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Preface 

Software engineering (SwE) is ―the application of a systematic, disciplined, quantifiable 

approach to the development, operation, and maintenance of software.‖
1
 SwE principles and 

practices are essential for the development of large, complex, or trustworthy systems. In 1989 the 

Software Engineering Institute (SEI) published a set of recommendations for creating curricula 

for master‘s programs in SwE.
2
 Those recommendations were highly regarded and used by many 

universities in shaping their graduate SwE programs. 

Since 1989 the way software is developed has changed dramatically. Software‘s scale, 

complexity, and criticality have mushroomed, yet no significant effort has been made to revisit 

and update the original SEI recommendations. (An updated report was published in 1991, but the 

curriculum recommendations were virtually unchanged.) In 2007, a coalition from academia, 

industry, government, and professional societies formed the Integrated Software and Systems 

Engineering Curriculum (iSSEc) project to create a reference curriculum
3
 that reflects current 

development practices and the greater role of software in today‘s systems. The U.S. Department 

of Defense‘s (DoD) Office of the Secretary of Defense (OSD) is the principal iSSEc sponsor, 

motivated by the many challenges in acquiring, operating, and maintaining defense systems 

whose functionality and performance depend heavily on tractable and cost-effective software. 

Graduate Software Engineering 2009 (GSwE2009): Curriculum Guidelines for Graduate 

Degree Programs in Software Engineering is the first product of the iSSEc project. Until August 

2009 it was called the Graduate Software Engineering Reference Curriculum (GSwERC). 

GSwE2009 primarily addresses the education of students for a professional master‘s degree in 

SwE—that is, a degree intended for someone who is primarily interested in pursuing a career in 

the practice of SwE and who is not necessarily interested in pursuing a doctorate in SwE or a 

related field. Typically, such students are already (a) professional software engineers employed 

by industry or government and who lack a formal graduate education in SwE, or (b) 

professionals in another field who are making a career change into SwE. In some cases, those 

students will be fresh graduates with a bachelor‘s degree with little or no experience. Their lack 

of experience is a challenge in realizing the educational outcomes identified in GSwE2009—a 

concern that is explored in several places in this document. 

                                                

1  IEEE STD 610.12-1990, IEEE Standard Glossary of Software Engineering Terminology, IEEE Computer Society, 

1990. 

2  Ardis, M. and Ford, G. SEI Report on Graduate Software Engineering Education, CMU/SEI 89-TR-21, Software 
Engineering Institute, Carnegie Mellon University, June 1989. 

3  A reference curriculum is a set of outcomes, entrance expectations, architecture, and a body of knowledge that 

provide guidance for faculty who are designing and updating their programs. That guidance is intentionally 

flexible so that faculty can adopt and adapt it based on local programmatic needs. A reference curriculum is not 

intended to be used directly for program certification or accreditation. 
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GSwE2009 was created to: 

• Improve existing graduate programs in SwE from the viewpoint of universities, students, 

graduates, software builders, and software buyers; 

• Enable the formation of new graduate programs in SwE by providing guidelines on 

curriculum content and advice on how to implement those guidelines; and 

• Support increased enrollment in graduate SwE programs by increasing the value of those 

programs to potential students and employers. 

GSwE2009 builds on the SEI curriculum foundations plus those of other initiatives, such as the 

Guide to the Software Engineering Body of Knowledge (SWEBOK)
4
 and Software Engineering 

2004: Curriculum Guidelines for Undergraduate Degree Programs in Software Engineering 

(SE2004)
5
. iSSEc followed an iterative, evolutionary approach in creating GSwE2009, beginning 

with the formation of an Early Start Team (EST) of authors, since renamed the Curriculum 

Author Team (CAT). First established in July 2007, the CAT is a set of invited experts from 

industry, government, academia, and professional associations. CAT membership grew as 

GSwE2009 matured.  

The CAT met in workshops approximately every three months between August 2007 and 

September 2009, leading to the release of GSwERC 0.25 in February 2008, GSwERC 0.5 in 

October 2008, and GSwE2009 1.0 in September 2009. The SwE community was invited to 

review versions 0.25 and 0.5 to provide the necessary feedback to develop the current version 

(1.0). The review of version 0.5 generated more than 800 individual review comments, which 

were adjudicated for use in creating version 1.0. The detailed comments and their adjudication 

can be found at www.GSwE2009.org. 

Professional society participation in the creation of GSwE2009 has been essential to ensuring 

that GSwE2009 will have the desired impact on global graduate education. Both the International 

Council on Systems Engineering (INCOSE) and the U.S. National Defense Industrial 

Association (NDIA) Systems Engineering Division were early participants in GSwE2009, and 

each contributed authors. In 2008, the Institute of Electrical and Electronics Engineers (IEEE) 

Computer Society Education Activities Board became an official participant. In 2009, that 

participation elevated to the Computer Society level and both the Association for Computing 

Machinery (ACM) and the Brazilian Computer Society (BCS) also chose to participate. 

Discussions are underway with the ACM, IEEE Computer Society, and INCOSE in the hope that 

they will jointly take on the evolution and maintenance of GSwE2009. Finally, GSwE2009‘s 

                                                

4  SWEBOK, Guide to the Software Engineering Body of Knowledge, P. Bourque & R. Dupuis (Eds.), IEEE 

Computer Society Press, 2004. 

5  ACM/IEEE-CS Joint Task Force on Computer Curricula, Software Engineering 2004, Curriculum Guidelines for 

Undergraduate Degree Programs in Software Engineering, August 2004. 



  vii 

success has motivated the start of related efforts to create a Systems Engineering Body of 

Knowledge and a Graduate Systems Engineering Reference Curriculum—each with an 

―appropriate‖ amount of SwE perspective and content. Those efforts should lead to version 1.0 

products in 2012. 

The following authors contributed to the creation of GSwE2009: 

1. Rick Adcock, Cranfield University and INCOSE 

representative, UK 

2. Edward Alef, General Motors, USA 

3. Bruce Amato, Department of Defense, USA 

4. Mark Ardis, Stevens Institute of Technology, 

USA 

5. Larry Bernstein, Stevens Institute of Technology 

USA 

6. Barry Boehm, University of Southern California, 

USA 

7. Pierre Bourque, École de Technologie 

Supérieure and SWEBOK volunteer, Canada 

8. John Brackett, Boston University, USA 

9. Murray Cantor, IBM, USA 

10. Lillian Cassel, Villanova and ACM 

representative, USA 

11. Robert Edson, Analytic Services Inc., USA 

12. Richard Fairley, Colorado Technical University, 

USA 

13. Dennis Frailey, Raytheon and Southern 

Methodist University, USA 

14. Gary Hafen, Lockheed Martin and NDIA, USA 

15. Thomas Hilburn, Embry-Riddle Aeronautical 

University, USA 

16. Greg Hislop, Drexel University and IEEE 

Computer Society representative, USA 

17. David Klappholz, Stevens Institute of 

Technology, USA 

18. Philippe Kruchten, University of British 

Columbia, Canada 

19. Phil Laplante, Pennsylvania State University, 

Great Valley, USA 

20. Qiaoyun (Liz) Li, Wuhan University, China 

21. Scott Lucero, Department of Defense, USA 

 

22. John McDermid, University of York, UK 

23. James McDonald, Monmouth University, USA  

24. Ernest McDuffie, National Coordination 

Office for NITRD, USA 

25. Bret Michael, Naval Postgraduate School, 

USA 

26. William Milam, Ford, USA 

27. Ken Nidiffer, Software Engineering Institute, 

USA 

28. Art Pyster, Stevens Institute of Technology, 

USA 

29. Paul Robitaille, Lockheed Martin & INCOSE 

representative, USA 

30. Mary Shaw, Carnegie Mellon University, USA 

31. Sarah Sheard, Third Millenium Systems, USA 

32. Robert Suritis, IBM, USA 

33. Massood Towhidnejad, Embry-Riddle 

Aeronautical University, USA 

34. Richard Thayer, California State University at 

Sacramento, USA 

35. J. Barrie Thompson, University of 

Sunderland, UK 

36. Guilherme Travassos, Brazilian Computer 

Society, Brazil 

37. Richard Turner, Stevens Institute of 

Technology, USA 

38. Joseph Urban, Texas Tech University, USA 

39. Ricardo Valerdi, MIT & INCOSE 

representative, USA 

40. Osmo Vikman, Nokia, Finland 

41. David Weiss, Avaya, USA 

42. Mary Jane Willshire, Colorado Technical 

University, USA 
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Executive Summary 

The Graduate Software Engineering 2009 (GSwE2009): Curriculum Guidelines for Graduate 

Degree Programs in Software Engineering is a set of recommendations for a master‘s level 

graduate program in software engineering (SwE), together with implementation guidance for a 

university to satisfy those recommendations. Earlier versions of this work were called the 

Graduate Software Engineering Reference Curriculum (GSwERC). 

The program described by GSwE2009 is for a professional master‘s degree, analogous in many 

ways to a master‘s of business administration. GSwE2009 is envisioned as a living document 

that will be revisited regularly and updated when necessary to ensure relevance to the rapidly 

evolving software engineering discipline. This document includes the curriculum 

recommendations and materials describing their creation, implementation, and evolution. 

GSwE2009 includes the following: 

• A set of outcomes to be fulfilled by a student who successfully completes a graduate 

program based on the curriculum (see summary below) 

• A set of student skills, knowledge, and experience assumed by the curriculum, not 

intended as entrance requirements for a specific program, but as the starting point for the 

curriculum‘s outcomes (see summary below) 

• An architectural framework to support implementation of the curriculum 

• A description of the fundamental or core skills, knowledge, and experience to be taught 

in the curriculum to achieve the outcomes. This is termed a Core Body of Knowledge 

(CBOK) and includes topic areas and the depth of understanding a student should 

achieve. 

Additional materials included in this document: 

• The fundamental philosophy for GSwE2009 development as described in a set of guiding 

principles (see summary below) 

• A discussion of how GSwE2009 will evolve to remain effective 

• A mapping of expected outcomes to the CBOK and to the total GSwE2009 program 

recommendations 

• A description of Knowledge Areas (KAs) discussed in GSwE2009 that are not yet fully 

integrated into the current version of the Software Engineering Body of Knowledge 

(SWEBOK) 

• Glossary, references, and other supporting material. 

 

Summary of Guidance for Creating GSwE2009 

The following guidance, established early in the development of GSwE2009, came primarily 
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from SE2004
6
 and the deliberations of the GSwE2009 authors. 

• Create a set of recommendations for developing and improving curricula for master‘s level 

software engineering education. 

• Target a professional degree for practicing software engineers. 

• Require about as many credit hours as typical programs do now.  

• Recognize software engineering as a distinct discipline with a rich body of knowledge, 

practice, and theory.  

• Recognize that software engineering is founded on a wide variety of disciplines, with 

deepening ties to Systems Engineering (SE). 

• Require that all software engineering students be able to integrate theory and practice. 

• Foster ongoing review and revision of the curriculum because of rapid evolution in 

software engineering. 

• Be sensitive to changes in technologies, practices, applications, pedagogy, and the 

importance of lifelong learning. 

• Offer significant guidance in individual curriculum components through a CBOK that all 

students are expected to master. 

• Identify fundamental skills and knowledge that all software engineering master‘s program 

graduates must possess. 

• Use a flexible curriculum architecture and recognize existing bodies of knowledge, 

modified and enhanced as required. 

• Limit common knowledge required for all students to no more than 50% of total 

knowledge taught. 

• Be broadly based and international in scope. 

• Include exposure to aspects of professional practice as an integral component of the 

graduate curriculum. 

• State strategies and tactics for implementation. 

• Distinguish clearly between SE2004 and GSwE2009. 

• Identify expected knowledge and experience for students to enter a master‘s program in 

software engineering. 

                                                

6  ACM/IEEE-CS Joint Task Force on Computer Curricula, Software Engineering 2004, Curriculum Guidelines for 

Undergraduate Degree Programs in Software Engineering, August 2004.  
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Summary of Outcomes 

Graduates of a master‘s program that satisfies GSwE2009 recommendations will: 

• Master the CBOK. 

