are practical limitations to which application domains an individual

university can support in its classrooms. Faculty must be available who

understand a domain, often through practice in the industry. Laboratories, case

studies, and other artifacts must enable a student to explore a domain. Even large

SwE programs will have trouble supporting more than a handful of domains well.

Smaller programs might only be able to support one or two application domains.

Section 4 sets expectations for a student entering a master‘s program. One of

those expectations is two years of practical software development experience.

That experience is vital to enable mastery of an application domain. It is

extremely hard to understand an application domain simply by classroom

exercises and readings. Two years experience in an application domain—any

application domain—will give the student an invaluable practical perspective that

can be applied in graduate education to achieve the Domain Outcome.

DEPTH Master at least one KA or sub-area from the CBOK to the Bloom Synthesis level.

A student needs to dive deeply into at least one KA or sub-area, such as

requirements or architecture. Such depth strengthens the student‘s analytic skills

and enables the student to solve hard problems in at least one KA. This outcome

is much more demanding than any in SE2004, the undergraduate SwE curriculum,

which only requires mastery up to the application level in any topic.

ETHICS Be able to make ethical professional decisions and practice ethical professional

behavior.

Professionals routinely face ethical, legal, and social dilemmas, such as when is it

ethically, legally, and socially acceptable to compromise quality in order to meet

schedule? What types of activities constitute a professional conflict of interest or

are a breach of ethics, law, or social norms? In some cases, potential violations of

the law are clear, but in most situations, there are no black and white rules for

resolving such questions. Resolution requires maturity, experience, knowledge,

and judgment. A graduate should have demonstrated that he or she has the

maturity, knowledge, and judgment to make common professional decisions that

have ethical, legal, and social implications. Two years of practical experience

before entering the master‘s program will help enrich the student‘s ability to

understand ethical dilemmas. In two years of work experience, it is quite possible

the student will have faced the challenge of deciding whether to ship a product

when serious bugs still remain, or whether to discount the views of an important

stakeholder because it is ―politically‖ difficult, or other such situations.

20

SYS ENG Understand the relationship between software engineering and systems

engineering and be able to apply systems engineering principles and practices in

the engineering of software.

As mentioned earlier, SwE and SE have much in common, but are often treated as

quite separate disciplines. In some business domains, the term systems engineer is

not used, instead being replaced by application engineer, system architect, lead

engineer, system analyst, or many other terms. The student should be able to look

past differences in terminology and see the relationship between software and SE,

no matter what the latter is called.

Topics such as requirements analysis and architecture should be taught from a

common systems/software perspective. For example, the architecture of any large

system typically has much of its functionality implemented through a mix of

hardware, software, and people. Software engineers should learn how to influence

SE decisions to create the right mix for a particular application and should

understand how to select the best software technologies to support that mix. The

notions of systems thinking and system dynamics, popularized by people such as

Jay Forrester
28

, John Sterman
29

, and Peter Senge
30

, which stress understanding the

relationship of the system as a whole to other systems, is an important aspect of

SE that should be addressed.

TEAM Be an effective member of a team, including teams that are multinational and

geographically distributed, effectively communicate both orally and in writing,

and lead in one area of project development, such as project management,

requirements analysis, architecture, construction, or quality assurance.

Students need to complete tasks that involve work as an individual, but also many

other tasks that entail working with a group of individuals. For group work,

students ought to be informed of the nature of groups and of group activities/roles

as explicitly as possible. This must include an emphasis on the importance of such

matters as a disciplined approach, the need to adhere to deadlines, how to

communicate both orally and in writing, and how teams are evaluated as a whole

rather than just as individuals. Students should have an appreciation of team

dynamics and leadership techniques and be able to lead at least one area of project

development. Increasingly, system and software development teams are

assembled from many geographical sites, often across national boundaries. This

28 Forrester, J., Learning Through System Dynamics as Preparation for the 21st Century, 1994.

29 Sterman, J., Business Dynamics: Systems Thinking and Modeling for a Complex World, McGraw-Hill/Irwin,

2000.

30 Senge, P., The Fifth Discipline: The Art and Practice of the Learning Organization, Broadway Business, 2006.

21

presents additional challenges of time, language, and culture that students must

know how to address. For some programs, establishing geographically dispersed

teams will be challenging, but this can be done where necessary by teaming with

programs at other universities and campuses.

RECONCILE Be able to reconcile conflicting project objectives, finding acceptable

compromises within limitations of cost, time, knowledge, risk, existing systems,

and organizations.

Students should engage in realistic exercises that expose them to conflicting and

changing requirements. For example, end users may prefer a new system that does

not require significant change in existing business practice, while the business

leaders may be looking to reengineer the business practice in order to realize

dramatic gains in efficiency. If not managed well, such conflicts among key

stakeholders can lead to requirements churn, product rejection, and many other

undesirable consequences. The software engineer should understand techniques to

address and resolve such conflicts. As another example, new requirements

routinely emerge during the course of most large or complex projects. The

graduate of a master‘s program should be able to reason about the implications of

such emergence on technical planning and software architecture, among other

considerations. Rigorous techniques to perform tradeoffs should be included as a

way of resolving conflicts. Note also the tie between this outcome and the Ethics

Outcome. The inability to reconcile conflicts well can lead to ethical dilemmas.

PERSPECTIVE Understand and appreciate feasibility analysis, negotiation, and good

communications with stakeholders in a typical software development

environment, and perform those tasks well; have effective work habits and be a

leader.

The presence of a capstone experience, if it is a group project and not an

individual activity (such as a thesis), is of considerable importance in this regard.

It offers students the opportunity to tackle a major project and demonstrate their

ability to bring together topics from a variety of courses and apply them

effectively. This mechanism allows students to demonstrate their appreciation of

the broad range of SwE topics and their ability to apply their skills to genuine

effect. This should also include the ability to offer reflections on their

achievements.

LEARN Be able to learn new models, techniques, and technologies as they emerge, and

appreciate the necessity of such continuing professional development.

In a field as dynamic as SwE, life-long learning is essential to continued success.

It is therefore imperative for the graduate student to develop the necessary skills

22

to seek and learn the latest developments—to be able to grow personally. This

includes the ability to evaluate and adapt software development processes,

metrics, and tools, including the ability to create or assemble satisfactory evidence

for that evaluation. A master‘s program cannot instill the desire for life-long

learning, but can teach the skills to know how to do life-long learning.

TECH Be able to analyze a current significant software technology, articulate its

strengths and weaknesses, compare it to alternative technologies, and specify and

promote improvements or extensions to that technology.

Technologies change frequently. A software engineer must be able to select new

technologies, understanding their limitations and appropriate uses: that is, to be

able to perform tradeoff studies and act as a change agent within his or her

professional organization. In 2009, such technologies might include service-

oriented architectures and their supporting toolsets. In five years, there will be

another set of technologies, just as controversial and complex. A graduate should

know how to decide the relative merits of such technologies based on assembled

or discovered evidence and be an effective advocate for ―winning‖ technologies.

Note, however, that in a university setting, a student will likely only be able to

demonstrate their potential to be an effective advocate.

The Tech Outcome has a strong tie to the Domain Outcome. The strengths and

weaknesses of a technology are generally not absolute, but vary with the

application domain and other context.

It is useful to think beyond student competencies at graduation, looking out three to five years

later toward the longer-term objectives that students might achieve. The CAT considered

whether GSwE2009 should include a standard set of objectives that all master‘s programs should

set for their graduates. After lengthy discussion, the CAT concluded no standard set existed.

There is simply too much variation among individual master‘s programs to prescribe a common

set in GSwE2009. Nevertheless, it is desirable for each university program to establish its own

objectives.

23

4. Expected Student Background When Entering the Master’s Program

One of the hardest decisions to make when constructing a graduate curriculum is determining

what a student should be capable of when entering the program. If the bar is set too low, the

graduate education will either be shallow or will need to be extended by universities to

compensate for low entry capability. If the bar is set too high, too few will qualify and the

program will struggle to attract students. According to a recent survey of graduate SwE

programs, summarized in Appendix A, the average master‘s program in SwE requires around 33

to 36 graduate course credits, which in the United States is usually structured into 11 or 12 3-

credit semester courses. GSwE2009 is in line with current practice, recommending a program of

around 33 to 36 graduate credits. A full-time student could reasonably be expected to complete

such a program in 18 to 24 months. The number of recommended credits, combined with

expectations for student knowledge and skills when they graduate, determine what students

should be capable of when they enter the master‘s program.

Establishing outcomes cannot be done without considering what students are capable of when

entering the master‘s program. The survey of existing graduate programs described in Appendix

A revealed a wide range of expectations for entering students. For example, some universities

target students who are making a mid-career shift into being software engineers. For those

universities, a student with a bachelor‘s degree and a ―B‖ grade point average (GPA) is enough

for entry. Other universities target students who are software professionals seeking to advance

their career with an advanced degree in their current field. Most—but not all—universities

presume a student can program in at least one computer language. About a third of the surveyed

programs presume a student has professional experience as a software engineer. Nevertheless,

GSwE2009 must make some assumptions about what students are capable of at entry or there is

no basis for defining what knowledge they can reasonably master while pursuing a degree that is

nominally the equivalent of 11 to 12 3-credit semester-long courses.

Note that expectations are not admission requirements. Individual universities and programs set

admission requirements. However, deviations from these expectations may require lengthening

the program to compensate and still achieve the 10 outcomes in Section 3. A student can

compensate for the lack of a formal education by more extensive experience; a university can

offer a student lacking certain knowledge or skills an opportunity to take additional leveling
31

courses; or a student lacking experience can take an internship or follow some other means to

gain that experience while in the degree program. Of course, the latter two options will increase

the number of courses that a student must take to earn a master‘s degree—a common practice for

those entering a graduate program without the expected background. The curriculum

architecture, described in the next section, provides a structure by which a university could

31 Such courses go by many names. Students who lack proficiency in an expected competency normally take them.

The objective is to raise their level of proficiency to that of their peers.

24

address students who do not meet the entry expectations. Frequently Asked Questions on

Implementing GSwE2009 provides advice on how to welcome students who lack strong

computer science or software development backgrounds.

GSwE2009 presumes that an entering student meets all the following:

 The equivalent of an undergraduate degree in computing, or an undergraduate degree in

an engineering or scientific field and a minor in computing. Table 1 in Section 6.2,

Preparation Knowledge, defines the expected knowledge from the degree.

 The equivalent of an introductory course in SwE. Table 1 in Section 6.2 also defines the

expected knowledge from this course.

 At least two years of practical experience in some aspect of SwE or software

development. This experience should include participation in teams, development of a

program or component that has been successfully delivered, and an update or repair to an

existing program or component.

The rationale for these expectations is:

DEGREE Many existing master‘s programs in SwE expect students to have a bachelor‘s

degree in an engineering or scientific field, but not a degree in computing. Such

students generally bring much of the math skills and the ability to think

analytically, both of which are essential to SwE. Students often have

programming experience, although it is usually programming in the small without

the benefit of understanding how to address issues associated with large or

complex software.

In order to engineer software, a student must have mastered the fundamentals of

computing, including programming, computer hardware, operating systems, data

structures, algorithms, discrete math, and a design course that has considered

developing a system in which a primary issue has been the integration of several

components. Students who do not have at least a minor in computing will

generally lack that mastery.

Universities frequently offer leveling courses to students who enter a master‘s

program lacking the expected background in computing.

SWE The majority of master‘s programs in the 2007 survey of existing programs do not

start students in an introductory SwE course. These programs assume that the

student has learned the equivalent knowledge either from earlier coursework or

from professional experience. GSwE2009 follows the practice of the majority of

programs in that regard.

25

Universities frequently offer an undergraduate course introducing SwE to students

who do not have the equivalent knowledge from a prior course or professional

experience.

EXPERIENCE SwE is a practical field and it is a truism that there is no substitute for experience.

The richness of the discussions in a graduate class and the sophistication of the

analysis that students can perform are driven, in part, by the experience of those

students. Students with at least two years of practical experience in several

aspects of SwE or software development have a significantly deeper appreciation

for the issues that are examined in the master‘s program. Such experience should

expose the student to a team environment and to working on several aspects of

development, as would happen when a student is part of a team modifying,

testing, and releasing an existing application. Going through at least one full life

cycle of a product release would be ideal. Two years experience in a single

development activity, such as performing configuration management, would not

support the spirit of this background expectation. The most germane experience

would have the student (1) work on a component of a larger system that requires

integration; (2) evolve an existing system, such as making it be backward-

compatible with previous versions; and (3) address contextual requirements of

customers.

Universities could offer internships to students lacking the expected experience,

or otherwise involve them in a significant practical experience early in their

master‘s program. However, it should be noted that several CAT members doubt

whether an internship can truly compensate for a lack of relevant professional

experience. Addition of such internships would probably increase the time

required in the program.

26

This page intentionally left blank.

27

5. Curriculum Architecture

This section describes the structure of a curriculum into which courses satisfying GSwE2009

recommendations can be packaged. It identifies, via the CBOK, the minimal material that all

programs should include and makes provisions for each institution to develop its own distinctive

program(s). The curriculum architecture is similar to the one proposed in (Ardis and Ford, 1989)

and is compatible with the existing master‘s programs for which course and curriculum data are

described in Appendix A. It is intended to provide a structural basis for programs that deliver the

outcomes described in Section 3.

Figure 1. Architectural Structure of a GSwE2009 Master’s Program

The curriculum architecture includes preparatory material, core materials, university-specific

materials, elective materials, and a mandatory capstone experience. Figure 1 provides an

overview of the curriculum architecture. The heavy black line represents the baseline

expectations described in Section 4 for students entering the master‘s program. Thus, material

above the heavy black line is mastered before entry into the master‘s program. Material below

the heavy black line is mastered after program entry. A student who satisfies the baseline

expectations is ready to begin the program (work below the heavy black line). Individual

28

programs will determine how to prepare students whose background falls short. Typically,

colleges and universities that wish to admit students who lack the expected background will

provide preparatory courses containing materials that those students should take before entering

the master‘s program. Those are the preparatory materials shown above the dark horizontal line

in Figure 1.The more deficient the student‘s background is relative to the baseline entrance

expectations, the higher the risk is that the student will not perform satisfactorily, harming both

himself and fellow students. It is anticipated that a few students with undergraduate degrees in a

variety of fields plus extensive experience, might enter directly into courses that cover only a

subset of the core materials, and perhaps occasionally directly into courses that include

university-specific and elective materials.

GSwE2009 identifies the fundamental skills and knowledge that all graduates of a master‘s

program in SwE must possess. In Figure 1, this is captured in the half-circle area labeled Core

Materials. These skills and knowledge include such topics as SE fundamentals, requirements

engineering, software design, and ethics and professional conduct, which are listed in Section 6,

CBOK. Where appropriate, it defines the common themes of the SwE discipline, including its

dependencies on other related disciplines, such as SE, human factors for interface design and

testing, and project management, and recommends that all graduate programs include this

material. Courses that teach CBOK material would be mandatory or core courses, since taking

them would be necessary to learn the core material. The CBOK has been limited to include no

more than 50% of the total knowledge conveyed in a complete master‘s program.

The next half-circle in Figure 1, labeled University-Specific Materials, represents materials that

an institution might include in order to tailor its program to meet its specific objectives. These

will vary by institution or degree program. They may differ widely because of student

demographics, teaching/research/professional focus, delivery mechanisms, external constituents,

and infrastructure or accreditation issues. Institutions might include material in this part of the

curriculum to extend a student‘s knowledge of their undergraduate field of study with particular

emphases on tradeoffs between applications in those fields and the disciplines that are included

in other portions of the SwE curriculum. For example, a program that emphasizes safety-critical

systems might have a required course on such systems that would be part of the University-

Specific Materials. An institution or program might refer to the core materials, as defined in this

document, plus its university-specific materials, as its own core.

Elective Materials accommodate different interests of individual students, but may still reflect a

program focus. For example, a program may focus on information security, verification and

validation (V&V), or health-care systems, providing a series of courses that allow a student to

gain depth in a technical area, CBOK KA, or an application domain, respectively. Those courses

might be organized into tracks or may simply be an unstructured collection of courses. Students

may be constrained in what electives they take to foster program educational goals, or the

program may allow the student broad freedom in course selection. Elective materials can also

29

include special topics courses that might be used from time to time to introduce experimental

topics into the curriculum.

Figure 2. Course Alignment, Which May or May Not Correspond to Specific Topics or Rings

GSwE2009 recommends that students demonstrate their accumulated skills and knowledge in a

capstone experience, which might be a project, a practicum, or a thesis. The capstone experience

would likely be between 3 to 6 credit hours, which would count towards the 33 to 36 total credit

hours typically required for a master‘s degree. In this context, a project would be a practically

oriented undertaking done by a single student or a group for or with someone within the offering

institution. A practicum would be a software development project done for a real external

customer by a group of students, perhaps for an employer for whom one or more of them work.

A thesis would be SwE research completed by an individual student under the guidance of a

research-oriented member of the faculty. Students completing the curriculum must be able to

understand and appreciate the importance of negotiation, effective work habits, leadership, and

good communication with stakeholders in a typical software development environment. These

topics should be integrated into the core materials and perhaps could be reinforced in the

university-specific or elective materials. However, the presence of a capstone project, a

practicum, or a thesis at the end of the curriculum is of considerable importance in this regard. It

30

offers students the opportunity to tackle a major undertaking and demonstrate their ability to

bring together topics from a variety of courses and apply them effectively, as shown by the

broken lines connecting the capstone experience back to the materials contained in the various

layers of the curriculum.

There is no intent in this architectural specification to require either the content of preparatory

courses or the content in core courses to be self-contained in courses with names corresponding

to the topics. Figure 2 provides an example showing how this might happen. The yellow wedges

in this figure correspond to courses that teach precisely core material, precisely university-

specific material or precisely elective material. The green wedges represent courses that integrate

material across architectural layers. For example, Course 1 (shown in green) covers a

combination of core and university-specific material. Course 2 (shown in yellow) covers only

university-specific materials. Either, or both, methods of course packaging are appropriate.

Figure 3. Demonstration of How a Specific Track May Fit Within a Program

There is also no intent that all of the courses containing preparatory or core materials must be

completed before coursework in the next ring can begin. It is anticipated that the sequencing of

31

courses will be controlled primarily by the prerequisite specifications of each course in a specific

institution‘s curriculum.

Figure 3 offers an example of how a track could be constructed within this architectural

framework. In this example, the track would include all of the core materials, some university-

specific materials from the track, some elective materials related to the track and a capstone

experience concentrating on a topic associated with the specific track. Tracks are typically areas

of study, such as telecommunications, real-time systems, and information systems.

It is through a combination of Core, University-Specific, and Elective Materials that the 10

outcomes in Section 3 are met. For example, the Domain Outcome requires depth in an

application domain, such as telecommunications or finance. A program could offer a track that

gives a student depth in telecommunications by emphasizing telecommunications examples in a

software architecture class that teaches Core Materials, and that teaches telecommunications

principles in an elective course on the general telecommunications field.

32

This page intentionally left blank.