• Master software engineering in at least one application domain, such as finance, medical, 

transportation, or telecommunications, and one application type, such as real-time, 

embedded, safety-critical, or highly distributed systems. That mastery includes 

understanding how differences in domain and type manifest themselves in both the software 

itself and in its engineering, and includes understanding how to learn a new application 

domain or type. 

• Master at least one KA or sub-area from the CBOK to at least the Bloom Synthesis level. 

• Be able to make ethical professional decisions and practice ethical professional behavior. 

• Understand the relationship between SwE and SE and be able to apply SE principles and 

practices in the engineering of software. 

• Be an effective member of a team, including teams that are international and geographically 

distributed, effectively communicate both orally and in writing, and lead in one area of 

project development, such as project management, requirements analysis, architecture, 

construction, or quality assurance. 

• Be able to reconcile conflicting project objectives, finding acceptable compromises within 

limitations of cost, time, knowledge, existing systems, and organizations. 

• Understand and appreciate feasibility analysis, negotiation, and good communications with 

stakeholders in a typical software development environment, and be able to perform those 

tasks well; have effective work habits and be a leader. 

• Be able to learn new models, techniques, and technologies as they emerge, and appreciate 

the necessity of such continuing professional development. 

• Be able to analyze a current significant software technology, articulate its strengths and 

weaknesses, compare it to alternative technologies, and specify and promote improvements 

or extensions to that technology. 

 

Summary of Expected Background 

GSwE2009 presumes that an entering student has:  

• The equivalent of an undergraduate degree in computing or an undergraduate degree in 

an engineering or scientific field and a minor in computing,  
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• The equivalent of an introductory course in software engineering, and 

• At least two years of practical experience in some aspect of software engineering or 

software development. 

These presumptions about entering students are designed to achieve the 10 outcomes previously 

described. However, it is recognized that individual schools may start with a student population 

that has characteristics that are different from what GSwE2009 presumes here. Such schools will 

likely have to lengthen their master‘s programs in order for their students to achieve all 10 

outcomes—or the schools will deliberately choose not to adopt some outcomes. In fact, schools 

may even add other outcomes to favor their particular markets and institutional emphases. 

GSwE2009 is not intended for use to certify or accredit either programs or individuals. It is a set 

of recommendations that must be tailored by each adopting university.  

The process of developing this report has been highly inclusive. It has been widely reviewed by 

academics and practitioners through a public draft process. We have also held feedback sessions 

at conferences and meetings, including the annual American Society for Engineering Education 

(ASEE) meeting, the International Symposium of the International Council on Systems 

Engineering (INCOSE), the International Conference on Software Engineering (ICSE), the 

Conference on Software Engineering Education and Training (CSEET), and various smaller 

meetings in Europe, Asia, and various parts of the United States. These meetings have provided 

us with critically important feedback that we have used to shape the final report. 

From the beginning it was intended for GSwE2009 to be a living document, with a broad, 

responsible, and knowledgeable community of practice. It was anticipated that after Version 1.0 

was published, Stevens Institute of Technology, which has managed the original development, 

would identify a steward who would assume responsibility for maintaining and refining the 

model and expanding and focusing implementation guidance based on experience and feedback 

from the supporting community and academia, industry, and students. Effort is now underway 

for a combination of the ACM and the IEEE Computer Society to become that steward. As of the 

writing of this document, discussions are underway for those two organizations to take over 

maintenance responsibility for GSwE2009 within the first 6 months of the release of Version 1.0, 

with INCOSE playing a supporting role.  

To support and enable wide acceptance of GSwE2009, two companion documents— 

Comparisons of GSwE2009 to Current Master’s Programs in Software Engineering and 

Frequently Asked Questions on Implementing GSwE2009– are being prepared concurrently with 

the release of GSwE2009.  They will be available in Fall 2009 at www.GSwE2009.org and 

updated regularly. 

 

 

http://www.gswe2009.org/
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1. Introduction 

Software is a critical component in new products worldwide—often the critical component 

distinguishing products in the marketplace. Software enables technological advances that lead to 

new, high-performance products and systems in every commercial sector, including medical 

devices, automobiles, aircraft, power generation systems, mobile phones, and entertainment 

systems. Automobiles now have millions of lines of embedded code, enabling everything from 

voice-activated navigation systems for convenience, to anti-lock brake systems for safety, to 

engine control for fuel efficiency. In fact, one of the primary ways manufacturers now 

differentiate their cars is through functionality implemented largely through sophisticated 

software, such as Global Positioning System (GPS) navigation systems. 

As product and system functionality grow, so does the need to efficiently and correctly 

implement the complex software that enables that growth. Sophisticated systems are critical for 

any large company or government agency in managing their projects and organizations. Such 

systems support essential business and technical processes, such as recordkeeping and data 

warehousing, logistics, manufacturing, coordination with suppliers, and customer relationship 

management. Systems engineers (not always by that name) are typically responsible for the 

design and development of such complex systems, but because a large part of the functionality is 

usually implemented in software today, a large part of the implementation responsibility 

typically falls on software engineers. Indeed, the fields of SwE and systems engineering (SE) are 

becoming increasingly intertwined and it is vital that corresponding educational programs reflect 

this. 

Because of software complexity and the inherent difficulties of software development, most of 

the ―surprises‖ that occur during system integration, and after product shipment and system 

deployment, can be traced back to incorrect software implementation and integration, such as 

poor requirements or faulty software upgrades in the field. Often these problems show up as 

interoperability issues between system components that otherwise seem correct in isolation. The 

common practice of repurposing legacy software for new applications simply adds to the 

challenges. Robert Glass,
7,8

 Nancy Leveson,
9,10

 and others have documented countless examples 

of failures resulting from poor SwE and/or poor communication between systems and software 

                                                

7  Glass, R. L., Computing Calamities: Monumental Computing Disasters, Prentice Hall Professional Technical 

Reference, 1998. 

8
  Glass, R. L., Software Runaways: Monumental Software Disasters, Prentice Hall Professional Technical 

Reference, 1997.  

9  Leveson, N. G., Safeware: Systems Safety and Computers, Addison-Wesley, 1995. 

10 Leveson, N. G., ―The Role of Software in Spacecraft Accidents‖. AIAA Journal of Spacecraft and Rockets, 41(4), 

July 2004. 
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engineers. The U.S. Government Accountability Office
11,12,13

 regularly issues reports recounting 

the challenges the U.S. government faces in creating large-scale, reliable, software-intensive 

systems on schedule, on budget, and with expected functionality.  

SE is the discipline through which large-scale, trustworthy, and complex systems are developed, 

while SwE is the discipline by which the software portions of these systems are developed. Many 

universities teach SE and SwE at the undergraduate level. Over the years, a few well-known 

efforts have created guidelines and sample curriculum for SwE. Most notably, more than 100 

colleges and universities helped create curriculum guidelines for undergraduate SwE education 

that the ACM and IEEE Computer Society published in SE2004. Many universities offer a 

master‘s degree in SE and/or SwE, but there are no widely accepted curriculum guidelines for 

graduate education in SE (although INCOSE has published a high-level curriculum
14

). In 1989 

the Software Engineering Institute (SEI) of Carnegie Mellon University published a landmark 

report on graduate education in SwE.
15

 A fresh look at curriculum guidance in these fields is in 

order, considering the reliance of the world economy on the quality of senior SE and SwE 

professionals, the dramatic changes that the Internet has brought about in how software is 

created, and continuing global problems in producing satisfactory software. 

The iSSEc (Integrated Software and Systems Engineering Curriculum) project was formed in 

July 2007 to create and promulgate a series of graduate-level reference curricula
16

 related to SwE 

and SE. Led by Stevens Institute of Technology with dozens of experts from other universities, 

industry, government, and professional societies, iSSEc‘s first product is this volume, Graduate 

Software Engineering 2009 (GSwE2009): Curriculum Guidelines for Graduate Degree 

Programs in Software Engineering, reflecting new understandings in how to build software, how 

SwE depends on SE, and how SwE education is influenced by application domains, such as 

telecommunications and defense systems. A study of existing graduate programs in SwE 

                                                

11 GAO, Defense Acquisitions: Assessment of Selected Major Weapons Programs, U.S. Government Accountability 

Office, GAO-08-467SP, March 2008. 

12 GAO, Information Technology:  Inconsistent Software Acquisition Processes at the Defense Logistics Agency 

Increase Project Risks, U.S. Government Accountability Office, GAO-02-9, January 2002. 

13 GAO, Information Security: Agencies Face Challenges in Implementing Effective Software Patch Management 

Processes, U.S. Government Accountability Office, GAO-04-816T, June 2004. 

14 Jain, R. and Verma, D., A Report on Curriculum Content for a Graduate Program in Systems Engineering: A 

Proposed Framework, INCOSE International Symposium, 2007. 

15 Ardis, M. and Ford, G., SEI Report on Graduate Software Engineering Education, CMU/SEI 89-TR-21, Software 
Engineering Institute, Carnegie Mellon University, June 1989. 

16 A reference curriculum is a set of outcomes, entrance expectations, architecture, and a body of knowledge that 

provide guidance for faculty who are designing and updating their programs. That guidance is intentionally 

flexible so that faculty can adopt and adapt it based on local programmatic needs. A reference curriculum is not 

intended to be used directly for program certification. 



   
7 

revealed their diversity and helps motivate GSwE2009.
17

 (A short version of the study report is 

included in Appendix A.) Prior to August 2009, GSwE2009 was known as the Graduate 

Software Engineering Reference Curriculum (GSwERC). 

GSwE2009 is targeted at a university education leading to a professional master‘s degree in 

SwE—that is, a degree intended for someone who will either enter the workforce as a software 

engineer or someone who is already in the workforce and is seeking to gain a formal education in 

SwE to advance his or her career. GSwE2009 does not explicitly target graduate programs for 

those who seek a doctorate and a career in research. In some cases, entering students will be 

fresh graduates with a bachelor‘s degree with little or no experience. Their lack of experience is 

a challenge in realizing the educational outcomes identified in GSwE2009—a challenge that is 

explored in several places in this document. 

There is tremendous diversity in markets that universities serve, educational systems in which 

universities operate, accreditation programs, size of student body and faculty, and many other 

factors that affect program content and delivery. GSwE2009 respects and enables that diversity. 

GSwE2009 is a broad set of recommendations to guide universities in building and updating 

their graduate programs. As a reference curriculum, it identifies a core that should be included in 

all programs and an extensive envelope that allows and encourages variation among programs. It 

provides wide flexibility in how those recommendations are implemented: for example, 

GSwE2009 includes a core body of knowledge (CBOK) that all students should master (Section 

6), but GSwE2009 does not prescribe a particular course
18

 packaging to deliver them. 

Reflecting its purpose as part of a reference curriculum, the CBOK has been limited in scope so 

that a student should spend no more than half of his or her class time learning it. This gives both 

individual universities and students a great deal of flexibility in how they round out the master‘s 

program to achieve GSwE2009 outcomes, as well as achieve university and individual outcomes. 

Two companion documents aid faculty in adapting and adopting GSwE2009. The first of these 

documents, Comparisons of GSwE2009 to Current Master’s Programs in Software Engineering, 

explains how well current university programs align with GSwE2009 recommendations. The 

second companion document, Frequently Asked Questions on Implementing GSwE2009, offers 

specific advice on such topics as identifying faculty who are best able to teach classes that 

implement GSwE2009 recommendations. 

                                                

17 Pyster, A., et al., ―Master‘s Degrees in Software Engineering: An Analysis of 28 University Programs,‖ IEEE 
Software, September-October 2009, 94-101. 

18 The term course refers to a collection of materials, exercises, and assessments for which academic credit is 

awarded. A program is a collection of courses leading to a degree—the specific interest here being in a master‘s 

degree. Often programs have one or more specific orientations called tracks that allow a student to specialize in an 

area of interest such as real-time systems, security, or Web applications. 
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Despite the freedom that universities have in how they implement GSwE2009, there are several 

constants. For example, a program that fully satisfies GSwE2009 recommendations will enable 

its students to achieve all the outcomes listed in Section 3 and will follow the curriculum 

architecture found in Section 5. 