33

6. Core Body of Knowledge (CBOK)

6.1 Development of the CBOK

The primary source for developing the CBOK was the SWEBOK. Knowledge elements were

also derived from SE2004, (INCOSE, 2003) and especially (Haskins, 2007). In the study and

analysis of these sources, it was decided that although the SWEBOK organization and content

would dominate, various changes in areas and topics were needed to support the GSwE2009

expected student outcomes and to accommodate the needs and views of academia, industry, and

the computing professional societies. For example, two KAs, not in the current version of the

SWEBOK, were added: Systems Engineering Fundamentals, and Ethics and Professional

Conduct. In addition, some units and topics were added, rearranged or modified. These included:

• Addition of Human Computer Interface design in the Software Design KA

• Addition of an Engineering Economics unit in the Software Engineering Management

KA

• Addition of a Risk Management unit in the Software Engineering Management KA

• Addition of a Verification and Validation (V&V) unit in the Software Quality KA

• Changes in the names and the unit/topic organization in three KAs: (a) Software

Requirements to Requirements Engineering, (b) Software Testing to Testing and (c)

Software Configuration Management to Configuration Management. These changes were

made to accommodate and emphasize the role of SE in GSwE2009.

It should be noted that as of the publication date of GSwE2009, the plans for a 2010 refresh of

SWEBOK call for a new KA on Professional Practice and four new education KAs: Engineering

Economy Foundations, Computing Foundations, Mathematical Foundations, and Engineering

Foundations. GSwE2009 has attempted to accommodate the SWEBOK refresh by including

these topics in the preparation knowledge (discussed in the next section) and in the additional

KAs and units in the CBOK.

Two other proposals for significant re-organization of the SWEBOK KAs were considered:

• Create a KA called Supporting Processes that includes configuration management, V&V,

quality assurance, reviews and audits, and software documentation process. This proposal

also included recommended changes in the Software Engineering Management area

involving units on organizing, staffing, and directing a software project.

• Create a KA called V&V that subsumes the Software Testing KA and includes units from

the Software Quality area.

Although both proposals were viewed positively, it was felt that the wide recognition and the

common understanding of the organization of the SWEBOK KAs were compelling reasons to

maintain the basic SWEBOK outline as a foundation for the GSwE2009 CBOK. However, the

34

first proposal did prompt study, analysis, and modification of the description of some of the

knowledge units within the Software Engineering Management KA (in Project Organization and

Enactment and in Risk Management).

The CAT has provided a recommended level to which a student should achieve each KA; these

are defined in terms of Bloom‘s taxonomy. Appendix B describes Bloom‘s cognitive levels
32

 and

the process used to specify the student cognitive level for both the prerequisite KAs and the

CBOK KAs. The following level designations are used in the tables in this section:

• Knowledge (K)

• Comprehension (C)

• Application (AP)

• Analysis (AN)

These level designations are not intended to guide detailed curriculum design, but rather to

provide a high-level view of curriculum and student expectations. Students admitted to a

program who possess substantial SwE education (e.g., a Bachelor of Science degree in SwE) or

experience (e.g., an experienced software project manager) will arrive with knowledge at or

above some of the designated Bloom‘s levels. A university might choose to exempt such

students from some of its required courses, giving them the opportunity to take a greater number

of advanced courses than afforded the typical student.

6.2 Preparation Knowledge

Table 1 specifies the knowledge students should possess when entering a master‘s program in

order to be best prepared to achieve the GSwE2009 outcomes. SE2004 was the primary source

for the knowledge elements. The knowledge may be acquired through undergraduate study, from

software development experience, through leveling courses offered by an institution, or through

some combination of these. The table is organized hierarchically into three levels, similar to the

knowledge organization in the SE2004. The highest level of the hierarchy is the KA, such as

Mathematical Fundamentals. Each KA is shown in blue and is broken down into smaller

numbered divisions called units, which represent individual thematic modules within an area.

Each unit is further subdivided into an unordered set of topics.

Clearly, other preparation knowledge will be needed to support graduate SwE education. For

example, students entering a master‘s program should have a strong background in general

education: excellent oral and written communication skills, knowledge of the social sciences, and

a solid foundation in continuous mathematics (algebra, pre-calculus, and calculus).

32 Bloom, B.S. (Ed.), Taxonomy of educational objectives: The classification of educational goals: Handbook I,

cognitive domain, Longmans, 1956.

35

Table 1. Preparation Knowledge for Core Body of Knowledge

Knowledge Areas
Bloom

Level

Mathematics Fundamentals

1. Discrete Structures

AP Functions, relations, and sets; basic logic; proof techniques; basics of counting; graphs and

trees; discrete probability

2. Propositional and Predicate Logic

Propositions, operators, and truth tables, laws of logic, predicates and quantifiers, argument

and inference
AP

3. Probability and Statistics

Basic probability theory, random variables and probability distributions, estimation theory,

hypothesis testing, regression analysis, analysis of variance

AP

Computing Fundamentals

1. Programming Fundamentals

AP
Overview of programming languages; virtual machines; introduction to language translation;
declaration and types; abstraction mechanisms; object-oriented programming; functional

programming; language translation systems; type systems; programming language semantics;

programming language design

2. Data Structures and Algorithms

C Basic algorithmic analysis; algorithmic strategies; fundamentals of computing algorithms;

distributed algorithms

3. Computer Architecture

C
Digital logic and digital systems; machine level representation of data; assembly level
machine organization; memory system organization and architecture; interfacing and

communication; functional organization; multiprocessing and alternative architectures;

performance enhancements; architecture for networks and distributed systems

 4. Operating Systems

C Operating system overview and principles; concurrency; scheduling and dispatch; memory
management; device management; security and protection; file systems; real-time and

embedded systems; fault tolerance; system performance evaluation; scripting

5. Networks and Communications

C Introduction to net-centric computing; communication and networking; network security;
Internet; building Web applications; network management; compression and decompression;

multimedia data technologies; wireless and mobile computing

6. Module Design and Construction

AP Abstraction, information hiding, interface design, procedural design, assertions, exceptions,

coupling and cohesion

Software Engineering

1. Software Requirements

C Software requirements fundamentals; requirements elicitation; requirements analysis;

requirements specification; requirements validation

2. Software Design C

36

Knowledge Areas
Bloom

Level

Software design fundamentals; software structure and architecture; software design

notations; software design strategies and methods

3. Software Construction
AP

Software construction fundamentals; software construction practices

4. Software Testing
K

Software testing fundamentals; test levels; test techniques

5. Software Maintenance
K

Software maintenance fundamentals; techniques for maintenance

6. Software Engineering Management
K

Software project planning; software configuration management

7. Software Engineering Process
K

Process definition and implementation; product and process measurement

8. Software Quality
K

Software quality fundamentals; software quality management practices

6.3 CBOK Concepts and Organization

Table 2 presents the outline of the CBOK that is recommended for the core of a curriculum that

supports the GSwE2009 recommendations. It is organized hierarchically in the same manner as

Table 1. The CBOK knowledge units and their Bloom level designations were developed in such

a way that the core could be covered in the equivalent of approximately 15 credit hours or

approximately 200 contact hours (using a North American academic model). The core is

designed to comprise a little less than 50% of the total credit hours recommended for a master‘s

degree. Hence, additional time and courses can be allocated to provide additional depth in the

core areas (at higher Bloom levels) and to focus on a chosen application domain. An actual

workload measure (such as that used in the European Commission‘s European Credit Transfer

System
33

) could have been used, but it was felt that contact hours were sufficient for the intended

level of this curriculum guidance.

Table 2. Core Body of Knowledge

Knowledge Area
Systems Eng.

Content
Bloom Level

A. Ethics and Professional Conduct

1. Social, legal, and historical issues SYS C

Data confidentiality and security, surveillance and privacy

33 European Commission, Education & Training, ―European Credit Transfer and Accumulation System (ECTS)‖

website. http://ec.europa.eu/education/programmes/socrates/ects/index_en.html#1

37

Knowledge Area
Systems Eng.

Content
Bloom Level

Historical developments, and gender, minor, and cultural issues

Contracts and liability, intellectual property, freedom of information

Computer crime and law enforcement

2. Codes of ethics and professional conduct SYS C/AP

Responsibilities to society

Models for professionalism, professional societies

Codes of ethics and practice

3. The nature and role of software engineering standards C

Nature and role of standards

International standards, standards and harmonization organizations

Bodies of knowledge, accepted and best practices

B. System Engineering SYS

1. Systems Engineering Concepts C

System context

 People and systems

System hierarchical relationships

The role of system engineers

2. System Engineering Life Cycle Management C

Lifecycle Management

Systems engineering and software engineering processes

3. Requirements C/AP

Stakeholder requirements

Requirements analysis

4. System Design C/AP

Architectural design

Implementation

Trade studies

5. Integration and Verification C

6. Transition and Validation C

7. Operation, Maintenance and Support C

C. Requirements Engineering SYS

1. Fundamentals of Requirements Engineering C/AP

Relationship between systems engineering and software engineering

Definition of requirements

System design constraints

38

Knowledge Area
Systems Eng.

Content
Bloom Level

System design and requirements allocation

Product and process requirements

Functional and non-functional requirements

Emergent properties

Quantifiable requirements

2. Requirements Engineering Process C

Process models

Process actors

Process support and management

Process quality and improvement

3. Initiation and Scope Definition AP

Determination and negotiation of requirements

Feasibility analysis

Process for requirements review/revision

4. Requirements Elicitation AP

Requirements sources

Elicitation techniques

5. Requirements Analysis AN

Requirements classification

Conceptual modeling

Heuristic methods

Formal methods

Requirements negotiation

6. Requirements Specification AP

Requirements specification techniques

7. Requirements Validation AP

Requirements reviews

Prototyping

Model validation

Acceptance tests

8. Practical Considerations C/AP

Iterative nature of requirements process

Change management

Requirements attributes

Requirements tracing

Measuring requirements

D. Software Design

1. Software Design Fundamentals C/AP

39

Knowledge Area
Systems Eng.

Content
Bloom Level

General design concepts

Context of software design

Software design process

Enabling techniques

2. Key Issues in Software Design AP

Concurrency

Control and handling of events

Distribution of components

Error and exception handling and fault tolerance

Interaction and presentation

Data persistence

3. Software Structure and Architecture AP/AN

Architectural structures and viewpoints

Architectural styles (macro architectural patterns)

Design patterns (micro architectural patterns)

Human computer interface design

Families of programs and frameworks

4. Software Design Quality Analysis and Evaluation AP

Quality attributes

Quality analysis and evaluation techniques

Measures

5. Software Design Notations AP

Structural descriptions (static)

Behavioral descriptions (dynamic)

6. Software Design Strategies and Methods AP/AN

General strategies

Function-oriented (structured) design

Object-oriented design

Heuristic methods

Formal methods

Component-based design (CBD)

E. Software Construction

1. Software Construction Fundamentals AP

Minimizing complexity

Anticipating change

Constructing for verification

Standards in construction

2. Managing Construction AP

40

Knowledge Area
Systems Eng.

Content
Bloom Level

Construction methods

Construction planning

Construction measurement

3. Practical Considerations AP

Construction design

Coding

Construction testing

Construction quality

Integration

F. Testing SYS

1. Testing Fundamentals AP

System testing and software testing

Testing-related terminology

Key issues

Relationships of testing to other activities

2. Test Levels AP

The target of the tests

Objectives of testing

Component testing

Integration testing

System testing

Acceptance testing

3. Testing Techniques AP

Based on tester‘s intuition and experience

Specification-based

Code-based

Fault-based

Usage-based

Based on nature of application

Selecting and combining techniques

4. Test-Related Measures AP/AN

Evaluation of the program or system under test

Evaluation of the tests performed

5. Test process C/AP

Management concerns

Test activities

G. Software Maintenance

1. Software Maintenance Fundamentals C

41

Knowledge Area
Systems Eng.

Content
Bloom Level

Definitions and terminology

Nature of maintenance

Need for maintenance

Majority of maintenance costs

Evolution of software

Categories of maintenance

2. Key Issues in Software Maintenance AP

Technical

- Limited understanding

- Testing

- Impact analysis

- Maintainability

Management issues

- Alignment with organizational issues

Maintenance cost estimation

- Cost estimation

- Parametric models

- Experience

Software maintenance measurement

3. Maintenance Process AP

Maintenance process models

Maintenance activities

- Unique activities

- Supporting activities

4. Techniques for Maintenance AP

Program comprehension

Reengineering

Reverse engineering

H. Configuration Management (CM) SYS

1. Management of the CM Process C/AP

Organizational context for CM

Constraints and guidance for CM

Planning for CM

- CM organization and responsibilities

- CM resources and schedules

- Vendor/subcontractor control

- Interface control

Configuration management plan

42

Knowledge Area
Systems Eng.

Content
Bloom Level

Surveillance of configuration management

- CM measures and measurement

- In-process audits of CM

2. Configuration Identification AP

Identifying items to be controlled

- Configuration items

- Configuration item relationships

- Versions

- Baseline

-Acquiring configuration items

Software library

3. Configuration Control AP

Requesting, evaluating and approving changes

- Configuration control board

- Change request process

Implementing changes

Deviations and waivers

4. Configuration Status Accounting

Configuration status reporting

5. Software Release Management and Delivery AP

Software building

Software release management

I. Software Engineering Management

1. Software Project Planning AP

Project goals and objectives

Project policies and standards

Process planning

Project assumptions and forecasts

Project deliverables

Project staffing

Effort, schedule, and cost estimation

Resource allocation

Quality management

Project plan/budget development and management

2. Risk Management SYS AP

Risk management concepts

- Probability, impact

 - Timeframe

43

Knowledge Area
Systems Eng.

Content
Bloom Level

Risk management process

- Frameworks, standards, and guidelines

- Risk identification, analysis and risk prioritization techniques

- Risk mitigation strategies

Risk management tools

- Earned value tracking

 - Technical performance measurement

 - Defect tracking and reporting

 - Project control panels

Organizational risk management

Joint supplier/customer risk management

3. Software Project Organization and Enactment AP

Project organization

 - Identify and group project functions, activities, and tasks

- Determine organizational structure and positions

- Define responsibilities, authority relationships, position qualifications

Project directing

- Leadership, supervision, delegation of authority, coordination and

communication

- Motivation, conflict resolution, team building

Project control

 - Implementation of plans, and measurement process

 -Process monitoring

 - Change management

Reporting

Supplier contract management (e.g., RFP, cost evaluation, IP rights)

4. Review and Evaluation C

Determining satisfaction of requirements

Reviewing and evaluating performance

5. Closure SYS C

Determining closure

Closure activities

6. Software Engineering Measurement AP

Establish and sustain measurement commitment

Plan the measurement process

Perform the measurement process

Evaluate measurement

7. Engineering Economics SYS C

44

Knowledge Area
Systems Eng.

Content
Bloom Level

Engineering economics fundamentals

For-profit decision-making

Not-for-profit decision-making

Present economy

Estimation, risk, and uncertainty

Multiple attribute decisions

J. Software Engineering Process

1. Process Implementation and Change C/AP

Process infrastructure

- Software engineering process group

- Experience factory

Activities

Models for process implementation and change

Practical considerations

2. Process Definition C

Life cycle models

Software life cycle processes

Notations for process definitions

Process adaptation

Automation

3. Process Assessment AP

Process assessment models

Process assessment methods

4. Product and Process Measurement AP

Software process measurement

Software product measurement

- Size measurement

- Structure measurement

- Quality measurement

Quality of measurement results

Measurement techniques

- Analytical techniques SYS

- Benchmarking techniques SYS

K. Software Quality

1. Software Quality Fundamentals AP

Software engineering culture and ethics

Value and costs of quality SYS

Quality models and characteristics SYS

45

Knowledge Area
Systems Eng.

Content
Bloom Level

- Software process quality

- Software product quality

Quality improvement SYS

Application quality requirements SYS

- Criticality of systems

- Dependability

- Integrity levels of software

Defect characterization

2. Software Quality Management Processes AP

Software quality assurance

Software quality management techniques

- Static techniques

- People-intensive techniques

- Analytic techniques

- Dynamic techniques

Software quality measurement

3. Verification and Validation (V&V) SYS AP

Definitions of V&V

- System V&V and software V&V

- Independent V&V

V&V Techniques

- Testing

- Demonstrations

- Traceability

- Analysis

- Inspections

- Peer reviews

- Walkthroughs

- Audits

Figure 4 depicts the percentages of the curriculum that are recommended for each core KA.

These percentages were initially determined by using a quasi Wideband Delphi technique to

allocate the 200 contact hours, and then the hours were converted to percentages (of the 50%

core) and adjusted to ranges of approximately 1%-2%. As indicated in Figure 4, the percentages

for each area apply only to the core, which represents approximately 50% of the curriculum. The

percentages should be considered as general high-level guidance, not as precise curriculum

specification.

46

Figure 4. Percentage Devoted to Core Body of Knowledge Areas

As indicated in Section 5, Curriculum Architecture, the university-specific and elective materials

will cover many of these KAs in more depth and may cover material outside these KAs

completely, such as the study of a specific application domain.

As also explained in Section 5, Curriculum Architecture, the core 15 credit hours could be

distributed in many ways. The simplest and most direct way would be as a set of courses

dedicated specifically to teaching core material. Using the typical North American model, the

entire set of core materials would be taught in five 3-credit semester courses. Alternatively, a

program could cover the core material over many more courses. Comparisons of GSwE2009 to

Current Master’s Programs in Software Engineering examines how various universities

approximate the coverage of the core material in their programs.

The KAs outlined in Table 2 are intended to characterize the core content of a master‘s program

in SwE; it is not intended to depict or to imply the organization of curricula and courses.

Although there are KAs on requirements, design, construction, and testing, this should not be

taken to mean that GSwE2009 is recommending a waterfall curriculum: that is, first a course in

requirements, then a course on design, and so on. Instead, GSwE2009 supports and encourages a

variety of curriculum designs and course organizations that satisfy the GSwE2009 guidelines.

47

Table 2 provides topic-level outline of the CBOK. For most areas, units, and topics, the

SWEBOK provides more in-depth description of the CBOK elements. Appendix C contains

more detailed descriptions of three CBOK elements that are not covered sufficiently or at all in

the SWEBOK:

• Systems Engineering Fundamentals

• Ethics and Professional Conduct

• Engineering Economics

Both the CBOK and Appendix C should be viewed as extensions of the SWEBOK. They provide

depth and detail that support the design and specification of courses and curricula. Please note

that Appendix C is not intended to directly influence future versions of SWEBOK.

Appendix E provides a mapping of the ten GSwE2009 Outcomes to the CBOK. The mapping

shows where a curriculum, depending on CBOK alone, would fall short of achieving the

outcomes, highlighting the importance of the 50% of the curriculum that is not covered by the

CBOK.

6.4 Crosscutting Knowledge Elements

One of the concerns with using a hierarchical model for organization of knowledge is that KAs

and their units may be incorrectly interpreted as independent of each other. Such

misinterpretation can lead to two problems. One problem, highlighted in the previous section, is

to view the ―development‖ KAs (requirements engineering, software design, software

constructions, testing, and maintenance) as dictating a partitioning of the curriculum into a

waterfall model. Similarly, the presence of a KA such as Software Maintenance might lead to the

mistaken view that the other development KAs are independent of maintenance and are focused

only on new development. A reading of the SWEBOK description of the Software Maintenance

KA makes it clear that it is dependent on the other KAs: ―this KA description is linked to all

other chapters of the Guide.‖

A related danger with a hierarchical model is that the ―crosscutting‖ nature of certain CBOK

elements will be obscured. For example, one might overlook the importance of the ―supporting‖

KAs (process, quality, management, and ethics) as elements that impinge on and relate to the

other KAs: for example, the importance of the distribution of software process throughout the

development KAs—that is, process cuts across requirements, design, construction, testing, and

maintenance.