This document, which provides the GSwE2009 recommendations, has six sections: 

 Section 1 is this introduction. 

 Section 2 contains general guidance for those who authored and will maintain 

GSwE2009. 

 Section 3 states the outcomes that a student is expected to achieve immediately upon 

graduation. 

 Section 4 explains the background that students are expected to have when entering a 

master‘s program that satisfies GSwE2009 recommendations. 

 Section 5 presents the curriculum architecture that any curriculum following these 

guidelines should satisfy. That architecture supports three levels of knowledge—

knowledge that all students should master in every university, knowledge that an 

individual university program requires for its students, and knowledge that an individual 

student elects to learn. 

 Section 6 is the CBOK that all students in every university should learn. It includes 

specific knowledge units and the expected Bloom level for each unit. The Bloom 

Taxonomy offers a six-level scale for competency mastery that is commonly used for 

curriculum development, further elaborated in Appendix B. Most knowledge units are 

based on SWEBOK, but others have been added where the Curriculum Author Team 

(CAT) felt the SWEBOK omitted critical material. 
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2. Guidance for the Construction and Maintenance of GSwE2009 

This section describes the foundational guidance used when developing GSwE2009—the 

guiding principles, assumptions, and context for the entire GSwE2009 effort. The 17 numbered 

guidance statements are primarily written in future tense, reflecting their role as requirements for 

the GSwE2009 development effort. The elaboration following each guidance statement speaks to 

how GSwE2009 satisfies those requirements.  

The guidance was strongly influenced by the principles stated in SE2004; in some cases, it 

repeats verbatim the wording of those principles. Differences arise primarily by distinguishing 

the higher expectations of graduate education from those of undergraduate education and by 

more explicitly recognizing how the SwE discipline ties to other disciplines, notably SE. 

Moreover, we recognize that this guidance is, in many cases, not unique to SwE curricula. It is 

valid for virtually all engineering disciplines. For example, guidance statement [6] is ―All SwE 

students must learn to integrate theory and practice.‖ Substituting ―mechanical,‖ ―electrical,‖ or 

any other engineering discipline for ―software‖ would not change its validity. Nevertheless, these 

statements were helpful to those developing GSwE2009 and are therefore included here. Note 

that these statements are numbered for ease of reference only. The numbering does not signify 

relative importance. 

[1] The principal purpose of GSwE2009 will be to provide a set of tailorable recommendations 

for developing and improving curricula that provide software engineering education at the 

master’s degree level. It is not intended to be the basis for accreditation. 

GSwE2009 supports the needs of industry and government for software engineers by 

helping universities equip software engineers with the most current theory and practice, 

and helping them develop their ability to lead in addressing the future challenges of 

software development. GSwE2009 is a reference curriculum, not a single definitive 

curriculum. It provides a set of common recommendations for faculty at different 

universities to use when constructing individual curricula for a master‘s degree in SwE—it 

should be tailored to each program. Universities give their degrees different names, often 

with no pedagogical implications; e.g., Stevens Institute of Technology offers a Master of 

Science (MS) in Software Engineering, while Embry-Riddle Aeronautical University offers 

a Master of Software Engineering (MSE). GSwE2009 is suitable for programs that educate 

software engineers regardless of the degree name. 

GSwE2009 should not be used to score, appraise, accredit, or certify programs for 

compliance. Phrases such as ―GSwE2009-compliant‖ are not used herein. Instead, the 

softer term ―satisfies GSwE2009 recommendations‖ periodically appears. The latter term 

has no precise meaning, but is intended for a program that follows most GSwE2009 

recommendations. The program may deviate from some recommendations: for example, a 

program may choose to omit some of the 10 outcomes found in Section 3,or even add one 
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or two new outcomes based on local preferences. It may admit students who do not meet 

the entrance expectations found in Section 4. It may deviate from the recommendations in 

Section 6 on core knowledge that every graduate should master. Clearly, there is a point at 

which a university tailors too much. After all, GSwE2009 reflects the collective wisdom of 

a broad community of authors and reviewers about graduate SwE education. However, that 

point of ―too much‖ tailoring is not precise and is not prescribed here.  

[2] The master’s degree described by GSwE2009 will be a professional degree targeting 

practicing software engineers. With modification, GSwE2009 may serve as the foundation 

for those with a research interest who ultimately seek a doctoral degree; however, 

GSwE2009 is designed specifically to support professional degrees. 

The vast majority of students who earn a master‘s degree in SwE do not become 

researchers. They are practicing professionals or aspiring practicing professionals seeking 

to improve their skills and career opportunities. GSwE2009 will target practicing 

professionals because that is where the greatest need is. 

[3] A master’s program that satisfies GSwE2009 should require about as many credits
19

 as 

typical programs do now.  

A minimum number of credits are necessary to convey the breadth and depth of the 

requisite knowledge and to develop the desired skills in students. Universities will 

individually decide how to package those credits into courses, although the two companion 

documents to GSwE2009 offer packaging observations and recommendations. The 2008 

study of 28 SwE graduate programs described in Appendix A and more fully in (Pyster, et. 

Al., 2009) that the average master‘s program requires between 33 and 36 graduate course 

credits, typically packaged into 11 or 12 3-credit semester courses using the common U.S. 

education model. This would roughly equate to 66 to 72 European Credit Transfer and 

Accumulation System (ECTS) credits for those universities following the Bologna 

Declaration.
20

 One graduate course credit nominally equates to approximately 13 to 14 

contact hours between faculty and student, plus homework. Full-time students normally 

complete such programs in 18 to 24 months. The need to achieve a master‘s level of 

professional achievement with this amount of study leads to expectations about what 

students should be capable of doing when entering a program that attempts to satisfy 

GSwE2009 recommendations. 

                                                

19 Typically, a program requires a certain number of credits for graduation, awarded by taking courses, each of 
which has an associated number of credits. Historically, the number of credits per course has often aligned with 

the number of hours of lecture per week, but with online and other non-traditional formats increasingly popular, 

the rules for assigning credits to a class have become more varied. 

20 Joint Declaration of the European Ministers of Education, ―The European Higher Education Area,‖ Convened in 
Bologna on June 19, 1999. 
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[4] Software engineering is a distinct discipline with a rich body of knowledge, practice, and 

theory.  

SwE does not have the long history of many other engineering disciplines, such as 

electrical and mechanical engineering. Nevertheless, SwE has matured relatively quickly. 

Since 1968, when the term ―software engineering‖ was coined, the discipline has spawned 

numerous journals, conferences, professional societies, undergraduate and graduate 

programs, professional certifications, bodies of knowledge, and standards—all geared 

toward establishing broadly achievable levels of performance, all hallmarks of a scientific 

or engineering discipline.  

[5] Software engineering draws its foundations from a wide variety of disciplines, with 

deepening ties to systems engineering. 

GSwE2009 concentrates on the knowledge and pedagogy associated with a graduate SwE 

curriculum. Where appropriate, it shares or overlaps with material contained in other 

ACM/IEEE Computing Curriculum reports
21

 and it offers guidance on its incorporation 

into other disciplines. 

Graduate study in SwE relies on many areas in computer science for its theoretical and 

conceptual foundations, but it also draws from other fields, including statistics, logic, 

calculus, discrete mathematics, formal languages, and other mathematical specialties, and 

from economics, project management, general engineering, and one or more application 

domains. 

SE is a special case. In the past, many universities have made only cursory ties between 

SwE and SE, reflecting the ―old school‖ view that SE is driven by hardware considerations 

and SwE is just one of many ―specialty‖ disciplines. As explained in Section 1, that view 

no longer serves either the SE or the SwE communities well. GSwE2009 provides strong 

explicit linkage between SE and SwE. 

[6] All software engineering students must learn to integrate theory and practice. 

Students must be able to recognize the importance of abstraction and modeling for software 

architecture, design, and specification; to be able to acquire special domain knowledge 

beyond the computing discipline in order to support software development in specific 

domains of application; and to appreciate the value and attributes of good design. They 

should be expected to solve real-world problems, relying on the underlying principles 

taught in their graduate education. 

                                                

21 Shackelford, R., et al., Computing Curricula: 2005 Overview Report, ACM, 2006. 



   
12 

[7] The rapid evolution and professional nature of software engineering require ongoing 

review and revision of the corresponding curriculum. 

Universities, industry, and government, in cooperation with professional associations in 

this discipline, must establish an ongoing review process that allows individual components 

of the curriculum recommendations to be updated on a recurring basis. Also, because of the 

special professional responsibilities of software engineers to the public, the curriculum 

guidance could support and promote effective external assessment and accreditation of 

graduate SwE programs. Nevertheless, accreditation is outside the scope of GSwE2009, 

and it should not be used directly for accreditation. GSwE2009 is a snapshot of 

recommendations suitable for today and should define mechanisms for ongoing revision as 

SwE evolves. If current efforts to migrate the maintenance of GSwE2009 to the 

Association for Computing Machinery (ACM) and IEEE Computer Society are successful, 

the standards mechanisms those two professional societies operate should provide periodic 

revision of GSwE2009 as required.  

[8] GSwE2009 will be sensitive to changes in technologies, practices, and applications, new 

developments in pedagogy, and the importance of lifelong learning. 

The principles underlying SwE change relatively slowly, but the technology through which 

SwE is practiced keeps changing at breakneck speed. Educational institutions must adopt 

explicit strategies for responding to changing technology without being caught in the trap 

of simply ―training‖ the latest technology. A key to this is organizing the curriculum 

around enduring principles and planning to change the example technologies regularly. 

Institutions must recognize the importance of remaining abreast of well-established 

progress in both technology and pedagogy, subject to the constraints of available resources. 

SwE education, moreover, must seek to prepare students for lifelong learning, which will 

enable them to move beyond today‘s technology to meet the challenges of the future. 

GSwE2009 reinforces that recognition and preparation by specific outcomes identified in 

Section 3. 

[9] GSwE2009 will go beyond knowledge elements to offer significant guidance on individual 

curriculum components. 

GSwE2009 assembles knowledge elements into reasonable, easily implemented learning 

units. Articulating a set of well-defined curriculum units makes it easier for institutions to 

share pedagogical strategies and tools. It also provides a framework for publishing 

textbooks and other materials. However, GSwE2009 does not mandate a specific way of 

aggregating those learning units into courses. Nevertheless, the two companion documents 

to GSwE2009 describe example implementations that show possible ways of constructing 

courses that satisfy GSwE2009 recommendations. 
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[10] GSwE2009 will identify the fundamental skills and knowledge that all graduates of a SwE 

master’s degree program must possess. 

GSwE2009 defines 10 outcomes that all graduates should achieve. They range from the 

highly technical to ―soft skills‖ around communication and ethics. Additionally, 

GSwE2009 defines a specific CBOK that every student should master by graduation. That 

knowledge contributes to the 10 outcomes. However, only students who go well beyond 

the content of the CBOK can achieve the 10 outcomes.  

[11] GSwE2009 will be based on a flexible curriculum architecture and on recognized bodies of 

knowledge. The latter will be modified and enhanced as required. 

The description of CBOK will be concise, appropriate for graduate education, and will use 

the work of previous studies on relevant bodies of knowledge and curricula, especially 

(Ardis and Ford, 1989), SWEBOK, SE2004, and INCOSE
22

. A Guide to the Project 

Management Body of Knowledge (PMBOK
®

 Guide)
23

 was originally considered as a 

primary source document. However, in developing the CBOK, the CAT recognized that the 

SWEBOK already incorporated much of the relevant material from the PMBOK
®

 Guide 

and decided not to use the PMBOK
®

 Guide directly as a primary reference. 

As new studies emerge, they will be incorporated into subsequent versions of GSwE2009. 

For example, the IEEE Computer Society is now updating SWEBOK,
 
 and subsequent 

versions of GSwE2009 will incorporate those updates. Bodies of knowledge from related 

disciplines are included as appropriate, such as INCOSE‘s Systems Engineering Body of 

Knowledge
24

 and especially the INCOSE Handbook
25

. 