The next section discusses the crosscutting nature of SE and how the CBOK addresses this.

During the development and review of the CBOK, a number of other crosscutting knowledge

elements were considered—software security, software safety, software reuse, and human factors

and usability. Although the CAT agrees with the importance of these crosscutting elements, it

does not feel they needed additional representation within the CBOK, unlike the case of SE. The

48

SWEBOK refers to each of these elements throughout various KAs (requirements, design,

construction, testing, etc.). To illustrate this, Appendix D discusses how software security is

related to the SWEBOK and lists KAs and units that support the inclusion of security-related

issues in a GSwE2009 curriculum. In addition, the SWEBOK and this document include

references to key documents that provide a foundation for providing depth in a topic beyond the

CBOK. For example, Software Assurance: A Curriculum Guide to the Common Body of

Knowledge to Produce, Acquire, and Sustain Secure Software
34

 edited by Sam Redwine,

provides a comprehensive view of security throughout the software life cycle and includes

sections on the following activities: Ethics, Secure Software Requirements, Secure Software

Design, Secure Software Construction, Security V&V, and other practices that span the lifecycle.

In effect, (Redwine, 2007) provides a body of knowledge for software security that supports a

GSwE2009 curriculum that focuses on the development of secure software systems.

Another missing KA that received considerable comment was human factors (ergonomics,

human computer interaction, cognitive science, etc.). In the SWEBOK, human factors

knowledge (listed as Software Ergonomics) is designated as a related discipline, which means

that it is a separate discipline that is important to the development of software products, but its

depth and breadth of knowledge is not part of the ―generally accepted‖ knowledge that all

software engineers should possess. Specialists might be needed for a software application

strongly dependent on human factor issues. This is the position taken by GSwE2009. Of course,

a program might use some part of the 50% of the curriculum that goes beyond the core to focus

on human factors.

6.5 Systems Engineering Issues

A critical feature of GSwE2009 is the increasing importance of SE to professional SwE

education.

6.5.1 Systems Engineering and Software Engineering

Several trends have caused systems engineering and SwE to initially evolve as largely sequential

and independent processes. First, SE began as a discipline for determining how best to configure

various hardware components into physical systems such as ships, railroads, or

telecommunications systems. Once the systems were configured and their component functional

and interface requirements were precisely specified, sequential external or internal contracts

could be defined for producing the components. When software components began to appear in

such systems, the natural thing to do was to treat them sequentially and independently as

computer software configuration items.

34 Redwine, S. T. Jr. (Ed.), Software Assurance: A Curriculum Guide to the Common Body of Knowledge to

Produce, Acquire and Sustain Secure Software, Draft Version 1.2, U.S. Department of Homeland Security, 2007.

49

Second, the early history of SwE was influenced by a highly formal and mathematical approach

to specifying software components, and a reductionist approach to deriving computer software

programs that correctly implemented the formal specifications. A ―separation of concerns‖ was

practiced, in which the responsibility for producing formalizable software requirements was left

to others, most often hardware-oriented systems engineers. Some example quotes illustrating this

approach are:

• ―The notion of ‗user‘ cannot be precisely defined, and therefore has no place in computer

science or software engineering.‖
35

• ―Analysis and allocation of the system requirements is not the responsibility of the

software engineering group but is a prerequisite for their work.‖
36

As a result, a generation of SwE education and process improvement goals were focused on

reductionist software development practices that assumed that other (mostly non-software

people) would furnish appropriate predetermined requirements for the software.

Third, the business practices of contracting for components were well worked out. Particularly in

the government sector, acquisition regulations, specifications, and standards were in place and

have been traditionally difficult to change. The path of least resistance was to follow a

―purchasing agent‖ metaphor and sequentially specify requirements, establish contracts,

formulate and implement solutions, and use the requirements to acceptance-test the solutions.
37,38

When requirements and solutions were not well understood or were changing rapidly,

knowledgeable systems and software engineers and organizations could reinterpret the standards

to operate more flexibly, concurrently, and pragmatically, and to produce satisfactory

systems.
39,

40

 But all too frequently, the sequential path of least resistance was followed, leading

to the delivery of obsolete or poorly-performing systems.

As the pace of change increased and systems became more user-intensive and software-

intensive, serious strains were put on the sequential approach. First, it was increasingly

appreciated that the requirements for user-intensive systems generally could not be specified in

advance, but emerged with use. This undermined the fundamental assumption of sequential

specification and implementation.

35 Dijkstra, E., ―Software Engineering: As It Should Be‖, conference paper, International Conference on Software

Engineering 4, September 1979, 442-448. See also EWD 791 at http://www.cs.utexas/users/EWD.

36 Paulk, M., et al., Software Capability Maturity Model, Version 1.1, Software Engineering Institute, Carnegie

Mellon University, Pittsburgh, PA, 1993.

37 U.S. Department of Defense, MIL-STD-1521B: Technical Reviews and Audits for Systems, Equipments, and

Computer Software, 1985.

38 U.S. Department of Defense, DOD-STD-2167A: Defense System Software Development, 1988.

39 Checkland, P., Systems Thinking, Systems Practice (2nd ed.), Wiley, 1999.

40 Royce, W. E., Software Project Management: A Unified Framework, Addison-Wesley Professional, 1998.

50

Second, having people without software experience determine the software specifications often

made the software much harder to produce, putting software even more prominently on the

system development‘s critical path. Systems engineers without software experience would

minimize computer speed and storage costs and capacities, which caused software costs to

escalate rapidly.
41

 They would choose best-of-breed system components with software that was

incompatible and time-consuming to integrate. They would assume that adding more resources

would speed up turnaround time or software delivery schedules, not being aware of slowdown

phenomena such as multiprocessor overhead
52

 or Brooks‘ Law (adding more people to a late

software project will make it later).
42

 The top five critical success factors distinguishing

successful from failed software projects in the 2005 Standish Report
43

 were primarily in the SE

area (lack of user involvement, executive support, clear requirements, proper planning, and

realistic expectations), accounting for 71% of the sources of failure.

Third, software people were recognizing that their sequential, reductionist processes were not

conducive to producing user-satisfactory software, and were developing alternative SwE

processes (evolutionary, spiral, agile) involving more and more SE activities. Concurrently, SE

people were coming to similar conclusions about their sequential, reductionist processes, and

developing alternative ―soft SE‖ processes, emphasizing the continuous learning aspects of

developing successful user-intensive systems. Similarly, the project management field was

undergoing questioning about its underlying specification-planning-execution-control theory

being obsolete and needing more emphasis on adaptation and value generation.
44

Many commercial organizations have developed more flexible and concurrent development

processes.
45

 Also, recent process guidelines and standards such as the Capability Maturity Model

Integrated (CMMI)
46

, IEEE/EIA Standard 15288-2008, ISO/IEC 12207 for SwE
47

, and ISO/IEC

41 Boehm, B., Software Engineering Economics, Prentice Hall, 1981.

42 Brooks, F., The Mythical Man-Month: Essays on Software Engineering (2nd ed.), Addison-Wesley Professional,

1995.

43 Standish Group, Unfinished Voyages,
http://www.standishgroup.com/sample_research/unfinished_voyages_1.php, October 19, 2005.

44 Koskela, L., and Howell, L., ―The Underlying Theory of Project Management is Obsolete‖, Proceedings of the

2002 PMI Research Conference, 2002, 293-302.

45 Womack, J. P., Jones, D.T., and Roos, D., The Machine that Changed the World: The Story of Lean Production,
Harper Perennial, 1991.

46 Chrissis, M. B., Konrad, M., and Shrum, S., CMMI®: Guidelines for Process Integration and Product

Improvement (1st edition), Addison-Wesley Professional, 2003.

47 ISO (International Standards Organization), Standard for Information Technology – Software Life Cycle

Processes, ISO/IEC 12207, 1995.

51

15288 for SE
48

 emphasize the need to integrate systems and SwE processes, along with hardware

engineering processes and human engineering processes. They emphasize such practices as

concurrent engineering of requirements and solutions, integrated product and process

development, and risk-driven vs. document-driven processes. New process milestones enable

effective synchronization and stabilization of concurrent processes.
49,50

6.5.2 Systems Engineering and GSwE2009

In (Haskins, 2007) the primary SE professional society, INCOSE, defines systems engineering as

―an interdisciplinary approach and means to enable the realization of successful systems.‖

―Interdisciplinary‖ implies that all key disciplines—hardware, software, human factors,

economics, application disciplines, legal, and so forth—need to collaborate on defining the

system requirements and solution approach. ―Enable‖ implies that good SE cannot guarantee

success if its plans and specifications are furnished to incapable developers (but, as previously

noted, poor SE can cause even good developers to fail to meet infeasible plans and

specifications). ―Successful‖ implies that all of the system‘s success-critical stakeholders will be

no worse off once the system is in operation; otherwise, they will refuse to use or support the

system. All of this implies that a project‘s SE group needs the skills to:

• Identify the success-critical stakeholders

• Determine the stakeholders value propositions

• Help stakeholders collaborate in defining and negotiating a mutually satisfactory set of

plans and specifications

• Help adapt the plans and specifications in mutually satisfactory ways to respond to

changes (in the environment, technology, competition, or participating organizations).

Each individual does not need to have all of the skills, but needs to understand how the other

skills may impact their contributions. These four key SE skill areas are discussed more fully in

Appendix C2.

SE is a crosscutting KA, and its units and topics should be integrated throughout the GSwE2009

curriculum components. For example, when knowledge from the Requirements Engineering KA

is taught, how the systems context impacts software requirements should be addressed.

Similarly, the Requirements Engineering KA should address how the feasibility of implementing

specific software requirements influences both system requirements and system architecture.

48 ISO (International Standards Organization), Systems Engineering – System Life Cycle Processes, ISO/IEC 15288,

2008.

49 Boehm, B., ―Anchoring the Software Process‖, IEEE Software, July 1996, 73-82.

50 Kroll, P. and Kruchten, P., The Rational Unified Process Made Easy: A Practitioner’s Guide to the RUP,

Addison-Wesley Professional, 2003.

52

The CBOK includes a separate section on SE knowledge that is not part of the original

SWEBOK structure. However, this section does not fully capture the crosscutting nature of

expected SE knowledge. This was the rationale for the name and terminology changes to the

SWEBOK organization in the Requirements Engineering and Configuration Management areas.

In addition, Table 2 includes a column labeled ―Systems Engineering Content‖ that indicates

(with a SYS designation) that a KA or knowledge unit has content and activities that are part of

or relevant to system engineering. This represents a high-level view of system engineering; for a

more detailed view, see Appendix C2. It should also be noted that although Figure 4 lists 3-7%

for the System Engineering KA, additional system engineering material would be covered under

such KAs as Requirements Engineering and Configuration Management.

A key distinction between SE and SwE is that SwE includes development of the software

components, while SE excludes the development and manufacturing of software and hardware

components, although it includes development and evolution of the plans and specifications for

such activities, and integration and test of the resulting components. In particular, the terms in

Table 2, such as Architectural Design, are not meant to imply that these activities are done once

and sequentially at the beginning, but that they may involve continuing concurrent evolution

throughout the system‘s life cycle.

53

7. Anticipated GSwE2009 Evolution

From the beginning, it was intended for GSwE2009 to be a living document, with a broad,

responsible, and knowledgeable community of practice. It was anticipated that after Version 1.0

was published, Stevens Institute of Technology, which has managed the original development,

would identify a steward who would assume responsibility for maintaining and refining the

model and expanding and focusing implementation guidance based on experience and feedback

from the supporting community and academia, industry, and students. Effort is now underway

for a combination of the ACM and the IEEE Computer Society to become that steward. These

organizations have played a major role in creating GSwE2009. As of the writing of this

document, discussions are underway for those two organizations to take over maintenance

responsibility for GSwE2009 within the first 6 months of the release of Version 1.0, with

INCOSE playing a supporting role. Some minor changes are expected in the appearance of the

document, such as the inclusion of the ACM and IEEE Computer Society logos, when that

transition takes place.

This report fits logically within the Computing Curricula series of the ACM and the IEEE

Computer Society that started in 2001. Hopefully, it will enjoy the same widespread acceptance

and influence as the other reports in that series. To support and enable that acceptance, two

companion documents - Comparisons of GSwE2009 to Current Master’s Programs in Software

Engineering and Frequently Asked Questions on Implementing GSwE2009– are being prepared

concurrently with the release of GSwE2009. They will be available in Fall 2009 at

www.GSwE2009.org and updated regularly.

http://www.gswe2009.org/

54

This page intentionally left blank.

55

Appendix A. Summary of Graduate Software Engineering Programs in 2007

The first step in the iSSEc project was to understand the structure and content of currently

implemented master‘s-level programs. Over 50 universities in the United States and many others

globally offer a master‘s-level degree in SwE. In summer and fall 2007, data from 28 programs

was collected and analyzed to enable a reasonable description of the current state of practice.

Publicly available data was collected and then augmented and validated with a knowledgeable

faculty member from the program.

A.1. Methodology

A list of candidate schools and graduate programs was constructed through Web searches, author

contacts, and recommendations from members of the CAT. The range of schools listed included

traditional universities, Web-based programs, and government-associated schools. The 28

programs that are included in the study are listed in Table 3.

Table 3. Participating Schools

1. Air Force Institute of Technology

2. Brandeis University

3. California State University – Fullerton

4. California State University – Sacramento

5. Carnegie Mellon University

6. Carnegie Mellon Silicon Valley

7. DePaul University

8. Drexel University

9. Dublin City University (Ireland) *

10. Embry-Riddle Aeronautical University

11. George Mason University

12. James Madison University

13. Mercer University

14. Monmouth University

15. Naval Postgraduate School

16. Penn State University – Great Valley

17. Quebec University (Canada) *

18. Rochester Institute of Technology

19. Seattle University

20. Southern Methodist University

21. Stevens Institute of Technology

22. Texas Tech University

23. University of Alabama – Huntsville

24. University of Maryland University College

25. University of Michigan – Dearborn

26. University of Southern California

27. University of York (UK) *

28. Villanova University

* Non-U.S. schools

56

A taxonomy was needed to structure the analysis of competencies covered in the program

curricula. Rather than create yet another SwE competency model, the team used the SWEBOK

as a widely-available, collaboratively-developed and thoroughly-vetted taxonomy.

An Excel-based survey instrument was developed in which to collect and organize the data from

the selected programs. The instrument captured data about the program, the courses, and the

competencies taught within each course.

The program and course information was collected from public sources—primarily the Web.

Using this information, the survey team performed an initial mapping of the course topics to the

SWEBOK. Missing information was highlighted and any questions were captured during this

initial pass. Subsequently, the survey team contacted a professor at the target institution. The

initial data, emailed to and reviewed by that contact or a recommended substitute, was discussed

in a telephone conference with members of the survey team. Missing data was filled in, errors

were corrected, and in most cases, the contact made changes directly to the instrument and

emailed it back to the survey team.

Although attempts were made to standardize the way in which the data was provided, there were

still some differences in the level of detail provided and the interpretation of the instructions by

the academic program personnel. This led to adjustments to the way the team analyzed the data.

To accommodate the differing levels of granularity, as represented by the differing SWEBOK

levels of the data, the team decided that, for initial analysis, data would be analyzed at the third

SWEBOK level and reported at the first SWEBOK level. This required the team to heuristically

aggregate from lower levels to higher levels where the data had been provided at finer

granularity.

The findings from the survey fall into two general categories: program characteristics and

curriculum characteristics.

A.2. Program Characteristics

The spectrum of programs investigated led to a number of findings about how the programs were

managed, their faculty resources, size, longevity, and individual personalities. Some of the more

interesting findings are as follows:

[1] Software engineering (SwE) is largely viewed as a specialization of Computer Science—

much as SE was often viewed as specialization of industrial engineering or operations

research years ago. Data shows that only 26% of the programs are in SwE departments,

44% are within Computer Science departments, and the rest are in a myriad of other

academic organizations.

[2] Faculty size is generally small, with few dedicated SwE professors. Forty-eight percent of

the programs have five or fewer dedicated full- or part-time faculty members. There is

heavy reliance on adjunct faculty for teaching.

57

[3] Student enrollments are generally small compared to Computer Science and other

engineering disciplines. Twenty-nine percent of the programs have 25 or fewer students

and 71% have 100 or fewer.

[4] Many programs specialize in specific markets such as defense systems acquisition or

safety-critical systems. Those markets are often driven by local businesses.

[5] Admission requirements vary widely. Some will accept anyone with a bachelor‘s degree

and a B average, while others require a computer science degree and at least two years of

relevant experience. Leveling courses are widely provided to support students unable to

meet all requirements.

[6] Program outcome goals are quite diverse. Programs are set up to produce graduates

according to the perceived needs and desires of the target student population. Some

programs focus on developing skilled software development team members. Others focus

on the skills and knowledge required to manage complex projects. In some cases, the

graduates are prepared to be chief engineers and software executives.

[7] Programs continue to be started despite the widespread concern over the decline in

computer science majors over the last few years. Of the 28 programs in our study, eight

were started since 2001.

[8] On-line offerings are popular, with many programs reaching students far from their

physical campuses and some citing a global reach.

A.3. Curriculum Characteristics

The structure and content of courses in existing programs and the relationship of those curricula

to standards such as SWEBOK provided valuable insight for GSwE2009 development. Although

the survey team collected data on all courses offered by the master‘s programs, the initial

analysis only looked at courses that were required or semi-required, where a semi-required

course is one that a student has at least a 50% chance of taking. Some of the more interesting

findings are:

[1] Fewer than 40% of all programs required an introductory course on SwE.

[2] There is a wide variation in the depth and breadth of SWEBOK coverage in required and

semi-required courses. The well-covered areas are courses in requirements, design, and

management. The least well-covered areas are courses in maintenance, configuration

management, quality, tools, and methods.

[3] It is clear that the SWEBOK alone does not represent the breadth of many program‘s

required courses. Many programs required courses on specific programming languages

(such as C++, Java, and C#), software economics, human factors and user interface design,

and legal/ethical issues of software development.

58

[4] Few surveyed programs explicitly address systems engineering in their required and semi-

required courses.

[5] ―Object-Oriented‖ is the standard development paradigm. Almost no one teaches structured

methods except for historical interest.

[6] The flexibility of coursework varies widely. For example, one school offered no

electives—every course was required. On average, students take 11.6 courses for their

degree, 8.3 of which are required or semi-required.

[7] Capstone practicums and projects are frequently required.

A.4. Conclusions

The initial work produced a reasonable profile of master‘s programs currently offered. The

diversity is clearly evident, helping to motivate and inform the GSwE2009 effort.

59

Appendix B. Bloom Levels for the Body of Knowledge

B. 1 Introduction

Bloom‘s Taxonomy is a classification system devised in 1956 by group of educators lead by

Benjamin Bloom.
51

 The taxonomy can be used by educators to set the level of

educational/learning objectives required for students engaged in an education unit, course, or

program. Bloom‘s Taxonomy divides educational objectives into three domains: Affective,

Psychomotor, and Cognitive. In this document, the focus is on the Cognitive Domain, which is

concerned with what we know and how we know it.
52

 Conventional education systems tend to

stress outcomes in the cognitive domain, particularly the lower-level objectives.

Bloom‘s taxonomy is hierarchical; i.e., learning at a higher level is dependent on attaining

prerequisite knowledge and skills at the lower levels. Table 4 provides a description of the

Bloom‘s Levels for the Cognitive Domain. There is some debate about the ordering of the two

highest levels, Synthesis and Evaluation: should their order be reversed or should they be placed

at the same level? This is a research area that the GSwE2009 project does not attempt to address,

but rather stays with the more traditional view.