[12] GSwE2009 will honor individual program and student flexibility by limiting the common 

knowledge required for all students to no more than 50% of the total knowledge taught in a 

master’s program. 

The CBOK is recommended for all graduate SwE degrees. That core knowledge has broad 

acceptance by the SwE education community and related communities. Despite the 

tendency to squeeze more and more into the required core, GSwE2009 must accommodate 

wide variations in program focus and individual student interest. No more than 50% of the 

                                                

22 Jain, R., and Verma, D., A Report on Curriculum Content for a Graduate Program in Systems Engineering: A 

Proposed Framework, INCOSE International Symposium, 2007. 

23 Project Management Institute, A Guide to the Project Management Body of Knowledge (PMBOK® Guide), 3rd 
edition, 2004.   

24 INCOSE, Guide to Systems Engineering Body of Knowledge (G2SEBoK), International Council on Systems 

Engineering, 2004. 

25 Haskins, C. (ed.), INCOSE Systems Engineering Handbook, Version 3.1, INCOSE-TP-2003-002-03.1, August 

2007. 
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content of a master‘s program must be required in order to allow enough flexibility for 

universities and students. 

[13] GSwE2009 will be broadly based and international in scope. 

Despite the challenge that curricular requirements differ from country to country, 

GSwE2009 must be useful to SwE educators around the world. Where appropriate, every 

effort has been made to ensure that the curriculum recommendations are sensitive to 

national and cultural differences so that they are internationally applicable. The 

involvement by national computing societies and volunteers from all countries was actively 

sought and welcomed. Despite this effort, the clear majority of the GSwE2009 authors are 

from the United States. GSwERC 0.25 was sent for limited review to more than 100 

reviewers, who were chosen for their leading roles in SwE education and, in some cases, 

because they reside outside the United States. Additional international authors were 

recruited for GSwERC 0.50 to help avoid a U.S.-centric view. Faculty from outside the 

U.S. contributed analyses of their programs with respect to recommendations. Those 

analyses are in Comparisons of GSwE2009 to Current Master’s Programs in Software 

Engineering. Finally, a review workshop was held in Hyderabad, India in February 2009, 

bringing in more perspectives from outside the U.S.  

[14] GSwE2009 will include exposure to non-technical aspects of professional practice as an 

integral component of the graduate curriculum. 

The professional practice of SwE encompasses a wide range of non-technical issues and 

activities, including general problem solving, management, ethical and legal concerns, 

written and oral communication, working as part of a team, and recognizing the need for 

other expertise in a rapidly changing discipline. Those issues and activities are explicitly 

recognized in several GSwE2009 outcomes expected of all graduating students. 

[15] GSwE2009 will include discussions of strategies and tactics for implementation, along with 

high-level recommendations. 

Although it is important for GSwE2009 to articulate a broad vision of SwE education, the 

success of any real university curriculum depends heavily on implementation details. The 

companion volume, Frequently Asked Questions on Implementing GSwE2009, provides 

institutions with advice on the practical concerns of setting up a curriculum that satisfies 

GSwE2009 recommendations. That advice recognizes that academic institution and 

department visions and missions vary widely and may require different approaches to 

develop and maintain a graduate SwE curriculum. For example, programs may differ in 

student demographics, teaching/research/professional focus, delivery mechanisms, external 

constituents, infrastructure, regulations and accreditation issues, and many other program 

characteristics and constraints. The core knowledge required of all students and the 

implementation guidance accommodate such differences, including guidance on how 
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programs might extend the core to incorporate institution-specific needs (e.g., focus on a 

particular applications domain or on particular types of students). 

[16] The distinction between SE2004 and GSwE2009 will be clear and apparent. 

Compared to SE2004, which are the IEEE Computer Society and ACM recommendations 

for undergraduate SwE curricula, GSwE2009 content is more narrowly focused on SwE 

and related disciplines. GSwE2009 expects much greater sophistication in student 

reasoning about SwE principles, and expects students to demonstrate their accumulated 

skills and knowledge in a more significant capstone experience (project, practicum, or 

thesis) than does SE2004. The courses, evaluations, and the capstone will generally be 

more demanding because GSwE2009 is a graduate curriculum—SE2004 is an 

undergraduate curriculum—and GSwE2009 assumes that students enter the program with 

at least two years of relevant software development experience. 

The distinction between GSwE2009 and SE2004 is quite clear when they are viewed 

through the lens of Bloom‘s Taxonomy (see Appendix B for more information). SE2004 

requires students to master topics at Bloom‘s Taxonomy levels 1, 2, or 3—knowledge, 

comprehension, or application. For several topics, such as Requirements Analysis, 

GSwE2009 recommends mastery at level 4—analysis, and for one topic area in which the 

student specializes it recommends level 5—synthesis. SE2004 recommends mastery of 

many topics at level 1. Every topic in GSwE2009 must be mastered at level 2 or higher.  

Moreover, many more topics in GSwE2009 require mastery at level 3 than does SE2004; 

e.g., in SE2004, the topic of software process is addressed only at levels 1 and 2.  In 

GSwE2009, the same topic is covered at levels 2 and 3. 

[17] GSwE2009 will identify expected knowledge and experience for students to enter a 

master’s program in software engineering. 

Undergraduate computing programs and industry experience in SwE vary greatly. To help 

institutions build programs that address the needs of the broad SwE community, 

GSwE2009 recommends minimum prerequisite knowledge and experience. This minimum 

prerequisite knowledge and experience is determined by the level of proficiency (described 

in Section 3) expected from students within the limited amount of time, study, and units 

allowed in a typical master‘s program. Students who enter a graduate program lacking 

those prerequisites will generally find it harder to succeed. Of course, universities may 

choose to offer leveling courses,
26

 internships, and other means to help such students at the 

beginning of their graduate education. Such steps, while valuable, would clearly lengthen 

the time a student spends seeking a master‘s degree. 

                                                

26 A leveling course helps a student who does not have the expected proficiency level in a topic; e.g., a student who 

lacks the expected background in discrete mathematics could take a course to provide the requisite knowledge, 

skills, and abilities. Leveling courses are sometimes also called preparatory or bridging courses.  
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3. Expected Outcomes When a Student Graduates 

This section describes what students should be capable of when they graduate from a program 

that satisfies GSwE2009‘s recommendations.
27

 It establishes the expected outcomes required for 

a professional practice. It specifies a mix of 10 technical, ethical, learning, and other outcomes, 

reflecting the diverse skills that graduates require in order to become successful as software 

engineers. The CBOK Outcome is perhaps the most clearly technical, being tied directly to 

mastery of the CBOK. As shown in Comparisons of GSwE2009 to Current Master’s Programs 

in Software Engineering, many existing programs address this outcome fairly well. In contrast, 

the Ethics Outcome is among the least technical. It addresses mastery of ethical decision-making, 

which relatively few existing programs cover well. The curriculum authors deliberated at length 

about these outcomes to strike the right balance between technical and non-technical skills. Few 

existing programs cover all 10 outcomes well. That is, of course, not surprising. On the other 

hand, as articulated in Comparisons of GSwE2009 to Current Master’s Programs in Software 

Engineering, over time existing programs should be able to reduce and even eliminate the gap 

between themselves and GSwE2009.  

Several reviewers of GSwE2009 version 0.5 (called GSwERC version 0.5 at the time) 

recommended making these 10 outcomes more objectively testable. The authors weighed those 

recommendations carefully and provided some additional elaboration in the current version. 

However, the authors also felt that an extensive elaboration would be too limiting, since there are 

many ways to achieve these outcomes. Moreover, GSwE2009 is not intended to be used directly 

for accreditation. Instead, the companion volumes present guidance on achieving the outcomes 

and provide comparisons between GSwE2009 recommendations and actual master‘s programs.  

The order in which the outcomes are listed is not important. It does not reflect a priority among 

the outcomes. Graduates of a master‘s program that satisfies GSwE2009 recommendations will: 

CBOK Master the Core Body of Knowledge 

The CBOK specifies a Bloom Taxonomy level for each included knowledge area 

(KA), subarea, topic, and subtopic. Mastering the CBOK requires learning 

principles exemplified through practice. A graduating student will have 

demonstrated that he or she can perform at the specified Bloom level, which 

ranges from knowledge (the lowest level) up through analysis (the fourth level). 

Such performance is the definition of mastery used herein. By way of comparison, 

the undergraduate reference curriculum, SE2004, only expects performance 

through the third level, application.  

                                                

27 These outcomes were significantly influenced by a report from Carnegie Mellon University: Shaw, M. (Ed.), 

Software Engineering for the 21st Century: A Basis for Rethinking the Curriculum, Technical Report CMU-ISRI-

05-108, Carnegie Mellon University Institute for Software Research, March 2005. 
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GSwE2009 does not state how the demonstration of mastery will be performed. 

That decision is left up to the implementing university. However, the hypothetical 

implementations of GSwE2009 in Frequently Asked Questions on Implementing 

GSwE2009 offer approaches for such demonstration. A student who has mastered 

the CBOK will be able to develop a modest-sized software system of a few 

thousand lines of code from scratch, be able to modify a pre-existing large-scale 

software system exceeding 1,000,000 lines of code, and be able to integrate third-

party components that are themselves thousands of lines of code. Development 

and modification include analysis, design, and verification, and should yield high-

quality artifacts, including the final software product. 

DOMAIN Master software engineering in one application domain, such as finance, medical, 

transportation, or telecommunications, and in one application type, such as real-

time, embedded, safety-critical, or highly distributed systems. That mastery 

includes understanding how differences in domain and type manifest themselves 

in both the software itself and in its engineering, and includes understanding how 

to learn a new application domain or type. 

Only a student who enters a master‘s program already an expert or near expert in 

an application domain will depart that program as an expert. The Domain 

Outcome does not require a student to become a true expert in an application 

domain, an achievement that normally takes many years of experience and 

education. However, SwE only becomes tangible when practiced in an application 

domain, where software brings real value and where software engineers face, on a 

daily basis, the characteristics and peculiarities of that domain. Priorities, 

vocabulary, paradigms, technologies, tools, and a myriad of other factors vary 

from domain to domain; for example, security and privacy are typically extremely 

important in financial transactions, but less important in the embedded software of 

an automobile braking system. For the latter, safety is much more important. 

Development standards are very important in defense applications, but less 

important in software used to create special effects in movies. As a reference 

curriculum, GSwE2009 gives each program the flexibility to emphasize its 

defining characteristics. Nevertheless, depth in an application domain and 

application type requires knowing how to apply several of their significant tools 

and technologies. For example, someone gaining an in-depth understanding of 

Web applications in 2009 would almost certainly need to be able to use several 

common Web technologies, such as .Net or Java, and would need to understand at 

least one toolset for specifying, developing, integrating, modifying, and testing 

code using those technologies. Additionally, the student should appreciate the 

intersection of technology with the business/mission drivers of the domain. 
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There are practical limitations to which application domains an individual 

university can support in its classrooms. Faculty must be available who 

understand a domain, often through practice in the industry. Laboratories, case 

studies, and other artifacts must enable a student to explore a domain. Even large 

SwE programs will have trouble supporting more than a handful of domains well. 

Smaller programs might only be able to support one or two application domains. 

Section 4 sets expectations for a student entering a master‘s program. One of 

those expectations is two years of practical software development experience. 

That experience is vital to enable mastery of an application domain. It is 

extremely hard to understand an application domain simply by classroom 

exercises and readings. Two years experience in an application domain—any 

application domain—will give the student an invaluable practical perspective that 

can be applied in graduate education to achieve the Domain Outcome. 

DEPTH Master at least one KA or sub-area from the CBOK to the Bloom Synthesis level. 

A student needs to dive deeply into at least one KA or sub-area, such as 

requirements or architecture. Such depth strengthens the student‘s analytic skills 

and enables the student to solve hard problems in at least one KA. This outcome 

is much more demanding than any in SE2004, the undergraduate SwE curriculum, 

which only requires mastery up to the application level in any topic. 

ETHICS Be able to make ethical professional decisions and practice ethical professional 

behavior. 

Professionals routinely face ethical, legal, and social dilemmas, such as when is it 

ethically, legally, and socially acceptable to compromise quality in order to meet 

schedule? What types of activities constitute a professional conflict of interest or 

are a breach of ethics, law, or social norms? In some cases, potential violations of 

the law are clear, but in most situations, there are no black and white rules for 

resolving such questions. Resolution requires maturity, experience, knowledge, 

and judgment. A graduate should have demonstrated that he or she has the 

maturity, knowledge, and judgment to make common professional decisions that 

have ethical, legal, and social implications. Two years of practical experience 

before entering the master‘s program will help enrich the student‘s ability to 

understand ethical dilemmas. In two years of work experience, it is quite possible 

the student will have faced the challenge of deciding whether to ship a product 

when serious bugs still remain, or whether to discount the views of an important 

stakeholder because it is ―politically‖ difficult, or other such situations. 
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SYS ENG Understand the relationship between software engineering and systems 

engineering and be able to apply systems engineering principles and practices in 

the engineering of software. 

As mentioned earlier, SwE and SE have much in common, but are often treated as 

quite separate disciplines. In some business domains, the term systems engineer is 

not used, instead being replaced by application engineer, system architect, lead 

engineer, system analyst, or many other terms. The student should be able to look 

past differences in terminology and see the relationship between software and SE, 

no matter what the latter is called. 

Topics such as requirements analysis and architecture should be taught from a 

common systems/software perspective. For example, the architecture of any large 

system typically has much of its functionality implemented through a mix of 

hardware, software, and people. Software engineers should learn how to influence 

SE decisions to create the right mix for a particular application and should 

understand how to select the best software technologies to support that mix. The 

notions of systems thinking and system dynamics, popularized by people such as 

Jay Forrester
28

, John Sterman
29

, and Peter Senge
30

, which stress understanding the 

relationship of the system as a whole to other systems, is an important aspect of 

SE that should be addressed.  

TEAM Be an effective member of a team, including teams that are multinational and 

geographically distributed, effectively communicate both orally and in writing, 

and lead in one area of project development, such as project management, 

requirements analysis, architecture, construction, or quality assurance. 

Students need to complete tasks that involve work as an individual, but also many 

other tasks that entail working with a group of individuals. For group work, 

students ought to be informed of the nature of groups and of group activities/roles 

as explicitly as possible. This must include an emphasis on the importance of such 

matters as a disciplined approach, the need to adhere to deadlines, how to 

communicate both orally and in writing, and how teams are evaluated as a whole 

rather than just as individuals. Students should have an appreciation of team 

dynamics and leadership techniques and be able to lead at least one area of project 

development. Increasingly, system and software development teams are 

assembled from many geographical sites, often across national boundaries. This 

                                                

28 Forrester, J., Learning Through System Dynamics as Preparation for the 21st Century, 1994. 

29 Sterman, J., Business Dynamics: Systems Thinking and Modeling for a Complex World, McGraw-Hill/Irwin, 

2000. 

30 Senge, P., The Fifth Discipline: The Art and Practice of the Learning Organization, Broadway Business, 2006.  
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presents additional challenges of time, language, and culture that students must 

know how to address. For some programs, establishing geographically dispersed 

teams will be challenging, but this can be done where necessary by teaming with 

programs at other universities and campuses. 

RECONCILE Be able to reconcile conflicting project objectives, finding acceptable 

compromises within limitations of cost, time, knowledge, risk, existing systems, 

and organizations. 

Students should engage in realistic exercises that expose them to conflicting and 

changing requirements. For example, end users may prefer a new system that does 

not require significant change in existing business practice, while the business 

leaders may be looking to reengineer the business practice in order to realize 

dramatic gains in efficiency. If not managed well, such conflicts among key 

stakeholders can lead to requirements churn, product rejection, and many other 

undesirable consequences. The software engineer should understand techniques to 

address and resolve such conflicts. As another example, new requirements 

routinely emerge during the course of most large or complex projects. The 

graduate of a master‘s program should be able to reason about the implications of 

such emergence on technical planning and software architecture, among other 

considerations. Rigorous techniques to perform tradeoffs should be included as a 

way of resolving conflicts. Note also the tie between this outcome and the Ethics 

Outcome. The inability to reconcile conflicts well can lead to ethical dilemmas. 

PERSPECTIVE Understand and appreciate feasibility analysis, negotiation, and good 

communications with stakeholders in a typical software development 

environment, and perform those tasks well; have effective work habits and be a 

leader. 

The presence of a capstone experience, if it is a group project and not an 

individual activity (such as a thesis), is of considerable importance in this regard. 

It offers students the opportunity to tackle a major project and demonstrate their 

ability to bring together topics from a variety of courses and apply them 

effectively. This mechanism allows students to demonstrate their appreciation of 

the broad range of SwE topics and their ability to apply their skills to genuine 

effect. This should also include the ability to offer reflections on their 

achievements. 

LEARN Be able to learn new models, techniques, and technologies as they emerge, and 

appreciate the necessity of such continuing professional development. 

In a field as dynamic as SwE, life-long learning is essential to continued success. 

It is therefore imperative for the graduate student to develop the necessary skills 
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to seek and learn the latest developments—to be able to grow personally. This 

includes the ability to evaluate and adapt software development processes, 

metrics, and tools, including the ability to create or assemble satisfactory evidence 

for that evaluation. A master‘s program cannot instill the desire for life-long 

learning, but can teach the skills to know how to do life-long learning. 

TECH Be able to analyze a current significant software technology, articulate its 

strengths and weaknesses, compare it to alternative technologies, and specify and 

promote improvements or extensions to that technology. 

Technologies change frequently. A software engineer must be able to select new 

technologies, understanding their limitations and appropriate uses: that is, to be 

able to perform tradeoff studies and act as a change agent within his or her 

professional organization. In 2009, such technologies might include service-

oriented architectures and their supporting toolsets. In five years, there will be 

another set of technologies, just as controversial and complex. A graduate should 

know how to decide the relative merits of such technologies based on assembled 

or discovered evidence and be an effective advocate for ―winning‖ technologies. 

Note, however, that in a university setting, a student will likely only be able to 

demonstrate their potential to be an effective advocate.  

The Tech Outcome has a strong tie to the Domain Outcome. The strengths and 

weaknesses of a technology are generally not absolute, but vary with the 

application domain and other context. 

It is useful to think beyond student competencies at graduation, looking out three to five years 

later toward the longer-term objectives that students might achieve. The CAT considered 

whether GSwE2009 should include a standard set of objectives that all master‘s programs should 

set for their graduates. After lengthy discussion, the CAT concluded no standard set existed. 

There is simply too much variation among individual master‘s programs to prescribe a common 

set in GSwE2009. Nevertheless, it is desirable for each university program to establish its own 

objectives.
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4. Expected Student Background When Entering the Master’s Program 

One of the hardest decisions to make when constructing a graduate curriculum is determining 

what a student should be capable of when entering the program. If the bar is set too low, the 

graduate education will either be shallow or will need to be extended by universities to 

compensate for low entry capability. If the bar is set too high, too few will qualify and the 

program will struggle to attract students. According to a recent survey of graduate SwE 

programs, summarized in Appendix A, the average master‘s program in SwE requires around 33 

to 36 graduate course credits, which in the United States is usually structured into 11 or 12 3-

credit semester courses. GSwE2009 is in line with current practice, recommending a program of 

around 33 to 36 graduate credits. A full-time student could reasonably be expected to complete 

such a program in 18 to 24 months. The number of recommended credits, combined with 

expectations for student knowledge and skills when they graduate, determine what students 

should be capable of when they enter the master‘s program. 

Establishing outcomes cannot be done without considering what students are capable of when 

entering the master‘s program. The survey of existing graduate programs described in Appendix 

A revealed a wide range of expectations for entering students. For example, some universities 

target students who are making a mid-career shift into being software engineers. For those 

universities, a student with a bachelor‘s degree and a ―B‖ grade point average (GPA) is enough 

for entry. Other universities target students who are software professionals seeking to advance 

their career with an advanced degree in their current field. Most—but not all—universities 

presume a student can program in at least one computer language. About a third of the surveyed 

programs presume a student has professional experience as a software engineer. Nevertheless, 

GSwE2009 must make some assumptions about what students are capable of at entry or there is 

no basis for defining what knowledge they can reasonably master while pursuing a degree that is 

nominally the equivalent of 11 to 12 3-credit semester-long courses. 

Note that expectations are not admission requirements. Individual universities and programs set 

admission requirements. However, deviations from these expectations may require lengthening 

the program to compensate and still achieve the 10 outcomes in Section 3. A student can 

compensate for the lack of a formal education by more extensive experience; a university can 

offer a student lacking certain knowledge or skills an opportunity to take additional leveling
31

 

courses; or a student lacking experience can take an internship or follow some other means to 

gain that experience while in the degree program. Of course, the latter two options will increase 

the number of courses that a student must take to earn a master‘s degree—a common practice for 

those entering a graduate program without the expected background. The curriculum 

architecture, described in the next section, provides a structure by which a university could 

                                                

31 Such courses go by many names.  Students who lack proficiency in an expected competency normally take them. 

The objective is to raise their level of proficiency to that of their peers. 
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address students who do not meet the entry expectations. Frequently Asked Questions on 

Implementing GSwE2009 provides advice on how to welcome students who lack strong 

computer science or software development backgrounds.  

GSwE2009 presumes that an entering student meets all the following:  

 The equivalent of an undergraduate degree in computing, or an undergraduate degree in 

an engineering or scientific field and a minor in computing. Table 1 in Section 6.2, 

Preparation Knowledge, defines the expected knowledge from the degree. 

 The equivalent of an introductory course in SwE. Table 1 in Section 6.2 also defines the 

expected knowledge from this course. 

 At least two years of practical experience in some aspect of SwE or software 

development. This experience should include participation in teams, development of a 

program or component that has been successfully delivered, and an update or repair to an 

existing program or component. 

The rationale for these expectations is: 

DEGREE Many existing master‘s programs in SwE expect students to have a bachelor‘s 

degree in an engineering or scientific field, but not a degree in computing. Such 

students generally bring much of the math skills and the ability to think 

analytically, both of which are essential to SwE. Students often have 

programming experience, although it is usually programming in the small without 

the benefit of understanding how to address issues associated with large or 

complex software. 

In order to engineer software, a student must have mastered the fundamentals of 

computing, including programming, computer hardware, operating systems, data 

structures, algorithms, discrete math, and a design course that has considered 

developing a system in which a primary issue has been the integration of several 

components. Students who do not have at least a minor in computing will 

generally lack that mastery. 

Universities frequently offer leveling courses to students who enter a master‘s 

program lacking the expected background in computing. 

SWE The majority of master‘s programs in the 2007 survey of existing programs do not 

start students in an introductory SwE course. These programs assume that the 

student has learned the equivalent knowledge either from earlier coursework or 

from professional experience. GSwE2009 follows the practice of the majority of 

programs in that regard. 
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Universities frequently offer an undergraduate course introducing SwE to students 

who do not have the equivalent knowledge from a prior course or professional 

experience.  

EXPERIENCE SwE is a practical field and it is a truism that there is no substitute for experience. 

The richness of the discussions in a graduate class and the sophistication of the 

analysis that students can perform are driven, in part, by the experience of those 

students. Students with at least two years of practical experience in several 

aspects of SwE or software development have a significantly deeper appreciation 

for the issues that are examined in the master‘s program. Such experience should 

expose the student to a team environment and to working on several aspects of 

development, as would happen when a student is part of a team modifying, 

testing, and releasing an existing application. Going through at least one full life 

cycle of a product release would be ideal. Two years experience in a single 

development activity, such as performing configuration management, would not 

support the spirit of this background expectation. The most germane experience 

would have the student (1) work on a component of a larger system that requires 

integration; (2) evolve an existing system, such as making it be backward-

compatible with previous versions; and (3) address contextual requirements of 

customers.  