Table 4. Explanation of Bloom Taxonomy Cognitive Levels

Level Competency Objective Descriptors

Knowledge (K) Remembering previously learned material. Test observation

and recall of information, i.e., ―bring to mind the

appropriate information‖; e.g., dates, events, places,

knowledge of major ideas, mastery of subject matter.

List, define, tell, describe,

identify, show, label, collect,

examine, tabulate, quote,
name (who, when, where,

etc.)

Comprehension

(C)

Understanding information and ability to grasp meaning of
material presented. For example, translate knowledge into

new context, interpret facts, compare, contrast, order,

group, infer causes, predict consequences, etc.

Summarize, describe,
interpret, contrast, predict,

associate, distinguish,

estimate, differentiate,

discuss, extend

Application (AP) Ability to use learned material in new and concrete

situations; e.g., use information, methods, concepts,

theories to solve problems requiring the skills or knowledge

presented.

Apply, demonstrate,

calculate, complete,

illustrate, show, solve,
examine, modify, relate,

change, classify, experiment,

discover

51 Bloom, B. S. (Ed.), Taxonomy of educational objectives: The classification of educational goals: Handbook I,

cognitive domain, Longmans, 1956.

52 Huitt, W., ―The cognitive system,‖ Educational Psychology Interactive, Valdosta, GA, Valdosta State University,

2006. Retrieved May 22, 2008 from http://chiron.valdosta.edu/whuitt/col/cogsys/cogsys.html

60

Level Competency Objective Descriptors

Analysis (AN) Ability to decompose learned material into constituent parts

in order to understand structure of the whole. This includes

seeing patterns, organization of parts, recognition of hidden

meanings, and obviously identification of parts.

Analyze, separate, order,

explain, connect, classify,

arrange, divide, compare,

select, explain, infer

Synthesis (S) Ability to put parts together to form a new whole. This
involves the use of existing ideas to create new ones,

generalizing from facts, relating knowledge from several

areas, and predict, draw conclusions. It may also involve

the adaptation of ―general‖ solution principles to the

embodiment of a specific problem.

Combine, integrate, modify,
rearrange, substitute, plan,

create, design, invent, what

if?, compose, formulate,

prepare, generalize, rewrite

Evaluation (E) Ability to pass judgment on value of material within a given
context or purpose. This involves making comparisons and

discriminating between ideas, assessing value of theories,

making choices based on reasoned arguments, verify value

of evidence, and recognize subjectivity.

Assess, decide, rank, grade,
test, measure, recommend,

convince, select, judge,

explain, discriminate,

support, conclude, compare,

summarize

Table 5 shows some examples of various Bloom level competencies that might apply to

GSwE2009 curricula and courses.

Table 5. Example Cognitive Levels for Software Engineering

Level Competency

Knowledge (K)
 The student is able to recite the definitions of ―class‖ and ―object‖ and to state the

connection between them.

 The student is able to define the notion of the waterfall (iterative, incremental, spiral

model) software development process.

Comprehension

(C)

 The student is able to explain how to decide if something should be modeled as a

class or as an object.

 The student is able to explain, in a very general way, the conditions under which a

software development team might choose to use a waterfall (iterative, incremental,

spiral model) software development process as opposed to one of the others.

Application (AP)
 The student is able to start with a simple requirements document and produce a

reasonable draft of a UML domain model.

 Given the operational concept and requirements of a simple application or system

along with a specified budget and required completion time the student is able to

choose, and to provide a rudimentary justification for the choice of a particular

software development process from among the popular ones, e.g., waterfall,

iterative, incremental, and spiral.

Analysis (AN)
 Given a simple requirements document and a UML domain model for an

application, the student is able to critique the domain model, e.g., finding classes

that should probably have been modeled as objects and vice versa, associations

whose names are hard to understand and should be renamed, incorrect multiplicities

of associations, etc.

 Given the operational concept of a simple application or system along with a

requirements document, a budget, a required completion time, a choice of a specific

61

Level Competency

software development process, and a justification of the use of that process on the

project, the student is able to find and explain errors in the justification and/or in the

choice of process.

Synthesis (S) Given a detailed requirements document and a well-constructed UML domain model

for an application/system, the student is able to design at least one basic architecture

and implementation class diagram(s) for the application/system.

 Given an operational concept, requirements, architecture and detailed design

documents for an application/system, the student is able to construct a complete

implementation plan and provide a cogent argument that if the implementation of

the architecture/detailed design is performed according to the plan, then the result

will be an application/system that satisfies the requirements, fulfils the operational

concept, and will be completed within budget and within schedule.

Evaluation (E)
 Given the operational concept, requirements, architecture, detailed design, and

implementation plan, including budget and schedule, for an application/system, as

well as a feasibility argument for the implementation plan, the student is able to

assess the plan and to either explain why the feasibility argument is valid or

why/where it is flawed with regard to any of the claims regarding implementation of

the requirements, fulfillment of the operational concept, or ability to be completed

within budget and schedule.

B. 2 Frequently Asked Questions

The following questions and answers should help explain why and how Bloom‘s Taxonomy is

used in GSwE2009.

[1] Why were Bloom’s levels used in the GSwE2009 Core Body of Knowledge (CBOK)?

Bloom‘s Taxonomy is used in Section 6 (Tables 1 and 2) to indicate the desired minimum

level of attainment of knowledge elements for the GSwE2009. The Bloom‘s classification

system was chosen for two reasons: it is a well-recognized and widely-used system in the

design and assessment of education components; and in the SWEBOK, Appendix D used

Bloom‘s Taxonomy to specify ―general requirements‖ for practicing software engineers.

[2] How were the Bloom’s levels in Tables 1 and 2 determined?

Tables 1 and 2 Bloom‘s level designations were initially determined by a subgroup of the

CAT, four SwE educators and practitioners, in a somewhat subjective manner. The process

began with the assignment of the SWEBOK Appendix D designations and then, using a

quasi-wideband Delphi technique, the CBOK Bloom‘s designations were adjusted.

Subsequent review by the CAT and external reviewers helped finalize the Bloom‘s level

designations.

62

[3] Why are there no Synthesis (S) levels or Evaluation (E) levels assigned to the CBOK

elements?

Appendix D of the SWEBOK uses only the Knowledge (K), Comprehension (C),

Application (AP), and Analysis (AN) levels for SWEBOK elements. The reason for this is

that the SWEBOK targets a SwE graduate with four years of experience and it is intended

to specify ―generally accepted‖ knowledge that all software engineers should possess.

However, software engineers working in specialized areas (e.g., configuration management

or quality assurance) may need to possess knowledge at a higher Bloom‘s level. This is the

philosophy adopted by the GSwE2009 CBOK. That is, the Bloom‘s levels in the

GSwE2009 CBOK specify the minimum knowledge levels that all graduates of GSwE2009

programs should attain. If a graduate program places special focus in its curriculum on a

particular area, then it may want to use higher Bloom‘s levels in that area.

In addition, one might view the S and E levels as more appropriately associated with

knowledge acquired with additional experience and education. For example, a senior

software architect would certainly be expected to have S and E level attainment in much of

the Design area of the CBOK; and likewise, an accomplished researcher in software testing

would be expected to have acquired the highest Bloom‘s levels in this area.

[4] How should the level designations be used by developers of graduate software engineering

curricula?

The Bloom‘s level designations can help guide the type of learning activities that should

incorporated into a curriculum. First, one should note that all of the GSwE2009 levels in

Table 2 are at C level or above. This means that rote learning which results only in abilities

to list, define, describe, and so forth is not appropriate.

In developing a course or a unit in the curriculum, the Bloom‘s level for a specific area

implies explicit student capabilities and could be used to develop the learning objectives for

the course or unit. For instance, in a course in software or system requirements, the AP

designation for Requirements Elicitation could lead to a learning objective such as

―Students will be able to use requirements elicitation technique A to determine the

requirements for a system in domain B.‖ The particular technique and application domain

involved would vary from program to program. The AN designation for Requirements

Analysis would demand that a requirements course incorporate learning objectives and

activities that would involve the use of techniques to classify, organize, allocate, model,

and analyze the requirements of a software system.

63

Appendix C. Description of CBOK Elements Not Found in the SWEBOK

This appendix contains material that describes and elaborates on KAs and units that are part of

the CBOK (see Section 6 of this document), but are not part of the SWEBOK or which have

lesser emphasis in the SWEBOK. There should be no inference that Appendix C material is part

of the current SWEBOK or is directly intended to influence future versions.

C.1. Ethics and Professional Conduct

Software engineers develop and maintain products that influence almost every area of human

endeavor: medicine and health, transportation and communication, business and finance,

education, government and law, and arts and entertainment. In order to deliver software products

effectively and efficiently, software engineers must conduct themselves ethically and

professionally. This KA outlines the issues and elements of such conduct.

C.1.1. Social, Legal, and Historical issues

Data Confidentiality and Security, Surveillance and Privacy

Issues related to privacy, confidentially, and the security of individual information has become a

significant problem in the information age. In particular, the Software Engineering Code of

Ethics and Professional Practice
53

 states that software engineers shall ―work to develop software

and related documents that respect the privacy of those who will be affected by that software.‖

The use of the Internet and large databases that hold private information (medical, financial,

legal, etc.) place a greater responsibility for ethical and professional conduct on the software

engineers who develop products that deal with this confidential and private information
54,55

.

Contracts and Liability, Intellectual Property, Freedom of Information

Software is typically developed in a society that has laws concerning contracts, intellectual

property (copyrights, trademarks, and patents), freedom of information, and employment law. A

software engineer must be aware of such laws and be governed in their practice by the

requirements and restraints of such laws
56,57,58

. For example, in the U.S., UCITA
59

 governs

53 ACM/IEEE-CS Joint Task Force on Software Engineering Ethics and Professional Practices, Software

Engineering Code of Ethics and Professional Practice, Version 5.2, 1999.
http://www.acm.org/serving/se/code.htm.

54 Bott, F., et. al., Professional Issues in Software Engineering (3rd edition), Taylor & Francis, 2000.

55 Tavani, H. T., Ethics & Technology: Ethical Issues in an Age of Information and Communication Technology.

Wiley, 2003.

56 Bott, F., et al., Professional Issues in Software Engineering (3rd edition), Taylor & Francis, 2001.

57 Kaner, C., ―Issues in Commercial Law of Interest to Software Engineering Educators,‖ tutorial session at the

Conference on Software Engineering Education & Training (CSEE&T), February 2002.

58 Tavani, H. T., Ethics & Technology: Ethical Issues in an Age of Information and Communication Technology.

Wiley, 2003.

64

transactions involving ―information rights,‖ which includes ―all rights in information created

under laws governing patents, copyrights, mask works, trade secrets, trademarks, publicity

rights, or any other law that gives a person, independently of contract, a right to control or

preclude another person‘s use of or access to the information on the basis of the rights holder‘s

interest in the information.‖

Computer Crime and Law Enforcement

Clearly software engineers must not engage in criminal activity; however, with the advent and

increase in cybercrime, software engineers must guard against such crime and report crimes or

suspicions of criminal activity. This is in accordance with ACM,
71

 which states that software

engineers shall ―disclose to appropriate persons or authorities any actual or potential danger to

the user, the public, or the environment, that they reasonably believe to be associated with

software or related documents.‖

Historical Developments, and Gender, Minor, and Cultural Issues

Since software engineers develop and maintain products used by humans, it is important that

they understand the historical and cultural aspects of their profession and the related context in

which their products will be used.

Software engineers need to be aware of societal diversity and always act without prejudice or

discrimination. The British Computer Society (BCS)
60

 states, ―You shall conduct your

professional activities without discrimination against clients or colleagues,‖ and the Software

Engineering Code of Ethics and Professional Practice asserts that software engineers shall ―be

fair to and supportive of their colleagues,‖ ―consider issues of physical disabilities, allocation of

resources, economic disadvantage and other factors that can diminish access to the benefits of

software,‖ and ―help develop an organizational environment favorable to acting ethically.‖ An

article detailing the developments in SwE professionalism from 1996 to 2008 can be found in

Encyclopedia of Computer Science and Engineering.
61

C.1.2. Codes of Ethics and Professional Conduct

Responsibilities to Society

All engineers who create products for society‘s use have an obligation to perform in a

professional manner. Because of the software‘s criticality and its ubiquitous nature, software

engineers have special responsibility.

59 Uniform Computer Information Transactions Act. National Conference of Commissioners on Uniform State

Laws, 2001.

60 British Computer Society, Code of Conduct & Code of Good Practice, 2004 and 2006, http://www.bcs.org/server.

php?show=nav.10967.

61 Thompson, J.B., ―Perspectives on Software Engineering Professionalism,‖ Wiley Encyclopedia of Computer

Science and Engineering, edited by Benjamin Wah, Wiley, Hoboken, NJ, 2009.

65

The Software Engineering Code of Ethics and Professional Practice states, ―Software engineers

shall act consistently with the public interest,‖ ―The ultimate effect of the (software engineer‘s)

work should be to the public good,‖ and ―Moderate the interests of the software engineer, the

employer, the client and the users with the public good.‖

Models for Professionalism, Professional Societies

Models of a profession depend on society‘s understanding of the term ―profession.‖ The Oxford

English Dictionary defines a profession as ―an occupation, vocation or high-status career, usually

involving prolonged academic training, formal qualifications and membership of a professional

or regulatory body. Professions involve the application of specialized knowledge of a subject,

field, or science to fee-paying clientele.‖ The Accreditation Board for Engineering and

Technology (ABET) (www.abet.org) defines engineering as ―the profession in which a

knowledge of the mathematical and natural sciences gained by study, experience, and practice is

applied with judgment to develop ways to utilize, economically, the materials and forces of

nature for the benefit of mankind.‖

There have been several studies of the professional nature of SwE. In 1996, Mary Shaw traced

the history of the evolution of several engineering disciplines and compared them with the

evolution of software development practices. In their 1996 study of a SwE profession, Ford and

Gibbs
62

 concluded that an engineering profession has the following features:

• An initial professional education in a curriculum validated by society through

accreditation

• Registration of fitness to practice via voluntary certification or mandatory licensing

• Specialized skill development and continuing professional education

• Communal support via a professional society

• A commitment to norms of conduct often prescribed in a code of ethics

In the past decade there have been significant advances in these areas (Thompson 2009);

however, there are no professional societies solely devoted to SwE. There are two international

societies that are closely associated with SwE interests and practices:

• Association for Computing Machinery (ACM), http://acm.org

• IEEE Computer Society (IEEE-CS), http://www.computer.org

62
 Ford, G. and Gibbs, N.E., A Mature Profession of Software Engineering, CMU/SEI-96-TR-004, Software

Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, 1996.

66

Codes of Ethics and Practice

A code of ethics and professional conduct is the hallmark of a profession. Medicine, law, and

engineering have historically required adherence to such codes in order for an individual to

pursue public practice of the profession.

In 1999, the ACM and the IEEE-CS established the Software Engineering Code of Ethics and

Professional Practice. Other organizations, countries and regions have codes that cover the

practice of SwE (e.g., ACM 1192
63

, ACS 2008
64

, BCS 2008
65

, CSI 1993
66

). Views on

professionalism and ethical considerations related to professionalism are given in a recent article

by Loui and Miller
67

.

C.1.3. The Nature and Role of Software Engineering Standards

Nature and Role of Standards

A major role of a profession is to standardize the terminology, measurement methods, and

process methods used in national and international practice of the profession. The goal is to

enable professionals, educators, and organizations to communicate internationally, and to

improve the effectiveness and efficiency of professional practice.

International Standards, Standards and Harmonization Organizations

The IEEE–CS Software and Systems Engineering Standards Committee (S2ESC) has created

many of the standards that guide the development and maintenance of software systems. The

IEEE Software Engineering Standards Collection (http://standards.ieee.org/reading/ieee/

std_public/description/se/index.html) contains 40 IEEE standards for software development. This

collection is described and discussed in Moore
68

; it also includes an overview of standards-

making organizations. The International Standards Organization (ISO) and the American

National Standards Institute (ANSI) have created other software, system, and related standards.

63 ACM Council, ACM Code of Ethics and Professional Conduct, October 1992, http://www.acm.org/constitution/

code.html.

64 Australian Computer Society, ―Code of Ethics‖ website, 2008, http://www.acs.org.au/index.cfm?action=show

&conID=200509022322219027.

65 British Computer Society, Code of Conduct & Code of Good Practice, 2004 and 2006, http://www.bcs.org/server.

php?show=nav.10967.

66 Computer Society of India, CSI Code of Ethics, 2008, http://www.csi-india.org/code-ethics.

67 Loui M.C. and Miller, K.W., ―Ethics and Professional Responsibility in Computing,‖ in Encyclopedia of

Computer Science and Engineering, edited by Benjamin Wah, Wiley, Hoboken, NJ, 2009.

68 Moore, J. W., The Road Map to Software Engineering: A Standards-Based Guide, Wiley-IEEE Computer Society,

2006.

http://www.csi-india.org/code-ethics

67

Bodies of Knowledge, Accepted and Best Practices

A body of knowledge, describing the organization and the principal elements of a discipline,

provides a foundation for a profession that supports curriculum development, certification and

licensing, continuing professional education, and a code of ethics and professional conduct.

The best-known and most widely-used body of knowledge for SwE is the SWEBOK. In its

introduction, SWEBOK presents its objectives:

• To promote a consistent view of SwE worldwide

• To clarify the place—and set the boundary—of SwE with respect to other disciplines

such as computer science, project management, computer engineering, and mathematics

• To characterize the contents of the SwE discipline

• To provide a topical access to the Software Engineering Body of Knowledge

• To provide a foundation for curriculum development and for individual certification and

licensing material.

Other SwE related bodies of knowledge include the CBOK in Section 6 of this document, and

the bodies of knowledge in SE2004 and in the other curriculum guides at

http://www.computer.org.

In order to improve software products and to advance the state of SwE as a profession, there

have been numerous studies of ―best‖ SwE practices: Beck
69

, CMMI
70

, Cusumano
71

, and Jones
72

.

C.2. Systems Engineering

A system is a collection of interconnected components that exist within and interact with an

environment. System engineers analyze needs, develop solution concepts, and work with

component and system quality attribute specialists (safety, cost, performance, etc.) to synthesize

the evolving definition of complex systems consisting of diverse kinds of components. Systems

engineers also play a part in the installation and support of these systems in their operational

environment, and their eventual removal from service and safe disposal. Virtually all modern-

day systems ranging from air traffic control systems to nuclear reactors to financial transaction

systems are dependent on software to coordinate the interconnections among system components

69 Beck, K. and Andres, C., Extreme Programming Explained: Embrace Change (2nd edition), Addison-Wesley

Professional, 2004.

70 CMMI Product Team, Capability Maturity Model, Version 1.1, CMMI for Software Engineering, Staged

Representation, CMU/SEI-2002-TR-029, Software Engineering Institute, Carnegie Mellon University, August

2002.
71 Cusumano, M., et al., ―Software Development Worldwide: The State of the Practice‖, IEEE Software 20(6),

November/December 2003.

72 Jones, C., ―Variations in Software Development Practices‖, IEEE Software 20(6), November/December 2003, 22-

27.

68

and to provide the functionality of these systems. Software engineers are thus key members of

modern system engineering teams.

C.2.1. Systems Engineering Concepts

System Context

The basic concept of a system is very simple: as stated above, it identifies a bounded collection

of elements that interact with something larger. This simple idea can be applied to help

understand many overlapping real-world relationships; e.g., a commercial aircraft is a system,

and contains systems for navigation, propulsion, flight control, catering and entertainment,

baggage handling, and so forth. The navigation system contains integrated hardware, software

and human components, and has interfaces and relationships with other systems both inside and

outside of the aircraft boundary. The aircraft is also part of the airline commercial system, the

airport and air traffic control systems, and so forth, all of which can be considered as part of

commercial transport, tourism, or commerce systems. To effectively apply the processes and

techniques of systems and SwE, we need to select and identify a specific context.

One valuable model that systems engineers use to focus on the systems relationships key in a

given situation is to define a System of Interest (SoI) and Wider System context as shown in

Figure 5.
73

The SoI is the selected system for which a life cycle is needed, and over which the organization

can exercise some authority and decision-making. This authority may include the specification,

design and build of custom-made solution elements and the selection and integration of

Commercial Off-the-Shelf (COTS) components; or it may simply be setting the criteria for the

selection and use of computing and other services. The Wider SoI is the broader context in which

the problem situation and measure of success are defined. The SoI authority will have some

influence in the wider system, but may have to negotiate with others. The Environment describes

the system relationship and conditions in which the Wider SoI must operate. The SoI must be

engineered to deal with a range of possible environments. The Wider Environment includes

environmental issues that may not affect system operation directly, but may influence system

choices (e.g., consumer market trends).

People and Systems

It is important to distinguish between Users and Operators. Users are those who will interact with

the SoI in conjunction with their work activities or personal pursuits. Thus, users are part of the

wider SoI, and are concerned with how a SoI enables them to contribute to the effectiveness of

that wider system. Operators are people or organizations directly involved in the operation of the

SoI. In one way, operators can be treated just like any other system component, making decisions

about them to maximize system characteristics. While this view of humans treats them as a

73 Flood, R. L. and Carson, E.R., Dealing with Complexity (2nd edition). Plenum Press, 1993.

69

technology that can be selected and used within the SoI, it is important to consider people‘s

unique attributes and constraints when they are ―designed into the solution.‖ The human

elements of a complex system are often hired and trained to perform specific functions. If so,

they can be disciplined or dismissed if they fail to perform their duties in a satisfactory manner.

They can also be encouraged and incentivized to find ways to improve the system‘s operation (as

with, for example, air traffic controllers, operators of nuclear reactors, and bank tellers).

System of Interest

(Authority and Control)

Wider System of Interest

(Influence and Relationships)

Environment

(Constrained by)

Wider Environment

(Influenced by)

Figure 5. SoI Levels of System Context

Alternatively, users are external to the system. Users of an automated teller machine (ATM), for

example, must have an ATM card and a password plus minimal skills to operate the interface,

but beyond that they are not within the realm of control of the system or its sponsors, as are bank

tellers and system maintainers. There may be different user or operator classes who interact with

the system in distinctive ways. Some of those distinctions may be reflected in different modes of

system operation (e.g., full operational mode, degraded mode, emergency mode, training mode,

and maintenance mode; or perhaps novice, intermediate, and expert modes). User and operator

classes and modes of operation must be identified and documented. There may be gray areas in

which people must be considered in both user and operator roles, such as nurses as medical

device operators or aircraft pilots.

A stakeholder is any individual or organization that affects or is affected by a SoI at some point

during its life. Identifying stakeholders is thus a key aspect of SE. The main stakeholder

distinctions are between customers, acquirers, and other interested groups. A customer is the

70

individual or organization that specifies the requirements and accepts the delivered system, and,

if applicable, pays for system development. In some cases the users and customer are the same

individual or organization. In other cases, users and customer may be distinct entities, possibly

with a separate acquirer or system integrator role.

Clearly, software engineers and system operators affect the SoI and are key stakeholders. The

other stakeholders who may be relevant to a SoI are generally representatives of some constraint

or limitation on the system‘s operation or development: for example, a regulator such as the U.S.

Federal Aviation Administration, a trades union or industry body, representatives of local

community or environmental lobbies, or venture capitalists providing funds.

System Hierarchical Relationships

Complex systems are comprised of hardware, software, and human elements. The hardware

elements include computers and other kinds of hardware devices (e.g., radars). Hardware is

procured and/or developed as part of system development. The software element may include

legacy software as well as software components to be developed and/or modified. There may be

other hardware and software in the environment that provides interfaces to the system.

An Enabling System is a system that complements a SoI during its life but does not necessarily

contribute directly to its function during operation.
74

 To fully understand the context of a system

we may need to consider not only its operational environment, but also how it is transported,

stored, maintained, tested, and so forth.

The hardware, software, and human elements of complex systems are also systems (i.e.,

subsystems): they are collections of interconnected components that exist within and interact

with their environments. The environments with which they interact consist of other subsystems

and the external system environment. Each hardware and software subsystem contains its

subsystems. They are decomposed to whatever level is needed to specify and synthesize the

collection of components that constitute a system. Different subsystems may be decomposed to

different levels.

A key concern for software engineers is that hierarchical relationships in hardware architectures

are often incompatible with good software architecture hierarchies. Hardware architectures tend

to have one-to-many ―part-of‖ relationships (the wings are part of the airplane, the ailerons are

part of the wings, the aileron controls are part of the ailerons, the aileron control software is part

of the aileron controls, the aileron control data management is part of the aileron control

software). With many independent aircraft part suppliers, this often leads to incompatible data

management, fractionated software management, and slow software response to cross-cutting

changes.

74 Womack, J. P., Jones, D.T., and Roos, D., The Machine that Changed the World: The Story of Lean Production,

Harper Perennial, 1991.

71

Modern software architecture practices generally emphasize layered many-to-many ―served by‖

hierarchical relationships, which are extremely difficult to put in place once hardware-oriented

systems engineers have committed the project to a ―part-of‖ architecture, work breakdown

structure, management structure, and contract structure.
75

 This is one of many reasons why

software engineers need to be proactive participants in SE.

A System of Systems (SoS) is an interoperating collection of component systems that cooperate

together to produce results unachievable by the individual systems alone. What makes this

different from the levels of hierarchy described above is that the component systems can operate

independently and may be part of more than one context, and that each system will have

independent customers and life cycles. These SoS relationships will have a strong influence on

the lifecycle choices and commercial framework within which a particular SoI is considered.

They also present a challenge in aligning the degree of responsibility of a SoS engineer or

manager with their degrees of authority over SoS decisions, another reason why software

engineers need to be proactive participants in SE.

The Role of System Engineers

The complex systemic relationships in a real world business or public problem domain are dealt

with in two ways:

• Managed Problem Solving—making all necessary changes within an organization to

provide stakeholder benefits, within the cost and other resource constraints of the

organization.

• Engineering Problem Solving—identifying, planning, and synchronizing technical

activities to deliver identified system changes against agreed measures of effectiveness.

The key skills of a SE team needed to support both of these were identified in Section 6.5, and

are further expanded below:

• Identifying the success-critical stakeholders. This includes the abilities to diagnose what

is unsatisfactory to whom among the stakeholders in the current situation, and what are

the root causes of this dissatisfaction, involving the various quantitative and qualitative

techniques of operations research. It also involves envisioning opportunities to involve

additional stakeholders who provide keys to better system solutions, such as COTS

vendors, service providers, strategic partners with needed skills, investors, or new classes

of system users.

• Determining key stakeholders’ value propositions. This will depend on the classes of

stakeholders. Users‘ value propositions can be determined via surveys, brainstorming,

prototyping, option ranking techniques, or other preference-gathering techniques. Various

75 Maier, M. W., ―System and Software Architecture Reconciliation,‖ Systems Engineering 9(2), Summer 2006,

146-159.

72

types of business case analysis can determine investors ‗and managers‘ value

propositions, including market trend analysis, operational cost savings analysis, critical

path analysis, and return on investment analysis. Developers, maintainers, administrators,

and operators‘ value propositions will involve the development, maintenance, and

operational feasibility of the system solution options, requiring the formulation and

analysis of alternative development approaches (what to make, buy, or subscribe to for

services) and operational concepts. Another key stakeholder class is the general public,

whose value propositions concerning safety, security, fairness, or privacy may involve

regulatory bodies, standards compliance, or legal constraints.

• Helping stakeholders collaborate in defining and negotiating a mutually satisfactory set

of plans and specifications. This will include identifying the actual or likely conflicts,

risks, and uncertainties among the stakeholders‘ value propositions; analyzing the risks;

identifying options for resolving the conflicts and risks; performing tradeoff analyses to

evaluate the options with respect to the desired value propositions; combining options to

synthesize candidate solutions; helping stakeholders negotiate mutually satisfactory

solutions; and verifying and validating the feasibility of the solutions. These activities

involve a wide variety of skills, including both technical and interpersonal skills. System

engineers are not necessarily component specialists. Their expertise lies in knowing the

business milieu or operational domain in which their systems will operate, in performing

the top-level activities that must be accomplished to develop a complex system that

incorporates various kinds of technologies, and in coordinating the work activities of

specialists from various technical disciplines. But they must be conversant with the

technologies to be used so they can speak intelligently with the component specialists

concerning requirements, capabilities, interfaces, and tradeoffs. In addition, system

engineers must work with those in specialty disciplines such as safety, security,

reliability, usability, integration, configuration management, verification, and validation.

Not everyone needs to possess all of the skills, but good systems engineers learn how to

collaborate with specialists to help achieve good combinations of system requirements, plans,

solutions, and evidence of their compatibility and feasibility. At a minimum, software engineers

need to participate in SE as technical specialists. But they will be far more effective if they

participate as systems engineers with a particular technical specialty.

There are no one-size-fits-all processes for developing and evolving the wide variety of systems

in terms of size, criticality, subset-ability, number of component systems, availability of reusable

solution elements, degree of legacy constraints, ability to prespecify requirements, and degree of

requirements volatility. Systems engineers need to be able to determine what type of process best

fits the combination of such characteristics that are involved in the system they are engineering.

• Adapting the plans and specifications in mutually satisfactory ways to respond to

changes. This is an increasingly important skill, as the speed of change in our world

73

continues to increase. Traditionally, systems engineers would prespecify plans and

specifications, and then go on to engineer other systems. But nowadays and increasingly

in the future, systems engineers are necessary across a system‘s entire life cycle to assess

changes in the environment, technology, competition, or participating organizations, and

to help adapt the systems content, plans and specifications in mutually satisfactory ways

to respond to the changes.

The third problem-solving approach that systems engineers must be aware of is:

• Strategic Problem Solving—initiating, monitoring, and guiding a collection of managed

problem-solving activities to evolve and grow a SoS or enterprise.

Traditional management or engineering approaches cannot directly tackle strategic problems.

However, there is a need to understand SoS needs and constraints and propose alternative SoS

solution strategies; make trades across project boundaries against SoS criteria and integrate

delivered systems into a SoS environment; evaluate SoS performance to feedback into enterprise

level investment decisions. One of the main enablers for this strategic approach is the ability to

create modular system products integrated through an open, software-intensive infrastructure.

Thus, both systems and SwE skills have a role to play in this level of problem solving.

C.2.2. Systems Engineering Life Cycle

Life Cycle Management

A lifecycle is the organized collection of activities, relationships and contracts that apply to a SoI

during its life. As such, it is the relationship to a lifecycle that shapes how and when SE is

applied, and sets the context for the relationship between project management, SE and SwE

activities.

In standards such as ISO/IEC 15288:2008
76

, a lifecycle is described by a set of Life Cycle

Stages. Each stage is related to part of a basic problem solving approach. The stage is described

by an overall objective, an indication of the activities related to the stage, and a definition of the

things to be achieved by the end of the stage. Figure 6 shows the simple set of stages in the ISO

15288:2008
88

 standard.

76 ISO (International Standards Organization), Systems and Software Engineering – System Life Cycle Processes,

ISO/IEC 15288, 2008.

.

74

Figure 6. ISO 15288:2008 Generic Life Cycle Stages

From a problem-solving viewpoint, the stages are put together in a logical way to move a project

forward. At the end of each stage, the project will review its progress against the stage outcomes

and make a decision to move to a new stage, return to a previous stage, extend the current stage,

or stop or delay the project.

It is important to emphasize that the activities shown against each stage are not confined to that

stage. Figure 6 shows the activities critical to the purpose of a stage, and for which there will be

significant activity during the stage. However, these activities may also need to be revisited

during later stages, or considered and planned for in earlier stages.

In the real world, life cycles are also used for strategic and financial project planning. The extent

to which a project needs to fit within a predefined life cycle template or to plan several stages

ahead to secure financial resources, depends upon the kind of problem, organization, and sector.

To illustrate this we might expect life cycle planning to range from:

• A predefined life cycle template, which a project must fully define and cost before it can

gain approval to start any work. This gives a good understanding of cost and risk, but

may not be flexible enough to deal with changing objectives and opportunities, and can

lead to expensive rework and overruns.

• A scoping study or demonstrator project can be used to run through the life cycle for a

simplified problem, to gain confidence prior to full project planning. This helps to

identify and remove risks, but it can take time and money that might be better spent on

the real problem.

• An incremental or spiral life cycle allows the project to deliver useful outcomes, while

dealing with potential risk or uncertainties. This is a good approach for many systems,

75

particularly unprecedented systems in an environment of rapid change, but may be harder

to manage without detailed forward planning and cost prediction.

• The most flexible approach is to fund a single life cycle stage, and at the end of that

stage, to review the results obtained so far, the plans for the next stage and the resources

required to achieve them. This gives the most flexible approach, but needs an equally

flexible view of funding and planning, including a continuous investment in concurrent

SE during development stages, to make it work.

These basic life cycle approaches apply to projects, which are focused commercial activities to

produce a specific change to an identified SoI. As previously discussed, an enterprise may need

to organize a number of projects to deliver synchronized changes. A program is a collection of

projects dedicated to development and deployment of a complex SoS, or of a product-line family

of systems.

Software engineers working on the development of complex systems need to be able to look at a

particular project/program life cycle and be able to relate it back to the spectrum of life cycle

approaches above, and the simple life cycle stages and process relationships in a relevant

standard. Emerging lifecycle model generators such as the Incremental Commitment Model

include teachable decision tables that aid in tailoring these generic approaches to real problems.
77

Systems Engineering and Software Engineering Processes

System engineers work with stakeholders to identify and understand needs and constraints; and

to develop requirements and system architecture, and allocate (and negotiate reallocation of)

requirements to the hardware, software, and human elements of a system. In addition, system

engineers oversee and coordinate development of the system components; they also oversee

integration and verification of the components, system-level validation, and transition of the

system into the operational environment. System engineers thus provide technical leadership of

projects and programs that are concerned with developing complex systems.

Software engineers play a similar role for the software elements of a project, coordinating

software requirements, design, and testing. Software engineers will also contribute to the SE

activities and project decision-making. In larger projects, software and system engineers,

working closely together, perform the two disciplines. In smaller project teams, individuals with

both systems and software skills will be needed.

The coupling and iteration between SE, SwE, and project management can vary greatly for

different types of problems and business sectors. At one extreme, a project may need to follow a

highly sequential model of system design and software component development, with system

design being fixed and software requirements allocated by the systems engineers as an input to

software development. At the other extreme, the project may need to take a highly iterative

77 Boehm, B. and Lane, J.A., ―Process and Product Architectures and Practices for Achieving both Agility and High

Assurance,‖ Proceedings of 31st International Conference on Software Engineering, May 2009.

76

approach in which an individual or small team, with a mixture of systems, software, and other

skills, work with stakeholders to determine the best solution; explore software implementation

and operation issues through user involvement; and continue to evolve the solution to deal with a

changing environment through its life.

Figure 6 defined the high-level process outcomes associated with each life cycle stage, and stated

that this did not imply a one-to-one mapping between process and stages. Figure 7 is a graphical

representation of the relationship between process activities and life cycle stages.

Requirements

Analysis

System

Architecture

Integration
& Verification

Concept Development Production
Utilisation/

Support
Retirement

System

Implementation

Transition

& Validation

Use, Support

Disposal

Project

management

Lifecycle Stages

Activity

Figure 7. Life Cycle Activity Mapping (Adcock, 2009)

The lines on this diagram represent activity in each of the process areas over a simple life cycle.

The life cycle stages along the top of the diagram are purely illustrative, and not drawn to scale.

In a real project the Utilization/Support stages would likely be by far the longest part of the

lifecycle. Requirements Analysis has a large input during the concept stage, but requirements are

refined, reviewed, and reassessed over the rest of the life cycle. Similarly, Integration and

Verification (I&V) is conducted during the transition from Development to Production. This is

only possible if I&V issues, strategies, and risks are considered in earlier stages. Figure 7 is a

schematic representation of these process mappings, sometimes called a ―hump diagram.‖
78,

79

78 Kruchten, P., The Rational Unified Process: An Introduction (3rd edition), Addison Wesley, 2003.

77

The System Implementation line represents the hardware, software, human, and organizational

changes needed to realize a system change. SwE activities are needed across the whole system

life cycle, with the main software outcomes being achieved in the system development and

production stages. With the increasing role that software has in integrating systems, and the use

of COTS software and software services rather than custom-made code, software must be

considered in parallel with system processes. Thus, COTS characteristics might need to be

considered in deriving system requirements, making hardware design changes to solve software

design problems, or configuring and testing software dynamically during operations and

assessing the resulting system safety implications.

The following sections give a brief overview of the systems engineering technical processes

described in (Haskins, 2007), the INCOSE handbook. The structure and process descriptions in

the handbook are consistent with ISO/IEC 15288:2008 – Systems engineering – System life

cycle processes. This standard defines a set of high-level process outcomes and generic activities

that can be used as the basis for identifying the detailed activities needed within whichever life

cycle framework is selected for a given problem and commercial context. Within this generic

framework there is scope to apply specific tools and techniques taken from other standards or

development methodologies as needed. The INCOSE handbook also gives guidance on how to

tailor the lifecycle and process definitions to an organization, dealing with any conflicts with

existing policies, procedures, and standards.
80

Software engineers should be able to relate these high-level processes to a range of project

lifecycle approaches within the spectrum described above. They should understand that the

framework is not a one-size-fits-all, sequential process. Very few problems start with a clear and

unchallenged customer need. Effective systems cannot be produced based on pre-specified

requirements for software elements within the constraints of a top-down system design. The

integration and testing of software and system elements, including human elements, is generally

done iteratively with a strong stakeholder input as part of an incremental buildup of user benefits.

C.2.3. Requirements

The INCOSE handbook contains two requirements processes. One is stakeholder-focused, and

defines need and measures of effectiveness. The second deals with one or more levels of

technical requirements for a chosen solution. These processes are closely linked to the

Architectural Design process in C.2.4.

79 Boehm, B., and Lane, J.A., ―Guide for Using the Incremental Commitment Model (ICM) for Systems Engineering

of DoD Projects, Version 0.5,‖ USC-CSSE Technical Report 2009-500, March, 2009,

http://csse.usc.edu/csse/TECHRPTS/

80 Fairley, R.E., Managing and Leading Software Projects, Wiley-IEEE Computer Society, 2009.

78

Stakeholder Requirements

The purpose of the Stakeholder Requirements Definition Process is to elicit, negotiate,

document, and maintain stakeholders’ requirements for the System of Interest within a defined

environment. This is achieved by developing system views that concentrate on system purpose

and behavior and are described in the context of the operational environment and conditions.