Universities could offer internships to students lacking the expected experience, 

or otherwise involve them in a significant practical experience early in their 

master‘s program. However, it should be noted that several CAT members doubt 

whether an internship can truly compensate for a lack of relevant professional 

experience.  Addition of such internships would probably increase the time 

required in the program.  
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5. Curriculum Architecture 

This section describes the structure of a curriculum into which courses satisfying GSwE2009 

recommendations can be packaged. It identifies, via the CBOK, the minimal material that all 

programs should include and makes provisions for each institution to develop its own distinctive 

program(s). The curriculum architecture is similar to the one proposed in (Ardis and Ford, 1989) 

and is compatible with the existing master‘s programs for which course and curriculum data are 

described in Appendix A. It is intended to provide a structural basis for programs that deliver the 

outcomes described in Section 3.  

 

Figure 1. Architectural Structure of a GSwE2009 Master’s Program 

The curriculum architecture includes preparatory material, core materials, university-specific 

materials, elective materials, and a mandatory capstone experience. Figure 1 provides an 

overview of the curriculum architecture. The heavy black line represents the baseline 

expectations described in Section 4 for students entering the master‘s program. Thus, material 

above the heavy black line is mastered before entry into the master‘s program. Material below 

the heavy black line is mastered after program entry. A student who satisfies the baseline 

expectations is ready to begin the program (work below the heavy black line). Individual 
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programs will determine how to prepare students whose background falls short. Typically, 

colleges and universities that wish to admit students who lack the expected background will 

provide preparatory courses containing materials that those students should take before entering 

the master‘s program. Those are the preparatory materials shown above the dark horizontal line 

in Figure 1.The more deficient the student‘s background is relative to the baseline entrance 

expectations, the higher the risk is that the student will not perform satisfactorily, harming both 

himself and fellow students. It is anticipated that a few students with undergraduate degrees in a 

variety of fields plus extensive experience, might enter directly into courses that cover only a 

subset of the core materials, and perhaps occasionally directly into courses that include 

university-specific and elective materials. 

GSwE2009 identifies the fundamental skills and knowledge that all graduates of a master‘s 

program in SwE must possess. In Figure 1, this is captured in the half-circle area labeled Core 

Materials. These skills and knowledge include such topics as SE fundamentals, requirements 

engineering, software design, and ethics and professional conduct, which are listed in Section 6, 

CBOK. Where appropriate, it defines the common themes of the SwE discipline, including its 

dependencies on other related disciplines, such as SE, human factors for interface design and 

testing, and project management, and recommends that all graduate programs include this 

material. Courses that teach CBOK material would be mandatory or core courses, since taking 

them would be necessary to learn the core material. The CBOK has been limited to include no 

more than 50% of the total knowledge conveyed in a complete master‘s program. 

The next half-circle in Figure 1, labeled University-Specific Materials, represents materials that 

an institution might include in order to tailor its program to meet its specific objectives. These 

will vary by institution or degree program. They may differ widely because of student 

demographics, teaching/research/professional focus, delivery mechanisms, external constituents, 

and infrastructure or accreditation issues. Institutions might include material in this part of the 

curriculum to extend a student‘s knowledge of their undergraduate field of study with particular 

emphases on tradeoffs between applications in those fields and the disciplines that are included 

in other portions of the SwE curriculum. For example, a program that emphasizes safety-critical 

systems might have a required course on such systems that would be part of the University-

Specific Materials. An institution or program might refer to the core materials, as defined in this 

document, plus its university-specific materials, as its own core. 

Elective Materials accommodate different interests of individual students, but may still reflect a 

program focus. For example, a program may focus on information security, verification and 

validation (V&V), or health-care systems, providing a series of courses that allow a student to 

gain depth in a technical area, CBOK KA, or an application domain, respectively. Those courses 

might be organized into tracks or may simply be an unstructured collection of courses. Students 

may be constrained in what electives they take to foster program educational goals, or the 

program may allow the student broad freedom in course selection. Elective materials can also 
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include special topics courses that might be used from time to time to introduce experimental 

topics into the curriculum. 

 

Figure 2. Course Alignment, Which May or May Not Correspond to Specific Topics or Rings 

GSwE2009 recommends that students demonstrate their accumulated skills and knowledge in a 

capstone experience, which might be a project, a practicum, or a thesis. The capstone experience 

would likely be between 3 to 6 credit hours, which would count towards the 33 to 36 total credit 

hours typically required for a master‘s degree. In this context, a project would be a practically 

oriented undertaking done by a single student or a group for or with someone within the offering 

institution. A practicum would be a software development project done for a real external 

customer by a group of students, perhaps for an employer for whom one or more of them work. 

A thesis would be SwE research completed by an individual student under the guidance of a 

research-oriented member of the faculty. Students completing the curriculum must be able to 

understand and appreciate the importance of negotiation, effective work habits, leadership, and 

good communication with stakeholders in a typical software development environment. These 

topics should be integrated into the core materials and perhaps could be reinforced in the 

university-specific or elective materials. However, the presence of a capstone project, a 

practicum, or a thesis at the end of the curriculum is of considerable importance in this regard. It 
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offers students the opportunity to tackle a major undertaking and demonstrate their ability to 

bring together topics from a variety of courses and apply them effectively, as shown by the 

broken lines connecting the capstone experience back to the materials contained in the various 

layers of the curriculum. 

There is no intent in this architectural specification to require either the content of preparatory 

courses or the content in core courses to be self-contained in courses with names corresponding 

to the topics. Figure 2 provides an example showing how this might happen. The yellow wedges 

in this figure correspond to courses that teach precisely core material, precisely university-

specific material or precisely elective material. The green wedges represent courses that integrate 

material across architectural layers. For example, Course 1 (shown in green) covers a 

combination of core and university-specific material. Course 2 (shown in yellow) covers only 

university-specific materials. Either, or both, methods of course packaging are appropriate. 

 

Figure 3.  Demonstration of How a Specific Track May Fit Within a Program 

There is also no intent that all of the courses containing preparatory or core materials must be 

completed before coursework in the next ring can begin. It is anticipated that the sequencing of 
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courses will be controlled primarily by the prerequisite specifications of each course in a specific 

institution‘s curriculum. 

Figure 3 offers an example of how a track could be constructed within this architectural 

framework. In this example, the track would include all of the core materials, some university-

specific materials from the track, some elective materials related to the track and a capstone 

experience concentrating on a topic associated with the specific track. Tracks are typically areas 

of study, such as telecommunications, real-time systems, and information systems. 

It is through a combination of Core, University-Specific, and Elective Materials that the 10 

outcomes in Section 3 are met. For example, the Domain Outcome requires depth in an 

application domain, such as telecommunications or finance. A program could offer a track that 

gives a student depth in telecommunications by emphasizing telecommunications examples in a 

software architecture class that teaches Core Materials, and that teaches telecommunications 

principles in an elective course on the general telecommunications field. 
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6. Core Body of Knowledge (CBOK) 

6.1 Development of the CBOK 

The primary source for developing the CBOK was the SWEBOK. Knowledge elements were 

also derived from SE2004, (INCOSE, 2003) and especially (Haskins, 2007). In the study and 

analysis of these sources, it was decided that although the SWEBOK organization and content 

would dominate, various changes in areas and topics were needed to support the GSwE2009 

expected student outcomes and to accommodate the needs and views of academia, industry, and 

the computing professional societies. For example, two KAs, not in the current version of the 

SWEBOK, were added: Systems Engineering Fundamentals, and Ethics and Professional 

Conduct. In addition, some units and topics were added, rearranged or modified. These included:  

• Addition of Human Computer Interface design in the Software Design KA 

• Addition of an Engineering Economics unit in the Software Engineering Management 

KA 

• Addition of a Risk Management unit in the Software Engineering Management KA 

• Addition of a Verification and Validation (V&V) unit in the Software Quality KA 

• Changes in the names and the unit/topic organization in three KAs: (a) Software 

Requirements to Requirements Engineering, (b) Software Testing to Testing and (c) 

Software Configuration Management to Configuration Management. These changes were 

made to accommodate and emphasize the role of SE in GSwE2009. 

It should be noted that as of the publication date of GSwE2009, the plans for a 2010 refresh of 

SWEBOK call for a new KA on Professional Practice and four new education KAs: Engineering 

Economy Foundations, Computing Foundations, Mathematical Foundations, and Engineering 

Foundations. GSwE2009 has attempted to accommodate the SWEBOK refresh by including 

these topics in the preparation knowledge (discussed in the next section) and in the additional 

KAs and units in the CBOK. 

Two other proposals for significant re-organization of the SWEBOK KAs were considered: 

• Create a KA called Supporting Processes that includes configuration management, V&V, 

quality assurance, reviews and audits, and software documentation process. This proposal 

also included recommended changes in the Software Engineering Management area 

involving units on organizing, staffing, and directing a software project. 

• Create a KA called V&V that subsumes the Software Testing KA and includes units from 

the Software Quality area. 

Although both proposals were viewed positively, it was felt that the wide recognition and the 

common understanding of the organization of the SWEBOK KAs were compelling reasons to 

maintain the basic SWEBOK outline as a foundation for the GSwE2009 CBOK. However, the 
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first proposal did prompt study, analysis, and modification of the description of some of the 

knowledge units within the Software Engineering Management KA (in Project Organization and 

Enactment and in Risk Management). 

The CAT has provided a recommended level to which a student should achieve each KA; these 

are defined in terms of Bloom‘s taxonomy. Appendix B describes Bloom‘s cognitive levels
32

 and 

the process used to specify the student cognitive level for both the prerequisite KAs and the 

CBOK KAs. The following level designations are used in the tables in this section: 

• Knowledge (K) 

• Comprehension (C) 

• Application (AP) 

• Analysis (AN) 

These level designations are not intended to guide detailed curriculum design, but rather to 

provide a high-level view of curriculum and student expectations. Students admitted to a 

program who possess substantial SwE education (e.g., a Bachelor of Science degree in SwE) or 

experience (e.g., an experienced software project manager) will arrive with knowledge at or 

above some of the designated Bloom‘s levels. A university might choose to exempt such 

students from some of its required courses, giving them the opportunity to take a greater number 

of advanced courses than afforded the typical student. 

6.2 Preparation Knowledge 

Table 1 specifies the knowledge students should possess when entering a master‘s program in 

order to be best prepared to achieve the GSwE2009 outcomes. SE2004 was the primary source 

for the knowledge elements. The knowledge may be acquired through undergraduate study, from 

software development experience, through leveling courses offered by an institution, or through 

some combination of these. The table is organized hierarchically into three levels, similar to the 

knowledge organization in the SE2004. The highest level of the hierarchy is the KA, such as 

Mathematical Fundamentals. Each KA is shown in blue and is broken down into smaller 

numbered divisions called units, which represent individual thematic modules within an area. 

Each unit is further subdivided into an unordered set of topics. 

Clearly, other preparation knowledge will be needed to support graduate SwE education. For 

example, students entering a master‘s program should have a strong background in general 

education: excellent oral and written communication skills, knowledge of the social sciences, and 

a solid foundation in continuous mathematics (algebra, pre-calculus, and calculus).  