The outputs of this process consist of formally documented and approved stakeholder

requirements that will govern the project. These will include required system capabilities,

functions and/or services; quality standards; cost and schedule constraints; concept of operations

and support. It is important to understand that stakeholder requirements do not follow the

traditional Webster‘s dictionary definition of requirements as ―something claimed or asked for

by right and authority.‖ Early stakeholder requirements are generally negotiable statements of

wants, needs, goals, and objectives, which are refined and agreed on as our understanding of

problems and potential solutions matures.

The activities to achieve the outcomes of this process across the life cycle fall into three groups:

 Capturing requirements, through a process of working with users and other stakeholders
to generate a ―context of use,‖ and from it, extract needs and constraints.

 Structuring of the needs and constraints into a statement of stakeholder requirements.
Documenting, reviewing, configuring, and sharing the requirements as needed.

 Using the requirements to support relevant system decisions across the life cycle.

The stakeholder requirements will form the basis for validating that a system service meets the

needs of stakeholders. The process outputs should document the agreed context of use and

include measures of effectiveness that will be used for assessing the realized system and enabling

systems.

The terms ―Stakeholder Requirements‖ and ―context of use‖ are generic terms used in the

INCOSE handbook. Other standards use similar ideas, such as ―Operational Requirements,‖

―User Requirements,‖ ―Concept of Operations,‖ ―Concept of Employment,‖ and so forth.

There may be a number of software engineering stakeholders considered in generating

stakeholder requirements. This may include representatives of legacy software systems within

the wider SoI or understanding of the implication of the possible software issues raised by how

the problem is framed.

Requirements Analysis

The purpose of the Requirements Analysis Process is to review, assess, prioritize, and balance

all stakeholder and derived requirements (including constraints); and to transform those

requirements into a functional and technical view of a system description capable of meeting the

stakeholders’ needs. This view can be expressed in a specification, set of drawings or any other

means that provides effective communication.

79

The output of Requirements Analysis is a technical description of characteristics the future

system must have in order to meet Stakeholder Requirements, which will be evolved into one or

more specific solutions in subsequent development processes. The project team derives

additional requirements resulting from analysis of the Stakeholder Requirements as required to

meet project and design constraints; defines the functional boundaries for the system to be

developed; and identifies and documents any interfaces and information exchange requirements

with external systems. The total set of requirements encompasses the functional, performance,

non-functional requirements, and the architectural constraints.

The activities to complete this process include requirements capture and structuring as before.

The approaches, methods and tools to achieve this will be very similar to those defined in the

software requirements section.

System requirements are a basis for verifying compliance of the realized system with its

technical description. The process outputs should document relevant standards and interfaces

through life constraints, utilization environment, and verification criteria.

Again, the requirements analysis process is a generic one that can be mapped onto any process

that deals with requirements derived from solution choices. These requirements are also referred

to as ―Technical Requirements,‖ ―System Specifications,‖ and so forth.

If the requirements are going to be used as the basis of an internal or external contract to develop

a system within a given set of cost, schedule, safety, security, or other constraints, the

Requirements Analysis activity should provide evidence that a system can be developed to

satisfy such constraints.

C.2.4. System Design

System design is concerned with identifying the major hardware and software components of a

system that will provide the features and quality attributes of the system in conjunction with the

manual operations to be performed by humans. In addition, the interfaces among the hardware

and software components and interfaces to and from the operational environment must be

specified.

The INCOSE handbook includes an Architectural Design Process, which describes a system

solution as a collection of manageable sub-problems, and an Implementation Process, which is

really a placeholder for the relevant hardware, software, or human system design standards, as

needed. The point at which system design identifies one or more bounded software-intensive

system elements forms one of the key relationships between systems and software engineering.

The overall system architecture also has a key role in the other key relationship between the two

disciplines, the integration and verification of system components.

80

Architectural Design

The purpose of Architectural Design is to synthesize a solution that satisfies system

requirements. To do this we define areas of solution expressed as a set of separate problems of

manageable, conceptual, and, ultimately, realizable proportions.

The result of this process is an architectural design that is placed under configuration

management. This baseline includes:

 System element detailed descriptions with documented justification for concept

selections

 Requirements assigned to system elements and documented

 Interface requirements and a plan for system integration and verification strategy.

Architectural design forms the link between problem understanding, stakeholder value, and a

coherent set of realizable solution elements (see Trade Studies below). The process may involve

the generation, evaluation, and selection of solution options. The process outputs should

document the evaluation process and the resulting logical system architecture; partitioning of

system requirements to solution elements; and interfaces and interactions between elements,

integration, and verification plans and all relevant decisions to reach an agreed design baseline.

Again, if the architecture is to be used as a basis for system development and evolution within a

set of resource constraints and performance requirements, the design deliverables should include

evidence that a system developed to the specified architecture would be buildable within the

resource constraints, and would satisfy the performance and evolution growth requirements.

As discussed in Section 6.5, the overlap between system design and software development is a

critical one. The linear system development model, in which software components are bounded

and specified by the software engineer and then designed, delivered, and integrated, is

increasingly insufficient both for the generation of efficient software and the creation of flexible,

agile, and resilient systems. For most system lifecycles, we would expect the selection of

software components to be a critical driver on the system architecture, with the overall system

design, software allocation and high-level software design decisions being may in parallel by a

multi-skilled design team.

Implementation

The purpose of the Implementation Process is to design, create, or fabricate a system element

conforming to that element’s detailed description. The element is constructed employing

appropriate technology and industry practices.

Initial development of requirements and identification of the major system components are

accomplished in an iterative manner. Sub-system requirements are then allocated to the major

hardware and software components and to the human elements. These requirements are typically

at a high level and must be iterated and refined into derived requirements that provide detailed

81

specifications for the hardware and software components and detailed qualifications for the

human operators.

Hardware and software components can be obtained in a variety of ways: by purchase, by lease,

by building in-house, by modifying existing components, by contracting, and (in the case of

software) from open sources. In some cases the customer may provide components that are to be

incorporated into the systems, either as-is or after modification.

The human elements of a system can be obtained by recruiting and training, or by retraining

current employees of the acquiring organization.

Trade Studies

Trade study describes a process for comparing the appropriateness of different technical

solutions. The characteristics of each option are traded against each other. Once a best

alternative has been identified, the stakeholders in the decision will want to know how sensitive

the recommended selection is to differently evaluated criteria or to different estimates of the

alternatives’ characteristics—perhaps a different best alternative would result. Therefore, a

good trade study provides a disciplined process that justifies the selected approach, and includes

sensitivity analysis.

Systems engineers may use trade studies to support any of the key decisions discussed above.

This can include helping to identify the problems most important to a stakeholder; to explore

their value propositions; and to identify and plan for solutions to deliver those values.

Conflicts among stakeholders‘ value propositions are frequent, and are built into the various

stakeholder roles. Users would like many system capabilities, right away, with high levels of

performance, reliability, and ease of use, with the option of frequently changing their minds

about features and priorities. Acquirers have limited financial and other resources for developing

and operating all the desired capabilities, and would like to keep the acquisition well defined and

stable. Developers have limited capabilities to develop, verify, validate, and document large

amounts of software on limited budgets and schedules. They would prefer to use their own tools

and reusable components, even though these may be incompatible with other developers and the

users‘ other applications. Maintainers want well tested and documented systems, with extensive

support for backup, recovery, debugging, and version control, and systems and tools delivered

that are compatible with the ones they are already maintaining. Other success-critical

stakeholders such as the testers, interoperators, venture capitalists, administrators, and the

general public may add further potential conflicts.

Systems engineers need the knowledge, skills, and abilities to collaborate with others to identify,

analyze, and prioritize the potential conflicts, risks, and uncertainties among these stakeholder

value propositions. They need to identify and evaluate options for resolving the conflicts, risks,

and uncertainties, including development and evaluation of candidate architectures, processes,

and operational concepts; assessment of reused, purchased, or subscribed-to services; and

analysis of tradeoffs among various combinations of options. If none of the available options

82

satisfy all of the stakeholders‘ value propositions, they need to communicate this to the

stakeholders and help manage their expectations and prioritize capabilities to achieve a mutually

satisfactory solution, or at least an initial operational capability achievable within the currently

available resources. Increasingly, these skills involve a balance of satisficing and multi-criterion

optimizing among multiple stakeholders rather than optimizing around a single criterion such as

performance.

Trade-studies are also be used to identify overall solution concepts and key solution elements.

One critical part of this is deciding on which system functions to allocate to hardware, software,

and human system elements, and to understand the full cost and risk implications of design

choices. These system trades will require software engineering knowledge and skills to help

explore feasible solution directions and to understand the issues and constraints of different types

of software-enabled solutions.

C.2.5. Integration and Verification (I&V)

The processes of system I&V take implemented and tested system elements and combine them to

realize the SoI. These processes are strongly linked to the equivalent software processes, since

some elements of software assessment may only be possible when combined with other system

elements. For many software-intensive systems, a continuous integration approach, such as daily

or weekly builds of partial unit-tested components, has become preferable to waiting for fully-

realized components to be individually developed and unit-tested before beginning integration

and test.

Both processes have a strong ―through life‖ aspect, with issues, strategies, and plans for both

being an essential part of the requirements and architecture process outcomes. Both may also

require the creation of relevant enabling systems, facilities, instrumentation, information

repositories, and so forth.

The relevant Planning and Configuration Management process to handle this will be very similar

to that described in the CBOK.

Integration

The purpose of the Integration Process is to realize the System of Interest by progressively

combining system elements in accordance with the architectural design requirements and the

integration strategy.

This process confirms that all boundaries between system elements have been correctly

identified and described, including physical, logical, and human-system interfaces and

interactions (physical, sensory, and cognitive), and confirms that all functional, performance, and

design requirements and constraints are satisfied. If a project is taking an incremental approach

to satisfying stakeholder needs, all system configurations need to be tested.

83

Verification

The purpose of the Verification Process is to confirm that all requirements are fulfilled by the

system elements and eventual System of Interest—that is, that the system has been built right.

This process establishes the procedure for taking remedial actions in the event of non-

conformance.

The process confirms that all elements of the SoIwhen working together perform their intended

functions and meet the performance requirements allocated to them.

C.2.6. Transition and Validation

The processes of System Transition and Validation are more closely related to the satisfaction of

stakeholder needs.

As above, these processes will have a strong ―through life‖ aspect, with much of their impact

being in the project strategy and planning activities. These processes deal with external project

issues such as links to other projects, availability of customer-owned facilities, or strategies for

fitting system release into operational tempo.

The conduct of both Transition and Validation in a particular sector will be constrained by the

regulatory frameworks and business practices of that domain. This requires systems engineers

and project managers to ensure that any technical activities needed can be properly managed and

synchronized with non-technical deliverables.

Transition

The purpose of the Transition Process is to transfer custody of the system and responsibility for

system support from one organizational entity to another. This includes (but is not limited to)

transfer of custody from the development team to the organizations that will subsequently

operate and support the system. Successful conclusion of the Transition Process typically marks

the beginning of the Utilization Stage of the System of Interest.

The process installs a verified system in the operational environment along with relevant

enabling systems, such as operator training systems, as defined in the agreement. As part of this

process, the acquirer accepts that the system provides the specified capabilities in the intended

operational environment prior to allowing a change in control, ownership, and/or custody.

Validation

The purpose of the Validation Process is to confirm that the realized system complies with the

stakeholder requirements System validation is subject to approval by the project authority and

key stakeholders.

This process is invoked during the Stakeholders Requirements Definition Process to confirm that

the requirements properly reflect the stakeholder needs and to establish validation criteria—that

is, that the right system has been built. This process is also invoked during the Transition Process

to handle the acceptance activities.

84

C.2.7. Operation, Maintenance, and Disposal

The INCOSE handbook includes technical processes for system Operation, Maintenance, and

Disposal. Much like the Implementation process, these processes are a placeholder to recognize

that the system users and acquirers will need to have identified and acquired or created all of the

Enabling Systems Plans and Resources necessary for the Utilization and Disposal life cycle

stages. These processes also describe activities to ensure that systems engineers are aware of and

constrained by utilization issues during early lifecycle stages, and that they plan for and integrate

all enabling systems and external relationships across the system lifecycle. Recently, efforts have

been made to emphasize that Disposal includes the option of planning and preparing for

Recycling.

C.2.8. System Engineering of Software

Virtually all of the procedures and techniques of SE can be directly applied to software

development. Many people have commented that SwE has more in common with system

engineering than with other engineering disciplines. In both system and software development,

requirements must be defined, analyzed, and documented (or refined if allocated from system

requirements), a design specification must be synthesized, components must be implemented or

otherwise obtained, and V&V must be applied throughout the development or modification cycle

to ensure the feasibility of proceeding forward, and to find and fix defects in the stage where they

are inserted. Both rely on supporting disciplines such as configuration management and user

interface design. In some cases, SwE has contributed new approaches to SE: for example,

context diagrams, the Concept of Operations, use cases, activity diagrams, and object-oriented

design.

Software system engineers play the role of system engineers within the more limited context of

software development and modification: they work with users, customers, acquirers, and other

stakeholders to identify, analyze, and prioritize operational requirements; they translate

operational requirements into technical specifications; they identify the major software system

components and allocate requirements to them; they work with software component

specialists(e.g., the user interface, database, telecommunications, and algorithm specialists); they

work with specialists in disciplines such as safety, security, reliability, usability, configuration

management, and quality assurance; and they oversee delivery and installation of software

system elements.

It is evident that strong synergy exists between SE and SwE. Increasingly it is useful to think of a

software engineer as a systems engineer with a specialist skill in software, rather than as a

supplier of bounded software sub-systems. The strong relationship between the two disciplines

will become increasingly important as the needs and desires of modern society result in demands

for larger, more complex, and more dynamic information-intensive systems, for which software

is the preferred medium for adapting to rapid change.

85

C.3. Engineering Economics

Engineering Economics is about making engineering decisions in a business context
81

. It means

aligning technical decisions with the business goals of the organization. Decisions such as

―Should we use Extreme Programming or should we use Scrum on this project?‖ may be easy

decisions from a purely technical perspective, but those decisions can have serious implications

on the business viability of an engineering project and the resulting product.

C.3.1. Proposals

Making a business decision begins with the notion of a proposal. A proposal is a single, separate

option that is being considered. For example, carrying out a particular software development

project or not, or enhancing an existing program versus redeveloping that same software from

scratch. Each proposal represents a unit of choice—choose to carry out a proposal or choose not

to. The purpose of business decision-making is to decide, given the current business

circumstances, which proposals should be carried out and which should not.

C.3.2. Cash Flow

To make a meaningful business decision about any specific proposal, the proposal must be

evaluated from a business perspective. The concepts of cash flow instances and cash flow

streams are used to describe the business perspective of a proposal. A cash flow instance is a

specific amount of money flowing into or out of the organization at a specific time as a direct

result of some proposal.

The term cash flow stream refers to the set of cash flow instances, over time, which would be

caused by carrying out some given proposal. The cash flow stream is, in effect, the complete

financial picture of that proposal.

A cash flow diagram is a picture of a cash flow stream. The cash flow diagram provides the

reader a concise overview of the financial picture of that subject. Figure 8 shows an example

cash flow diagram for a proposal.

A cash flow diagram shows the cash flow stream in two dimensions: time runs horizontally, from

left to right, and amounts of money run vertically, up and down. Each cash flow instance is

drawn on the diagram at a left-to-right position relative to the timing of that cash flow after the

start of the proposal. The horizontal axis is divided into units of time that represent years,

months, weeks, or other unit as appropriate for the proposal being studied.

81 Tockey, S., Return on Software: Maximizing the Return on Your Software Investment (1st edition). Addison-

Wesley Professional, 2004.

86

Figure 8. A Cash-Flow Diagram

The Business Decision-Making Process

When evaluating the optimum solution to a problem, both technical issues and business criteria

(cost and income) must be considered when make such decisions. Figure 9 depicts a systematic

process that could be used to make such decisions.

Figure 9. A Business Decision-Making Process

The Time-Value of Money

A fundamental concept in business decision-making is that money has time-value: that is, the

value of money, because of economic conditions such as inflation, changes over time.

87

Equivalence

Due to the time-value of money, two or more cash flows are equivalent when they equal the

same amount of money at a common point in time. Comparing cash flows only makes sense

when they are expressed in the same time frame.

Bases for Comparison

A basis for comparison is a common frame of reference for comparing two or more cash flows. It

is a way of using equivalence to meaningfully compare proposals. Several bases of comparison

are available, including:

 Present worth

 Future worth

 Annual equivalent

 Internal rate of return (IRR)

 (Discounted) Payback period

Mutually Exclusive Alternatives

When an organization is considering carrying out multiple proposals at the same time, the

interrelationships and dependencies between proposals can make decision-making complex and

risky. Such a situation can be simplified by restructuring and reorganizing the set of proposals

into an alternate, but equivalent, set of mutually exclusive proposals.

C.3.3. For-Profit Decision-Making

For-Profit Decision Analysis

Figure 10 describes the process for identifying the best alternative from a set of mutually

exclusive alternatives for for-profit organizations.

88

Figure 10. A For-Profit Decision-Making Process

Minimum Attractive Rate of Return

An organization‘s minimum attractive rate of return (MARR) is the lowest IRR the organization

would consider to be a good investment. The MARR is a statement that an organization is

confident it can achieve at least that rate of return. It represents an organization‘s opportunity

cost for investments. An alternative proposal‘s present worth evaluated at the MARR shows how

much more or less (in present-day cash terms) that alternative is worth than investing at the

MARR.

Economic Life

When an organization chooses to invest in a particular proposal, money is bound to that

proposal—the money is called ―frozen assets.‖ The economic impact of frozen assets (―capital

recover with return‖) tends to start high and decrease over time. On the other hand, operating and

maintenance costs of elements associated with the proposal tend to start low but increase over

time. The total cost of owning and operating a proposal is the sum of those two costs. Early on,

frozen asset costs dominate, and later the operating and maintenance costs dominate. There is a

point in time where the sum of the costs is minimized—the economic life, or minimum cost

lifetime.

Planning Horizon

The planning horizon, also known as the study period, is the consistent time frame over which

proposals are considered. Effects such as economic life and the time frame over which

reasonable estimates can be made must be factored into establishing a planning horizon. Once

89

the planning horizon is established, several techniques are available for placing proposals with

different life spans into the planning horizon.

Replacement and Retirement Decisions

A replacement decision is a special case of for-profit decision analysis that happens when an

organization already has a particular asset and they are considering replacing it with something

else (for instance, replacing a legacy software system with a new application). Replacement

decisions use the same decision process but there are additional challenges such as sunk cost and

salvage value. A retirement decision is concerned with ceasing a current activity, such as when a

software company decides to cease selling a software product, or a hardware manufacturer

decides to stop building and selling a particular model of computer.

Inflation

Inflation describes long-term trends in prices. If the planning horizon of a business decision is

longer than a few years, or if the inflation rate is significant, it can cause noticeable changes in

the value of a proposal.

Depreciation

Depreciation addresses how investments in capital assets are charged against income over

several years. Depreciation is an important part of after-tax cash flows, which is critical to

accurately addressing income taxes. Software itself typically isn‘t depreciated, but if a proposal

has a planning horizon longer than one year, the proposal involves capital assets, and there is a

need to accurately reflect the effects of income taxes in the decision analysis, then depreciation is

an important analysis factor. Depreciation is also useful when comparing software proposals

with non-software proposals.