                                                

32 Bloom, B.S. (Ed.), Taxonomy of educational objectives: The classification of educational goals: Handbook I, 

cognitive domain, Longmans, 1956. 
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Table 1.  Preparation Knowledge for Core Body of Knowledge  

Knowledge Areas 
Bloom 

Level 

Mathematics Fundamentals  

1. Discrete Structures 

AP Functions, relations, and sets; basic logic; proof techniques; basics of counting; graphs and 

trees; discrete probability 

2. Propositional and Predicate Logic 

Propositions, operators, and truth tables, laws of logic, predicates and quantifiers, argument 

and inference 
AP 

3. Probability and Statistics 

Basic probability theory, random variables and probability distributions, estimation theory, 

hypothesis testing, regression analysis, analysis of variance 

AP 

Computing Fundamentals  

1. Programming Fundamentals 

AP 
Overview of programming languages; virtual machines; introduction to language translation; 
declaration and types; abstraction mechanisms; object-oriented programming; functional 

programming; language translation systems; type systems; programming language semantics; 

programming language design 

2. Data Structures and Algorithms  

C Basic algorithmic analysis; algorithmic strategies; fundamentals of computing algorithms; 

distributed algorithms 

3. Computer Architecture 

C 
Digital logic and digital systems; machine level representation of data; assembly level 
machine organization; memory system organization and architecture; interfacing and 

communication; functional organization; multiprocessing and alternative architectures; 

performance enhancements; architecture for networks and distributed systems 

 4. Operating Systems 

C Operating system overview and principles; concurrency; scheduling and dispatch; memory 
management; device management; security and protection; file systems; real-time and 

embedded systems; fault tolerance; system performance evaluation; scripting 

5. Networks and Communications 

C Introduction to net-centric computing; communication and networking; network security; 
Internet; building Web applications; network management; compression and decompression; 

multimedia data technologies; wireless and mobile computing 

6. Module Design and Construction 

AP Abstraction, information hiding, interface design, procedural design, assertions, exceptions, 

coupling and cohesion 

Software Engineering  

1. Software Requirements 

C Software requirements fundamentals; requirements elicitation; requirements analysis; 

requirements specification; requirements validation 

2. Software Design C 
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Knowledge Areas 
Bloom 

Level 

Software design fundamentals; software structure and architecture; software design 

notations; software design strategies and methods 

3. Software Construction 
AP 

Software construction fundamentals; software construction practices 

4. Software Testing 
K 

Software testing fundamentals; test levels; test techniques 

5. Software Maintenance 
K 

Software maintenance fundamentals; techniques for maintenance 

6. Software Engineering Management 
K 

Software project planning; software configuration management 

7. Software Engineering Process 
K 

Process definition and implementation; product and process measurement 

8. Software Quality 
K 

Software quality fundamentals; software quality management practices 

6.3 CBOK Concepts and Organization 

Table 2 presents the outline of the CBOK that is recommended for the core of a curriculum that 

supports the GSwE2009 recommendations. It is organized hierarchically in the same manner as 

Table 1. The CBOK knowledge units and their Bloom level designations were developed in such 

a way that the core could be covered in the equivalent of approximately 15 credit hours or 

approximately 200 contact hours (using a North American academic model). The core is 

designed to comprise a little less than 50% of the total credit hours recommended for a master‘s 

degree. Hence, additional time and courses can be allocated to provide additional depth in the 

core areas (at higher Bloom levels) and to focus on a chosen application domain. An actual 

workload measure (such as that used in the European Commission‘s European Credit Transfer 

System
33

) could have been used, but it was felt that contact hours were sufficient for the intended 

level of this curriculum guidance. 

Table 2.  Core Body of Knowledge  

Knowledge Area 
Systems Eng. 

Content 
Bloom Level 

A. Ethics and Professional Conduct   

1. Social, legal, and historical issues SYS C 

Data confidentiality and security, surveillance and privacy   

                                                

33 European Commission, Education & Training, ―European Credit Transfer and Accumulation System (ECTS)‖ 

website.  http://ec.europa.eu/education/programmes/socrates/ects/index_en.html#1  
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Knowledge Area 
Systems Eng. 

Content 
Bloom Level 

Historical developments, and gender, minor, and cultural issues   

Contracts and liability, intellectual property, freedom of information   

Computer crime and law enforcement   

2. Codes of ethics and professional conduct SYS C/AP 

Responsibilities to society   

Models for professionalism, professional societies   

Codes of ethics and practice   

3. The nature and role of software engineering standards  C 

Nature and role of standards   

International standards, standards and harmonization organizations   

Bodies of knowledge, accepted and best practices   

B. System Engineering SYS  

1. Systems Engineering Concepts  C 

System context   

    People and systems   

System hierarchical relationships   

The role of system engineers   

2. System Engineering Life Cycle Management  C 

Lifecycle Management   

Systems engineering and software engineering processes   

3. Requirements   C/AP 

Stakeholder requirements   

Requirements analysis   

4. System Design  C/AP 

Architectural design   

Implementation   

Trade studies   

5. Integration and Verification   C 

6. Transition and Validation   C 

7. Operation, Maintenance and Support  C 

C. Requirements Engineering SYS  

1. Fundamentals of Requirements Engineering  C/AP 

Relationship between systems engineering and software engineering   

Definition of requirements   

System design constraints   
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Knowledge Area 
Systems Eng. 

Content 
Bloom Level 

System design and requirements allocation   

Product and process requirements   

Functional and non-functional requirements   

Emergent properties   

Quantifiable requirements   

2. Requirements Engineering Process  C 

Process models   

Process actors   

Process support and management   

Process quality and improvement   

3. Initiation and Scope Definition  AP 

Determination and negotiation of requirements   

Feasibility analysis   

Process for requirements review/revision   

4. Requirements Elicitation  AP 

Requirements sources   

Elicitation techniques   

5. Requirements Analysis  AN 

Requirements classification   

Conceptual modeling   

Heuristic methods   

Formal methods   

Requirements negotiation   

6. Requirements Specification  AP 

Requirements specification techniques   

7. Requirements Validation  AP 

Requirements reviews   

Prototyping   

Model validation   

Acceptance tests   

8. Practical Considerations  C/AP 

Iterative nature of requirements process   

Change management   

Requirements attributes   

Requirements tracing   

Measuring requirements   

D. Software Design   

1. Software Design Fundamentals  C/AP 
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Knowledge Area 
Systems Eng. 

Content 
Bloom Level 

General design concepts   

Context of software design   

Software design process   

Enabling techniques   

2. Key Issues in Software Design  AP 

Concurrency   

Control and handling of events   

Distribution of components   

Error and exception handling and fault tolerance   

Interaction and presentation   

Data persistence   

3. Software Structure and Architecture  AP/AN 

Architectural structures and viewpoints   

Architectural styles (macro architectural patterns)   

Design patterns (micro architectural patterns)   

Human computer interface design   

Families of programs and frameworks   

4. Software Design Quality Analysis and Evaluation  AP 

Quality attributes   

Quality analysis and evaluation techniques   

Measures   

5. Software Design Notations  AP 

Structural descriptions (static)   

Behavioral descriptions (dynamic)   

6. Software Design Strategies and Methods  AP/AN 

General strategies   

Function-oriented (structured) design   

Object-oriented design   

Heuristic methods   

Formal methods   

Component-based design (CBD)   

E. Software Construction   

1. Software Construction Fundamentals  AP 

Minimizing complexity   

Anticipating change   

Constructing for verification   

Standards in construction   

2. Managing Construction  AP 
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Knowledge Area 
Systems Eng. 

Content 
Bloom Level 

Construction methods   

Construction planning   

Construction measurement   

3. Practical Considerations  AP 

Construction design   

Coding   

Construction testing   

Construction quality   

Integration   

F. Testing SYS  

1. Testing Fundamentals  AP 

System testing and software testing   

Testing-related terminology   

Key issues   

Relationships of testing to other activities   

2. Test Levels  AP 

The target of the tests   

Objectives of testing   

Component testing   

Integration testing   

System testing   

Acceptance testing   

3. Testing Techniques  AP 

Based on tester‘s intuition and experience   

Specification-based   

Code-based   

Fault-based   

Usage-based   

Based on nature of application   

Selecting and combining techniques   

4. Test-Related Measures  AP/AN 

Evaluation of the program or system under test   

Evaluation of the tests performed   

5. Test process  C/AP 

Management concerns   

Test activities   

G. Software Maintenance   

1. Software Maintenance Fundamentals  C 
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Knowledge Area 
Systems Eng. 

Content 
Bloom Level 

Definitions and terminology   

Nature of maintenance   

Need for maintenance   

Majority of maintenance costs   

Evolution of software   

Categories of maintenance   

2. Key Issues in Software Maintenance  AP 

Technical   

- Limited understanding   

- Testing   

- Impact analysis   

- Maintainability   

Management issues   

- Alignment with organizational issues   

Maintenance cost estimation   

- Cost estimation   

- Parametric models   

- Experience   

Software maintenance measurement   

3. Maintenance Process  AP 

Maintenance process models   

Maintenance activities   

- Unique activities   

- Supporting activities   

4. Techniques for Maintenance  AP 

Program comprehension   

Reengineering   

Reverse engineering   

H. Configuration Management (CM) SYS  

1. Management of the CM Process  C/AP 

Organizational context for CM   

Constraints and guidance for CM   

Planning for CM   

- CM organization and responsibilities   

- CM resources and schedules   

- Vendor/subcontractor control   

- Interface control   

Configuration management plan   
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Knowledge Area 
Systems Eng. 

Content 
Bloom Level 

Surveillance of configuration management   

- CM measures and measurement   

- In-process audits of CM   

2. Configuration Identification  AP 

Identifying items to be controlled   

- Configuration items   

- Configuration item relationships   

- Versions   

- Baseline   

-Acquiring configuration items   

Software library   

3. Configuration Control  AP 

Requesting, evaluating and approving changes   

- Configuration control board   

- Change request process   

Implementing changes   

Deviations and waivers   

4. Configuration Status Accounting   

Configuration status reporting   

5. Software Release Management and Delivery  AP 

Software building   

Software release management   

I. Software Engineering Management   

1. Software Project Planning  AP 

Project goals and objectives   

Project policies and standards   

Process planning   

Project assumptions and forecasts   

Project deliverables   

Project staffing   

Effort, schedule, and cost estimation   

Resource allocation   

Quality management   

Project plan/budget development and management   

2. Risk Management SYS AP 

Risk management concepts   

- Probability, impact   

 - Timeframe   
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Knowledge Area 
Systems Eng. 

Content 
Bloom Level 

Risk management process   

- Frameworks, standards, and guidelines   

- Risk identification, analysis and risk prioritization techniques   

- Risk mitigation strategies   

Risk management tools   

- Earned value tracking   

 - Technical performance measurement   

 - Defect tracking and reporting   

 - Project control panels   

Organizational risk management   

Joint supplier/customer risk management   

3. Software Project Organization and Enactment  AP 

Project organization   

 - Identify and group project functions, activities, and tasks 

- Determine organizational structure and positions 

- Define responsibilities, authority relationships, position qualifications 

  

Project directing   

- Leadership, supervision, delegation of authority, coordination and 

communication 
  

- Motivation, conflict resolution, team building   

Project control   

 - Implementation of plans, and measurement process   

 -Process monitoring   

 - Change management   

Reporting   

Supplier contract management (e.g., RFP, cost evaluation, IP rights)   

4. Review and Evaluation  C 

Determining satisfaction of requirements   

Reviewing and evaluating performance   

5. Closure SYS C 

Determining closure   

Closure activities   

6. Software Engineering Measurement  AP 

Establish and sustain measurement commitment   

Plan the measurement process   

Perform the measurement process   

Evaluate measurement   

7. Engineering Economics SYS C 
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Knowledge Area 
Systems Eng. 

Content 
Bloom Level 

Engineering economics fundamentals   

For-profit decision-making   

Not-for-profit decision-making   

Present economy   

Estimation, risk, and uncertainty   

Multiple attribute decisions   

J. Software Engineering Process   

1. Process Implementation and Change  C/AP 

Process infrastructure   

- Software engineering process group   

- Experience factory   

Activities   

Models for process implementation and change   

Practical considerations   

2. Process Definition  C 

Life cycle models   

Software life cycle processes   

Notations for process definitions   

Process adaptation   

Automation   

3. Process Assessment  AP 

Process assessment models   

Process assessment methods   

4. Product and Process Measurement  AP 

Software process measurement   

Software product measurement   

- Size measurement   

- Structure measurement   

- Quality measurement   

Quality of measurement results   

Measurement techniques   

- Analytical techniques SYS  

- Benchmarking techniques SYS  

K. Software Quality   

1. Software Quality Fundamentals  AP 

Software engineering culture and ethics   

Value and costs of quality SYS  

Quality models and characteristics SYS  
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Knowledge Area 
Systems Eng. 

Content 
Bloom Level 

- Software process quality   

- Software product quality   

Quality improvement SYS  

Application quality requirements SYS  

- Criticality of systems   

- Dependability   

- Integrity levels of software   

Defect characterization   

2. Software Quality Management Processes  AP 

Software quality assurance   

Software quality management techniques   

- Static techniques   

- People-intensive techniques   

- Analytic techniques   

- Dynamic techniques   

Software quality measurement   

3. Verification and Validation (V&V) SYS AP 

Definitions of V&V   

- System V&V and software V&V   

- Independent V&V   

V&V Techniques   

- Testing   

- Demonstrations   

- Traceability   

- Analysis   

- Inspections   

- Peer reviews   

- Walkthroughs   

- Audits   

Figure 4 depicts the percentages of the curriculum that are recommended for each core KA. 