General Accounting and Cost Accounting

The primary role of general accounting is to measure a company‘s actual financial performance.

Cost accounting is a specialized branch of general accounting that is used to find the cost of

providing the products and services that were sold. Accounting systems are also a rich source of

historical data for estimating.

Income Taxes

In the U.S., the federal government and most states charge income taxes, which combined can

amount to between 20% and 40% of a corporation‘s net profit. In some areas, federal, state, and

local income taxes can add up to more than 50%. Across the globe, each country establishes its

own tax policies. Income tax accounting must be part of business decisions about proposal

acceptance and profitability.

90

C.3.4. Not-for-Profit Decision-Making

The for-profit decision techniques discussed in Section C3.3 do not apply when an organization

does not have a profit goal, which is the case in government and in non-profit organizations. In

these situations a different set of decision techniques are needed.

Benefit-Cost Analysis

Benefit-cost analysis is a widely used method for evaluating proposals in non-profit

organizations. Any proposal with a benefit-cost ratio of less than 1.0 can usually be rejected

without any further analysis because it would cost more than it would benefit.

Cost-Effectiveness Analysis

Cost-effectiveness analysis shares similar philosophy and methodology with benefit-cost

analysis. There are two versions of cost-effectiveness analysis. The fixed cost version maximizes

the benefit given some upper bound on cost. The fixed effectiveness version minimizes the cost

needed to achieve a fixed goal.

C.3.5. Present Economy

Break-Even Analysis

Given functions describing the costs of two or more proposals, break-even analysis helps in

choosing between them by identifying points where the cost functions are equal. Below a break-

even point, one proposal is preferred and above that point, the other is preferred.

Optimization Analysis

The typical use of optimization analysis is to study a cost function over a range of values to find

the point where overall performance is optimal. Software‘s classic space-time tradeoff is an

example of optimization (e.g., an algorithm that runs faster will typically use more memory).

C.3.6. Estimation, Risk, and Uncertainty

Estimation Techniques

Four families of estimation techniques exist:

 Expert judgment

 Analogy

 Decomposition

 Statistical (or parametric) methods

Addressing Uncertainty

Estimates are inherently uncertain and that uncertainty should be addressed in business

decisions. Techniques for addressing uncertainty include:

 Consider ranges of estimates

91

 Sensitivity analysis

 Delay final decisions

Decisions under Risk

Decisions under risk techniques are used when the decision-maker can assign probabilities to the

different possible outcomes. The specific techniques include:

 Expected value decision-making

 Expectation variance and decision-making

 Monte Carlo analysis

 Decision trees

 Expected value of perfect information

Decisions under Uncertainty

Decisions under uncertainty techniques are used when the decision-maker cannot assign

probabilities to the different possible outcomes. The specific techniques include:
82

 Laplace Rule

 Maximin Rule

 Maximax Rule

 Hurwicz Rule

 Minimax Regret Rule

C.3.7. Multiple Attribute Decisions

Most of the topics discussed earlier in Section C.3 are used to make decisions based on a single

decision criterion, money. The alternative with the best present worth, the best incremental IRR,

the best incremental benefit-cost ratio, and so forth, is the one selected. Aside from technical

feasibility, money is almost always the most important decision criterion, but it is not always the

only one. Quite often there are other criteria, other ―attributes,‖ that need to be considered and

those attributes can‘t be cast in terms of money. Multiple attribute decision techniques allow

other, non-financial criteria to be factored into the decision.

Value and Measurement Scales

In an abstract sense, the decision making process—be it a financial decision or not—is about

maximizing value. The alternative that maximizes total value is chosen (e.g., whether an item is

a ―name brand‖ or not can significantly affect its perceived value). Relevant values that cannot

82 Jordaan, I., Decisions under Uncertainty: Probabilistic Analysis for Engineering Decisions, Cambridge

University Press, 2005.

92

be expressed in terms of money need to be measured. A number of measurement scales are

available and the scale chosen can limit the kinds of manipulations allowed by that measurement:

 Nominal scales

 Ordinal scales

 Interval scales

 Ratio scales

Compensatory and Non-Compensatory Techniques

There are two families of multiple attribute decision techniques, which differ in how they use the

attributes in the decision. One family is the ―compensatory,‖ or single-dimensioned, techniques.

This family collapses all of the attributes onto a single figure of merit. The family is called

compensatory because, for any given alternative, a lower score in one attribute can be

compensated by—or traded off against—a higher score in other attributes. The compensatory

techniques include:

 Non-dimensional scaling

 Additive Weighting

 Analytic Hierarchy Process (AHP)

In contrast, the other family is the ―non-compensatory,‖ or fully dimensioned, techniques. This

family does not allow tradeoffs among the attributes. Each attribute is treated as a separate entity

in the decision process. The non-compensatory techniques include:

 Dominance

 Satisficing

 Lexicography

93

Appendix D. Security in the Software Life Cycle

Security has become a widespread and significant issue in the development of software systems.

Although the current SWEBOK does not have a specific KA or section devoted to software

security, it does have numerous references, throughout the KA chapters, to methods and

practices that support the development of secure software systems: requirements, design,

construction, testing, maintenance, and so forth. The 2010 revision of the SWEBOK will

strengthen the discussion of security throughout the SWEBOK and add a supplementary KA on

Software Security. Table 6 points to areas and locations, within the SWEBOK, where security is

a relevant issue. The table is not a complete specification of security issues and their relation to

the SWEBOK, but rather is intended to illustrate how the SWEBOK KAs are and will be related

to security curriculum issues. Additional security issues could be included: further elaboration of

the KAs listed and additional KAs such as in maintenance, configuration management, and

quality.

Curriculum-related security issues are explored more fully in (Redwine, 2007)
83

, which provides

a comprehensive guide to software security issues and is similar in style and nature to the

SWEBOK. Redwine provides detailed guidance to those who wish to design a GSwE2009

curriculum that focuses on software security; as it states, ―The primary audiences for this guide

are educators and trainers who can use this guide to help identify both appropriate curricular

content and references that detail it.‖ In Table 6, the column headed ―Security Topics‖ uses

topics cited in (Redwine, 2007).

Table 6. Software Security and the SWEBOK

Knowledge Area Security Topics SWEBOK

Requirements

Engineering

Description and classification of ―security requirements‖ Chapter 2: Sections 1.2, 4.1

Analysis of security-related needs and expectations
Chapter 2: Sections 3.2, 4.2,

4.3

Validation of security requirements
Chapter 2: Sections 6.1, 6.2,

6.3

Software Design
Analysis of security data flows and fault tolerance Chapter 3: Section 2.4, 5.2

Invocation and utilization of security functionality Chapter 3: Section 2.2

83 Redwine, S. T. Jr. (Ed.), Software Assurance: A Curriculum Guide to the Common Body of Knowledge to

Produce, Acquire, and Sustain Secure Software, Draft Version 1.2. U.S. Department of Homeland Security, 2007,

https://buildsecurityin.us-cert.gov/daisy/bsi/940-BSI/version/default/part/AttachmentData/data/Curriculum

GuideToTheCBK.pdf

94

Knowledge Area Security Topics SWEBOK

Distribution and allocation of software functionality Chapter 3: Sections 2.3, 3.1

Analysis of design vulnerability Chapter 3: Section 4.2

Design review of security attributes Chapter 3: Section 4.2

Software

Construction

Selection of construction tools and usage standards Chapter 4: Sections 1.2, 3.2

Usage of security best design and coding practices, with

knowledge of common vulnerabilities

Chapter 4: Sections 3.1, 3.3,

3.4, 3.5

Performance of security-oriented review and testing Chapter 4: Sections 3.2, 3.5

Testing

Description of security testing levels Chapter 5: Section 2.1

Testing security functionality
Chapter 5: Sections 3.2, 3.6,

3.7

Attack and penetration testing
Chapter 5: Sections 3.4, 3.6,

3.7

Classification of security defects Chapter 5: Section 4.1.2

95

Appendix E. GSWE2009 Outcomes CBOK Mapping

A mapping of the ten GSwE2009 Outcomes to the CBOK is shown in Table 7. The mapping

clarifies where CBOK alone falls short of achieving the outcomes, highlighting the importance

of the 50% of the curriculum that is not covered by CBOK. A course that addresses CBOK

material could include additional material, concepts, case studies, pedagogical methods, and

other facets that substantially address an outcome. However, those additional facets are program-

specific and not inherent in the CBOK content. Each outcome is rated high, medium, low, or

none for how well the CBOK addresses the outcome. For example, a rating of high would mean

that the CBOK—with its designated Bloom levels—fully supports the outcome; medium, low,

and none describe decreasing levels of support of the outcome within CBOK. These ratings are

subjective, but are substantiated by the observations column in the table.

Table 7. GSwE2009 Outcomes-CBOK Mapping Table

Outcomes
Supporting

Knowledge Areas

Supporting Topics

in Knowledge

Areas

How Well

CBOK

Addresses

Outcome

Observations

CBOK All All High
By definition, the CBOK

addresses this outcome fully.

DOMAIN All All Low

There is no requirement in the

CBOK to learn any domain in

depth. However, almost any

pedagogical approach to teaching

the CBOK will cover at least one

domain to a minimal level of

proficiency.

DEPTH Any All Medium

The CBOK does not require

Bloom‘s Synthesis level.
However, the CBOK coverage of

such areas as Requirements

Analysis to the AN level takes a

student significantly towards the

Synthesis level.

ETHICS

A. Ethics and

Professional

Conduct

All High

The Ethical and Professional

Conduct KA specifically

addresses this outcome.

96

Outcomes
Supporting

Knowledge Areas

Supporting Topics

in Knowledge

Areas

How Well

CBOK

Addresses

Outcome

Observations

SYS ENG

Primarily B. System

Engineering, but also

aspects of the other
KAs, especially A.

Ethics and

Professional

Conduct, C.

Requirements

Engineering, F.

Testing, H.

Configuration

Management. and I.

Software

Engineering

Management

A.1. Social, legal,

and historical issues

directly supports

A.2. Codes of

ethics and

professional

conduct is directly

supporting

B, C, F, and H

topics at least touch

on SE

I.3. Risk

Management
directly supports

Medium

Systems Engineering proficiency

is required at the Bloom C and

AP levels in Table 2. There are

many opportunities to incorporate

SE into courses when teaching

requirements, architecture, and

other CBOK topics.

TEAM

A. Ethics and

Professional

Conduct

I. Software

Engineering

Management

Others as needed to
demonstrate

leadership in a

technical area

A.1. Social, legal,

and historical issues

A.2. Codes of

ethics and

professional

conduct

I.3. Software
Project

Organization and

Enactment

Medium

Working in teams is

pedagogically straightforward and

will typically be covered in

courses that teach CBOK

material. However, teaching

about ―multinational

communication and

geographically distributed‖

teams will be much more

challenging for many programs.

In order to ―lead in one area of

project development‖ the student

will need to master that area

beyond the CBOK recommended

level.

97

Outcomes
Supporting

Knowledge Areas

Supporting Topics

in Knowledge

Areas

How Well

CBOK

Addresses

Outcome

Observations

RECONCILE

A. Ethics and

Professional

Conduct

C. Requirements

Engineering

I. Software

Engineering

Management

A.1. Social, legal,

and historical issues

A.2. Codes of
ethics and

professional

conduct

C.3. Initiation and

Scope Definition

I.1. Software

Project Planning

I.2. Risk

Management
I.3. Software

Project

Organization and

Enactment

I.7. Engineering

Economics

Medium

There is no KA or topic

specifically tied to ―reconcile

conflicting project objectives,

finding acceptable compromises
within limitations of cost, time,

knowledge, risk, existing systems,

and organizations.‖ However,

aspects of Ethics, Requirements

Engineering and Software

Engineering Management should

cover this in part.

PERSPECTIVE

C. Requirements

Engineering

I. Software
Engineering

Management

C.3. Initiation and

Scope Definition

C.4. Requirements

Elicitation

I.3. Software

Project

Organization and

Enactment

Medium
The capstone project and related
presentations reinforce

communication and leadership.

LEARN None None Low

No specific KA or topic related to

this outcome. The capstone and

class project could cover aspects

related to learning new models

and technologies.

TECH None None Low

No KA or topic related to this

outcome. Elective courses,

capstone project and class
projects could cover analyzing

and testing new technologies.

98

This page intentionally left blank.

99

References

ACM Council, ACM Code of Ethics and Professional Conduct, October 1992, http://www.acm.org/

constitution/code.html.

Shackelford, R., et al., Computing Curricula: 2005 Overview Report, ACM, 2006.

http://www.acm.org/education/curricula-recommendations.

ACM/IEEE-CS Joint Task Force on Computing Curricula, Software Engineering 2004: Curriculum

Guidelines for Undergraduate Degree Programs in Software Engineering, August 2004,

http://www.acm.org/education/curricula-recommendations.

ACM/IEEE-CS Joint Task Force on Software Engineering Ethics and Professional Practices, Software

Engineering Code of Ethics and Professional Practice, Version 5.2, 1999,

http://www.acm.org/about/se-code/.

Ardis, M. and Ford, G., SEI Report on Graduate Software Engineering Education, CMU/SEI 89-TR-21,

Software Engineering Institute, Carnegie Mellon University, June 1989.

Australian Computer Society, ―ACS Code of Ethics‖ website, 2008, http://www.acs.org.au/index.

cfm?action=show&conID=200509022322219027.

Joint Declaration of the European Ministers of Education, ― The European Higher Education Area,‖

Convened in Bologna on June 19, 1999.

Beck, K. and Andres, C., Extreme Programming Explained: Embrace Change (2
nd

 edition), Addison-

Wesley Professional, 2004.

Bloom, B. S. (Ed.), Taxonomy of educational objectives: The classification of Educational goals:

Handbook I, cognitive domain, Longmans, 1956.

Boehm, B., Software Engineering Economics, Prentice Hall, 1981.

Boehm, B., "Anchoring the Software Process", IEEE Software, July 1996, 73-82.

Boehm, B., and Lane, J.A., ―Guide for Using the Incremental Commitment Model (ICM) for Systems

Engineering of DoD Projects, Version 0.5,‖ USC-CSSE Technical Report 2009-500, March 2009,

http://csse.usc.edu/csse/TECHRPTS/.

Boehm, B, and Lane, J. A., ―Process and Product Architectures and Practices for Achieving both Agility

and High Assurance,‖ Proceedings of 31st International Conference on Software Engineering,

May 2009.

Bott, F., et al., Professional Issues in Software Engineering (3
rd

 edition), Taylor & Francis, 2001.

Bourque, P., SWEBOK Refresh and Continuous Update: A Call for Feedback and Participation,

Conference on Software Engineering Education & Training (CSEET), 2009, pp. 288-289.

100

British Computer Society, Code of Conduct & Code of Good Practice, 2004 and 2006,

http://www.bcs.org/server. php?show=nav.10967.

Brooks, F., The Mythical Man-Month: Essays on Software Engineering (2nd ed.), Addison-Wesley
Professional, 1995.

Checkland, P., Systems Thinking, Systems Practice (2nd ed.). Wiley, 1999.

Chrissis, M. B., Konrad, M., and Shrum, S., CMMI
®
: Guidelines for Process Integration and Product

Improvement (1
st

edition), Addison-Wesley Professional, 2003.

CMMI Product Team, Capability Maturity Model, Version 1.1, CMMI for Software Engineering, Staged

Representation, CMU/SEI-2002-TR-029. Software Engineering Institute, Carnegie Mellon

University, August 2002.

Paulk, M., et al., Software Capability Maturity Model, Version 1.1, Software Engineering Institute,

Carnegie Mellon University, Pittsburgh, PA, 1993.

Computer Society India, CSI Code of Ethics, 2008. http://www.csi-india.org/code-ethics.

Cusumano, M., et al., "Software Development Worldwide: The State of the Practice", IEEE Software,

November/December 2003.

Dijkstra, E., "Software Engineering: As It Should Be", conference paper, International Conference on

Software Engineering 4, September 1979, 442-448. See also EWD 791 at

http://www.cs.utexas/users/EWD.

European Commission, Education & Training, ―European Credit Transfer and Accumulation System

(ECTS)‖ website. http://ec.europa.eu/education/programmes/socrates/ects/index_en.html#1

Fairley, R. E., ―A Post-Mortem Analysis of the Software Engineering Programs at Wang Institute of

Graduate Studies,‖ Issues in Software Engineering Education, Springer Verlag, 1988.

Fairley, R. E., Managing and Leading Software Projects. Wiley-IEEE Computer Society, 2009.

Flood, R. L. and Carson, E.R., Dealing with Complexity (2
nd

 edition). Plenum Press, 1993.

Ford, G. and Gibbs, N. E., A Mature Profession of Software Engineering, CMU/SEI-96-TR-004,

Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, 1996.

Ford, G., SEI Report on Graduate Software Engineering Education, CMU/SEI 91-TR-002, Software

Engineering Institute, Carnegie Mellon University, April 1991.

Forrester, J., "Learning through system dynamics as preparation for the 21st century", Keynote address

for the Systems Thinking and Dynamic Modeling Conference for K-12 Education, 1994.

GAO, Defense Acquisitions: Assessment of Selected Major Weapons Programs, U.S. Government

Accountability Office, GAO-08-467SP, March 2008.

GAO, Information Technology: Inconsistent Software Acquisition Processes at the Defense Logistics

Agency Increase Project Risks, U.S. Government Accountability Office, GAO-02-9, January

2002.

101

GAO, Information Security: Agencies Face Challenges in Implementing Effective Software Patch

Management Processes, U.S. Government Accountability Office, GAO-04-816T, June 2004.

Glass, R. L., Computing Calamities: Monumental Computing Disasters, Prentice Hall Professional

Technical Reference, 1998.

Glass, R. L., Facts and Fallacies of Software Engineering, Pearson Education, 2002.

Glass, R. L., Software Runaways: Monumental Software Disasters, Prentice Hall Professional Technical

Reference, 1997.

Haskins, C. (Ed.), INCOSE Systems Engineering Handbook, Version 3.1, INCOSE-TP-2003-002-03.1,

August 2007.

Huitt, W. (2006), "The cognitive system", Educational Psychology Interactive, Valdosta, GA: Valdosta

State University. Retrieved May 22, 2008 from

http://chiron.valdosta.edu/whuitt/col/cogsys/cogsys.html.

IEEE STD 610.12-1990, IEEE Standard Glossary of Software Engineering Terminology, IEEE Computer

Society, 1990.

INCOSE, Guide to Systems Engineering Body of Knowledge, International Council on Systems

Engineering, 2004.

ISO (International Standards Organization), Standard for Information Technology – Software Life Cycle

Processe,. ISO/IEC 12207, 1995.

ISO (International Standards Organization), Systems and Software Engineering – System Life Cycle

Processes. ISO/IEC 15288, 2008.

Jain, R., and Verma, D., A Report on Curriculum Content for a Graduate Program in Systems

Engineering: A Proposed Framework. INCOSE International Symposium, 2007.

Jones, C., "Variations in Software Development Practices", IEEE Software 20(6), November/December

2003, 22-27.

Jordaan, I., Decisions under Uncertainty: Probabilistic Analysis for Engineering Decisions, Cambridge

University Press, 2005.

Kaner, C., ―Issues in Commercial Law of Interest to Software Engineering Educators,‖ tutorial session at

the Conference on Software Engineering Education & Training (CSEE&T), February 2002.

Kemper, J. D., and Sanders, B. R., Engineers and Their Profession (5th Ed.), Oxford University Press,

2000.

Koskela, L., and Howell, L., "The Underlying Theory of Project Management is Obsolete", Proceedings

of the 2002 PMI Research Conference, 2002, 293-302.

Kroll, P. and Kruchten, P., The Rational Unified Process Made Easy: A Practitioner’s Guide to the RUP,

Addison-Wesley Professional, 2003.

102

Kruchten, P., The Rational Unified Process: An Introduction (3rd edition), Addison Wesley Professional,

2003.

Leveson, N. G., Safeware: Systems Safety and Computers, Addison-Wesley Professional, 1995.

Leveson, N. G., "The Role of Software in Spacecraft Accidents", AIAA Journal of Spacecraft and

Rockets, 41(4), July 2004.

Loui M.C. and Miller, K.W., "Ethics and Professional Responsibility in Computing", in Encyclopedia of

Computer Science and Engineering, edited by Benjamin Wah, Wiley, 2009.

Maier, M. W, ―System and Software Architecture Reconciliation,‖ Systems Engineering, 9(2), Summer

2006, 146-159.

Moore, J. W., The Road Map to Software Engineering: A Standards-Based Guide, Wiley-IEEE Computer

Society, 2006.

Project Management Institute, A Guide to the Project Management Body of Knowledge (PMBOK
®

Guide), 2006.

Pyster, A., Turner, R., Henry, D., Lasfer, K., Bernstein, L. and Baldwin, K., ―The Current State of

Software Engineering Master‘s Degree Programs,‖ Conference on Software Engineering

Education and Training, 2008, 103-109.

Pyster, A., Lasfer, K., Turner, R., Bernstein, L. and Henry, D., ―Master‘s Degrees in Software

Engineering: An Analysis of 28 University Programs,‖ IEEE Software, September-October 2009,

94-101.

Redwine, S. T., Jr. (Ed), Software Assurance: A Curriculum Guide to the Common Body of Knowledge to

Produce, Acquire, and Sustain Secure Software, Draft Version 1.2. U.S. Department of

Homeland Security, 2007. https://buildsecurityin.us-cert.gov/daisy/bsi/940-BSI/version/default/

part/AttachmentData/data/CurriculumGuideToTheCBK.pdf

Royce, W. E., Software Project Management: A Unified Framewok, Addison-Wesley Professional, 1998.

Senge, P., The Fifth Discipline: The Art and Practice of the Learning Organization, Doubleday, 2006.

Shaw, M. (Ed.), Software Engineering for the 21st Century: A Basis for Rethinking the Curriculum,

Technical Report CMU-ISRI-05-108, Carnegie Mellon University Institute for Software

Research, March 2005.

Shaw, M., ―Prospects for an Engineering Discipline of Software,‖ IEEE Software, 7(6), November 1990,

15-24.

Standish Group, Unfinished Voyages,
http://www.standishgroup.com/sample_research/unfinished_voyages_1.php, October 19, 2005.

Sterman, J., Business Dynamics: Systems Thinking and Modeling for a Complex World. McGraw-

Hill/Irwin, 2000.

103

SWEBOK, Guide to the Software Engineering Body of Knowledge, P. Bourque and R. Dupuis (Eds.).

IEEE Computer Society Press, 2004.

Tavani, H. T., Ethics & Technology: Ethical Issues in an Age of Information and Communication

Technology, Wiley, 2003.

Thompson, J.B., "Perspectives on Software Engineering Professionalism", Wiley Encyclopedia of

Computer Science and Engineering, edited by Benjamin Wah, Wiley, 2009.

Tockey, S., Return on Software: Maximizing the Return on Your Software Investment (1
st
 edition).

Addison-Wesley, 2004.

Uniform Computer Information Transactions Act. National Conference of Commissioners on Uniform

State Laws, 2001.

U.S. Department of Defense, MIL-STD-1521B: Technical Reviews and Audits for Systems, Equipments,
and Computer Software, 1985.

U.S. Department of Defense, DOD-STD-2167A: Defense System Software Development, 1988.

Womack, J. P., Jones, D. T., and Roos, D., The Machine that Changed the World: The Story of Lean

Production. Harper Perennial, 1991.

104

This page intentionally left blank.

105

Glossary

Abbreviations

ABET Accreditation Board for Engineering and Technology

ACM Association for Computing Machinery

ACS Australian Computer Society

AHP Analytic Hierarchy Process

AN Analysis level in Bloom's taxonomy

ANSI American National Standards Institute

AP Application level in Bloom's taxonomy

ASEE American Society for Engineering Education

ATM Automated Teller Machine

BCS British Computer Society

BS Bachelor of Science

BSCE Bachelor of Science in Computer Engineering

BSCS Bachelor of Science in Computer Science

BSEE Bachelor of Science in Electrical Engineering

BSSE Bachelor of Science in Systems Engineering

C Comprehension level in Bloom's taxonomy

CAT Curriculum Author Team

CBD Component-Based Design

CBOK Core Body of Knowledge

CM Configuration Management

106

CMMI Capability Maturity Model Integrated

COTS Commercial Off-the-Shelf

CS Computer Science

CSEET Conference on Software Engineering Education and Training

CSI Computer Society India

DoD United States Department of Defense

E Evaluation level in Bloom's taxonomy

ECTS European Credit Transfer and Accumulation System

EIA Electronic Industries Alliance

EST Early Start Team

GPA Grade Point Average

GPS Global Positioning System

GSwE2009
Graduate Software Engineering 2009: Curriculum Guidelines for Graduate

Degree Programs in Software Engineering

GSwERC Graduate Software Engineering Reference Curriculum

I&V Integration and Verification

ICSE International Conference on Software Engineering

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

IEEE-CS Institute of Electrical and Electronics Engineers – Computer Society

INCOSE International Council on Systems Engineering

IP Intellectual Property

IRR Internal Rate of Return

ISO International Standards Organization

107

iSSEc Integrated Software and Systems Engineering Curriculum

K Knowledge level in Bloom's taxonomy

KA Knowledge Area

MARR Minimum Attractive Rate of Return

MS Master of Science

MSE Master of Software Engineering

NDIA National Defense Industrial Association—Systems Engineering Division

NITRD
Networking and Information Technology Research and Development

Program—specifically, the National Coordination Office for NITRD

OSD Office of the Secretary of Defense

PMBOK® Project Management Body of Knowledge

RFP Request For Proposals

S Synthesis level in Bloom's taxonomy

SE Systems Engineering

SE2004
Software Engineering 2004, the ACM/IEEE Computer Society reference

curriculum for an undergraduate degree in software engineering, published

in 2004

SEI Software Engineering Institute

SoI System of Interest

SoS System of Systems

SwE Software Engineering

SWEBOK The IEEE ‘s Software Engineering Body of Knowledge, published in 2004

SYS Systems engineering content in CBOK

S2ESC IEEE–CS Software and Systems Engineering Standards Committee

UCITA Uniform Computer Information Transactions Act

108

UML Unified Modeling Language

V&V Verification and Validation

109

Terms

Admission Requirements. Admission requirements are the minimum standards an individual must meet in

order to enter an academic program. These requirements are generally mandatory, and waivers

require justification. Admission requirements are not specified in GSwE2009. (See Entrance

Expectations)

Architecture. Architecture refers to the framework used to develop software, which is specifically covered

in the Core Body of Knowledge. (For information on the architecture of GSwE2009, please see

Curriculum Architecture.)

Bloom Taxonomy. A categorization of the intellectual activities associated with learning. The taxonomy

has six levels of activity: Knowledge (K), Comprehension (C), Application (AP), Analysis (AN),

Synthesis (SYN), and Evaluation (EV). These levels are used to describe the depth to which

curricula should cover specific elements in the Core Body of Knowledge (CBOK). The

GSwE2009 Curriculum is focused primarily at the K, C, AP, and AN levels, with

recommendation of SYN level understanding in an elective area. (Please see Appendix B for

more information.)

Bridging Course. See Leveling Course.

Capstone Experience. A detailed and work-intensive endeavor that demonstrates the application of

knowledge and skills gained in a program to a specific problem. Capstone projects have

traditionally been in the form of a thesis. More recently, capstone projects that handle problems

relevant to a particular industry segment or area of expertise and develop potential solutions have

been included. (For more information on the capstone experience recommended by GSwE2009,

please see Section 5, Curriculum Architecture.)

Configuration Management. Generally, the management discipline focused on maintaining consistent

structure and performance for a specific product. Configuration management practices help to

identify the configuration for a product, track any changes to the product that may alter

configuration, and verify that changes do not detrimentally affect performance. For GSwE2009,

configuration management refers specifically to software configuration management. (For

additional information, please see Appendix C.)

Core Body of Knowledge (CBOK). The recommended knowledge areas that should be obtained within a

software engineering master‘s degree program. In addition, the CBOK provides a

recommendation as to the appropriate Bloom‘s level for each knowledge area. (The CBOK is

described in Section 6 of this document.)

Core materials. Fundamental skills and knowledge that all students must master within a given program.

Course. A collection of material, exercises and assessment for which academic credit is awarded, which

may be part of a number of programs.

Credit Hours. A unit used to indicate the amount of in-class time for a given course. Generally, this refers

to one hour of class time per week per term. This may be affected by the types of terms used (e.g.,

semesters vs. quarters) and by the instructional mode (e.g., on-line vs. traditional classroom).

(Also referenced as course credits.)

110

Curriculum. All the courses associated with a specific course of study. The curriculum will depend on the

level (e.g., graduate or undergraduate) and specificity (i.e., discipline or specialty) of the course

of study.

Curriculum Architecture. The structure and framework used to develop a specific course of study. The

GSwE2009 Curriculum Architecture is discussed in Section 5.

Degree Program. A collection of courses, delivered by an appropriate authority, leading to an academic

degree.

Elective Materials. A set of courses to accommodate different interests and goals of individual students

that may include special topics.

Engineering Economics. The application of economic principles to engineering projects. This discipline

generally considers the economic implications along with the technical aspects when determining

a solution to a particular problem. This discipline is recommended within the GSwE2009

curriculum and is discussed in further detail in Appendix C.

Entrance Expectations. Knowledge and skills expected of students when they enter an academic program.

These are often prerequisites to the topics they will study.

Faculty. Academic or teaching staff. These may include both full-time permanent staff who are

employed in an academic unit and external staff attached to the program, such as adjuncts..

GSwE2009-Satisfying Program. A university program that offers a master‘s in software engineering with

a curriculum that largely satisfies GSwE2009 recommendations. Reasonable deviation from those

recommendations for individual university or program constraints is expected. There is no precise

measure of how much deviation is ―reasonable‖.

Human Computer Interface Design. The discipline concerned with providing user-friendly displays that

better enable individuals to comprehend electronic information.

Integration and Verification (I&V). The process that combines implemented and tested system elements

to realize the System of Interest (SoI).

Lessons Learned. A description of the insights gained when attempting to address a problem and which

may prove valid in future situations. In GSwE2009, lessons learned specifically refer to the

insights gained when trying to adapt an existing SwE curriculum to the GSwE2009 curriculum.

Lessons learned are primarily discussed in the companion document Frequently Asked Questions

on Implementing GSwE2009.)

Leveling Course. A course designed to allow students who do not meet entrance expectations to enroll in

an academic program. In general, these are courses designed to ensure that students have the

requisite knowledge, skills, and abilities to succeed in the program. These may also be referred to

as bridging courses or preparatory courses.

Master’s Degree. A graduate or professional-level degree intended to follow an undergraduate course of

study. Within GSwE2009, a master‘s degree in software engineering is focused on developing

knowledge, skills, and abilities to meet the current and future challenges of complex systems that

require software in order to operate properly.

111

Outcomes. The expected accomplishments of an individual who has completed an academic program.

(Please see Section 3, Expected Outcomes When A Student Graduates.)

Pedagogy. The style of instruction and strategies used within a specific course of study. Pedagogy is

discussed primarily within the Frequently Asked Questions on Implementing GSwE2009.

Preparatory Course. See Leveling Course.

Program. See Degree Program.

Program track. A specific set of courses within a program that emphasizes different areas of study such

as telecommunications, real-time systems, and information systems.

Practical experience. Professional experience that allows a student to be exposed to a team environment

and the product life cycle in the context of software engineering.

Reference Curriculum. A set of outcomes, entrance expectations, architecture, and a body of knowledge

that provide guidance for faculty who are designing and updating their programs. That guidance

is intentionally flexible so that faculty can adopt and adapt it based on local programmatic needs.

A reference curriculum is not intended to be used directly for program certification or

accreditation.

Requirements Engineering. The process for determining the necessary capabilities and/or functions for a

specific product or service. Within GSwE2009, requirements engineering refers specifically to

the development of software requirements.

Risk Management. The process of assessing potential threats to an endeavor, developing strategies to both

reduce the probability of the problem occurring and counter these threats if they occur, and

implementing these strategies using program resources. Risk management in GSwE2009

specifically refers to the processes used to understand and mitigate software-related risks for a

project or product.

Software Engineering (SwE). A systematic approach to the development of operational software, and the

maintenance of that software.

Software Maintenance. Continued support of a software product after delivery, either to correct

deficiencies or errors or to enhance the functionality of the software and its performance.

Software Security. Ensuring that software continues to function correctly in spite of attack or misuse.

Supporting Processes. A GSwE2009-specific supplement to the knowledge areas presented in the

SWEBOK. Specifically, this is a knowledge area that includes the activities of configuration

management, verification and validation, quality assurance, reviews and audits, and software

documentation processes.

Systems Engineering (SE): An interdisciplinary approach and means to enable the realization of

successful systems. It focuses on defining customer needs and required functionality early in the

development cycle and documenting requirements, then proceeding with design synthesis and

system validation while considering the complete problem.

Testing. The process by which a product is systematically checked to ensure that a product functions as

expected. Within GSwE2009, this specifically refers to the discipline of software testing.

112

Track. See Program Track.

University-specific materials. Specific materials that an institution might include in order to tailor a

program to meet specific objectives. For example, university-specific materials may be used for a

program with a specific focus in security or human computer interfaces.

Verification and Validation (V&V). The process of ensuring that a product or program meets its

specifications and purpose and satisfies the stakeholders‘ needs. Specifically, this process often

ensures that all critical stakeholder requirements are met and that the product will provide the

target capabilities specified by the stakeholders. Within GSwE2009, this specifically refers to

methods for ensuring that software programs enable appropriate functionality.

113

Index

A

accreditation, v, 7, 9, 12, 14, 17, 28, 65, 111

admission requirement, 23

Association for Computing Machinery (ACM), vi, vii, viii,

2, 4, 6, 11, 12, 15, 53, 63, 64, 65, 66, 99, 105, 107

B

Bloom’s Taxonomy, 8, 17, 36, 60, 95

Body of Knowledge (BOK), iii, vi, 13, 17, 48, 59, 93, 102,

103, 107

C

capstone experience, 15, 21, 27, 29, 31, 97, 109

comparisons, 17, 60, 87

configuration management, 25, 33, 36, 42, 57, 62, 72,

80, 84, 93, 109, 111

Core Body of Knowledge (CBOK), iii, iv, 1, 2, 3, 7, 8, 13,

17, 18, 19, 27, 28, 33, 34, 35, 36, 46, 47, 52, 61, 62,

63, 67, 82, 95, 96, 105, 107, 109

core materials, 1, 7, 10, 13, 14, 27, 28, 29, 30, 31, 36, 45,

46, 48

credits, 2, 10, 23, 29, 36, 46, 109

Cross-cutting knowledge elements, iii, 47

curriculum architecture, 2, 8, 13, 23, 27

Curriculum Author Team (CAT), vi, viii, 8, 13, 22, 25, 34,

47, 55, 61, 105

E

Early Start Team (EST), vi, 106

elective material, 27, 28, 29, 30, 31, 46, 58, 109

engineering discipline, 1, 9, 11, 57, 65, 84

entrance expectations, v, 6, 10, 28, 110, 111

education, v, 1, 2, 3, 6, 7, 9, 10, 13, 15, 23, 24, 28, 29,

34, 36, 55, 57, 58, 71, 72, 107, 109, 110

practical experience, v, 1, 2, 4, 7, 15, 18, 19, 23, 24,

25, 28, 29, 34, 40, 50, 53, 57, 62, 65, 109, 111

ethics, 13, 19, 28, 37, 44, 47, 65, 66, 67, 96, 97

European Credit Transfer and Accumulation System

(ECTS), 10, 106

expected outcomes, iii, 1, 17, 111

outcome, 17, 18, 19, 21, 22, 31, 57, 95, 97

outcomes, iii, v, 1, 3, 4, 6, 7, 8, 9, 12, 13, 14, 17, 23, 27,

31, 33, 34, 47, 59, 74, 76, 77, 78, 82, 91, 95, 111

F

Frequently Asked Questions on Implementing

GSwE2009, 4, 7, 14, 18, 24, 53, 110, 111

G

government, v, vi, 5, 6, 9, 12, 49, 63, 89, 90

Graduate Software Engineering Reference Curriculum

(GSwERC), v, vi, 1, 7, 14, 17, 106

H

human computer interface design, 28, 47, 48, 51, 57

I

implementation, 1, 2, 4, 5, 12, 14, 36, 44, 49, 53, 61, 76

guidance on, 1, 4, 14, 53

hypothetical implementations, 18

Institute of Electrical & Electronics Engineers (IEEE)

Computer Society (CS), v, vi, vii, viii, x, 4, 6, 7, 11, 12,

13, 15, 50, 51, 53, 65, 66, 67, 99, 100, 101, 102, 103,

106, 107

International Council on Systems Engineering (INCOSE),

vi, vii, viii, ix, 4, 6, 13, 33, 51, 53, 77, 78, 79, 84, 101,

106

K

Knowledge Area (KA), 1, 3, 17, 19, 28, 33, 34, 35, 36, 45,

47, 48, 51, 52, 63, 93, 95, 97, 107

L

leveling courses, 15, 24, 34

M

mechanical engineering, 11

N

National Defense Industrial Association, vi, vii, viii, 107

114

P

preparation knowledge, 33, 34

professional conduct, 28, 37, 63, 66, 67, 96, 97

professional society, 51, 65

project management, 3, 11, 20, 28, 50, 67, 73, 75

R

requirements analysis, 3, 20, 35, 79

requirements engineering, 28, 47, 111

risk management, 43

S

Software Engineering 2004 (SE2004), vi, 2, 6, 9, 13, 15,

17, 19, 33, 34, 67, 99, 107

Software Engineering Body of Knowledge (SWEBOK),

iii, iv, vi, vii, viii, 1, 8, 13, 33, 47, 48, 52, 56, 57, 61, 62,

63, 67, 93, 99, 103, 107, 111

Software Engineering Institute (SEI), v, vi, vii, ix, 6, 65,

67, 99, 100, 107

software reuse, 47

software security, 47, 93

Software security, 7, 18, 28, 35, 36, 48, 63, 72, 74, 79,

84, 93, 94, 112

software technology, 3, 22

Systems Engineering (SE), i, iii, v, vi, viii, ix, 2, 3, 5, 6, 9,

11, 13, 20, 28, 33, 37, 47, 48, 50, 51, 52, 56, 66, 67,

68, 69, 71, 72, 73, 75, 77, 84, 96, 99, 101, 102, 105,

107, 111

Systems Engineering Body of Knowledge, vii, 13, 101

systems engineers, 49, 68, 71, 72, 73, 75, 83, 84

T

thesis, 15, 21, 29, 109