These percentages were initially determined by using a quasi Wideband Delphi technique to 

allocate the 200 contact hours, and then the hours were converted to percentages (of the 50% 

core) and adjusted to ranges of approximately 1%-2%. As indicated in Figure 4, the percentages 

for each area apply only to the core, which represents approximately 50% of the curriculum. The 

percentages should be considered as general high-level guidance, not as precise curriculum 

specification.  
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Figure 4.  Percentage Devoted to Core Body of Knowledge Areas 

As indicated in Section 5, Curriculum Architecture, the university-specific and elective materials 

will cover many of these KAs in more depth and may cover material outside these KAs 

completely, such as the study of a specific application domain.  

As also explained in Section 5, Curriculum Architecture, the core 15 credit hours could be 

distributed in many ways. The simplest and most direct way would be as a set of courses 

dedicated specifically to teaching core material. Using the typical North American model, the 

entire set of core materials would be taught in five 3-credit semester courses. Alternatively, a 

program could cover the core material over many more courses. Comparisons of GSwE2009 to 

Current Master’s Programs in Software Engineering examines how various universities 

approximate the coverage of the core material in their programs. 

The KAs outlined in Table 2 are intended to characterize the core content of a master‘s program 

in SwE; it is not intended to depict or to imply the organization of curricula and courses. 

Although there are KAs on requirements, design, construction, and testing, this should not be 

taken to mean that GSwE2009 is recommending a waterfall curriculum: that is, first a course in 

requirements, then a course on design, and so on. Instead, GSwE2009 supports and encourages a 

variety of curriculum designs and course organizations that satisfy the GSwE2009 guidelines. 
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Table 2 provides topic-level outline of the CBOK. For most areas, units, and topics, the 

SWEBOK provides more in-depth description of the CBOK elements. Appendix C contains 

more detailed descriptions of three CBOK elements that are not covered sufficiently or at all in 

the SWEBOK: 

• Systems Engineering Fundamentals 

• Ethics and Professional Conduct 

• Engineering Economics 

Both the CBOK and Appendix C should be viewed as extensions of the SWEBOK. They provide 

depth and detail that support the design and specification of courses and curricula. Please note 

that Appendix C is not intended to directly influence future versions of SWEBOK. 

Appendix E provides a mapping of the ten GSwE2009 Outcomes to the CBOK. The mapping 

shows where a curriculum, depending on CBOK alone, would fall short of achieving the 

outcomes, highlighting the importance of the 50% of the curriculum that is not covered by the 

CBOK. 

6.4 Crosscutting Knowledge Elements 

One of the concerns with using a hierarchical model for organization of knowledge is that KAs 

and their units may be incorrectly interpreted as independent of each other. Such 

misinterpretation can lead to two problems. One problem, highlighted in the previous section, is 

to view the ―development‖ KAs (requirements engineering, software design, software 

constructions, testing, and maintenance) as dictating a partitioning of the curriculum into a 

waterfall model. Similarly, the presence of a KA such as Software Maintenance might lead to the 

mistaken view that the other development KAs are independent of maintenance and are focused 

only on new development. A reading of the SWEBOK description of the Software Maintenance 

KA makes it clear that it is dependent on the other KAs: ―this KA description is linked to all 

other chapters of the Guide.‖ 

A related danger with a hierarchical model is that the ―crosscutting‖ nature of certain CBOK 

elements will be obscured. For example, one might overlook the importance of the ―supporting‖ 

KAs (process, quality, management, and ethics) as elements that impinge on and relate to the 

other KAs: for example, the importance of the distribution of software process throughout the 

development KAs—that is, process cuts across requirements, design, construction, testing, and 

maintenance.  

The next section discusses the crosscutting nature of SE and how the CBOK addresses this. 

During the development and review of the CBOK, a number of other crosscutting knowledge 

elements were considered—software security, software safety, software reuse, and human factors 

and usability. Although the CAT agrees with the importance of these crosscutting elements, it 

does not feel they needed additional representation within the CBOK, unlike the case of SE. The 
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SWEBOK refers to each of these elements throughout various KAs (requirements, design, 

construction, testing, etc.). To illustrate this, Appendix D discusses how software security is 

related to the SWEBOK and lists KAs and units that support the inclusion of security-related 

issues in a GSwE2009 curriculum. In addition, the SWEBOK and this document include 

references to key documents that provide a foundation for providing depth in a topic beyond the 

CBOK. For example, Software Assurance: A Curriculum Guide to the Common Body of 

Knowledge to Produce, Acquire, and Sustain Secure Software
34

 edited by Sam Redwine, 

provides a comprehensive view of security throughout the software life cycle and includes 

sections on the following activities: Ethics, Secure Software Requirements, Secure Software 

Design, Secure Software Construction, Security V&V, and other practices that span the lifecycle. 

In effect, (Redwine, 2007) provides a body of knowledge for software security that supports a 

GSwE2009 curriculum that focuses on the development of secure software systems. 

Another missing KA that received considerable comment was human factors (ergonomics, 

human computer interaction, cognitive science, etc.). In the SWEBOK, human factors 

knowledge (listed as Software Ergonomics) is designated as a related discipline, which means 

that it is a separate discipline that is important to the development of software products, but its 

depth and breadth of knowledge is not part of the ―generally accepted‖ knowledge that all 

software engineers should possess. Specialists might be needed for a software application 

strongly dependent on human factor issues. This is the position taken by GSwE2009. Of course, 

a program might use some part of the 50% of the curriculum that goes beyond the core to focus 

on human factors. 

6.5 Systems Engineering Issues 

A critical feature of GSwE2009 is the increasing importance of SE to professional SwE 

education.  

6.5.1 Systems Engineering and Software Engineering 

Several trends have caused systems engineering and SwE to initially evolve as largely sequential 

and independent processes. First, SE began as a discipline for determining how best to configure 

various hardware components into physical systems such as ships, railroads, or 

telecommunications systems. Once the systems were configured and their component functional 

and interface requirements were precisely specified, sequential external or internal contracts 

could be defined for producing the components. When software components began to appear in 

such systems, the natural thing to do was to treat them sequentially and independently as 

computer software configuration items. 

                                                

34 Redwine, S. T. Jr. (Ed.), Software Assurance: A Curriculum Guide to the Common Body of Knowledge to 

Produce, Acquire and Sustain Secure Software, Draft Version 1.2, U.S. Department of Homeland Security, 2007.  



49 

Second, the early history of SwE was influenced by a highly formal and mathematical approach 

to specifying software components, and a reductionist approach to deriving computer software 

programs that correctly implemented the formal specifications. A ―separation of concerns‖ was 

practiced, in which the responsibility for producing formalizable software requirements was left 

to others, most often hardware-oriented systems engineers. Some example quotes illustrating this 

approach are: 

• ―The notion of ‗user‘ cannot be precisely defined, and therefore has no place in computer 

science or software engineering.‖
35

 

• ―Analysis and allocation of the system requirements is not the responsibility of the 

software engineering group but is a prerequisite for their work.‖
36

 

As a result, a generation of SwE education and process improvement goals were focused on 

reductionist software development practices that assumed that other (mostly non-software 

people) would furnish appropriate predetermined requirements for the software. 

Third, the business practices of contracting for components were well worked out. Particularly in 

the government sector, acquisition regulations, specifications, and standards were in place and 

have been traditionally difficult to change. The path of least resistance was to follow a 

―purchasing agent‖ metaphor and sequentially specify requirements, establish contracts, 

formulate and implement solutions, and use the requirements to acceptance-test the solutions.
37,38

 

When requirements and solutions were not well understood or were changing rapidly, 

knowledgeable systems and software engineers and organizations could reinterpret the standards 

to operate more flexibly, concurrently, and pragmatically, and to produce satisfactory 

systems.
39,

 
40

 But all too frequently, the sequential path of least resistance was followed, leading 

to the delivery of obsolete or poorly-performing systems. 

As the pace of change increased and systems became more user-intensive and software-

intensive, serious strains were put on the sequential approach. First, it was increasingly 

appreciated that the requirements for user-intensive systems generally could not be specified in 

advance, but emerged with use. This undermined the fundamental assumption of sequential 

specification and implementation. 

                                                

35 Dijkstra, E., ―Software Engineering: As It Should Be‖, conference paper, International Conference on Software 

Engineering 4, September 1979, 442-448. See also EWD 791 at http://www.cs.utexas/users/EWD. 

36 Paulk, M., et al., Software Capability Maturity Model, Version 1.1, Software Engineering Institute, Carnegie 

Mellon University, Pittsburgh, PA, 1993. 

37 U.S. Department of Defense, MIL-STD-1521B:  Technical Reviews and Audits for Systems, Equipments, and 

Computer Software, 1985. 

38 U.S. Department of Defense, DOD-STD-2167A: Defense System Software Development, 1988. 

39 Checkland, P., Systems Thinking, Systems Practice (2nd ed.), Wiley, 1999. 

40 Royce, W. E., Software Project Management:  A Unified Framework, Addison-Wesley Professional, 1998. 
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Second, having people without software experience determine the software specifications often 

made the software much harder to produce, putting software even more prominently on the 

system development‘s critical path. Systems engineers without software experience would 

minimize computer speed and storage costs and capacities, which caused software costs to 

escalate rapidly.
41

 They would choose best-of-breed system components with software that was 

incompatible and time-consuming to integrate. They would assume that adding more resources 

would speed up turnaround time or software delivery schedules, not being aware of slowdown 

phenomena such as multiprocessor overhead
52

 or Brooks‘ Law (adding more people to a late 

software project will make it later).
42

 The top five critical success factors distinguishing 

successful from failed software projects in the 2005 Standish Report
43

 were primarily in the SE 

area (lack of user involvement, executive support, clear requirements, proper planning, and 

realistic expectations), accounting for 71% of the sources of failure. 

Third, software people were recognizing that their sequential, reductionist processes were not 

conducive to producing user-satisfactory software, and were developing alternative SwE 

processes (evolutionary, spiral, agile) involving more and more SE activities. Concurrently, SE 

people were coming to similar conclusions about their sequential, reductionist processes, and 

developing alternative ―soft SE‖ processes, emphasizing the continuous learning aspects of 

developing successful user-intensive systems. Similarly, the project management field was 

undergoing questioning about its underlying specification-planning-execution-control theory 

being obsolete and needing more emphasis on adaptation and value generation.
44

 

Many commercial organizations have developed more flexible and concurrent development 

processes.
45

 Also, recent process guidelines and standards such as the Capability Maturity Model 

Integrated (CMMI)
46

, IEEE/EIA Standard 15288-2008, ISO/IEC 12207 for SwE
47

, and ISO/IEC 

                                                

41 Boehm, B., Software Engineering Economics, Prentice Hall, 1981. 

 
42 Brooks, F., The Mythical Man-Month:  Essays on Software Engineering (2nd ed.), Addison-Wesley Professional, 

1995. 

43 Standish Group, Unfinished Voyages, 
http://www.standishgroup.com/sample_research/unfinished_voyages_1.php, October 19, 2005. 

44 Koskela, L., and Howell, L., ―The Underlying Theory of Project Management is Obsolete‖, Proceedings of the 

2002 PMI Research Conference, 2002, 293-302. 

45 Womack, J. P., Jones, D.T., and Roos, D., The Machine that Changed the World: The Story of Lean Production, 
Harper Perennial, 1991. 

46 Chrissis, M. B., Konrad, M., and Shrum, S., CMMI®: Guidelines for Process Integration and Product 

Improvement (1st edition), Addison-Wesley Professional, 2003. 

47 ISO (International Standards Organization), Standard for Information Technology – Software Life Cycle 

Processes, ISO/IEC 12207, 1995. 
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15288 for SE
48

 emphasize the need to integrate systems and SwE processes, along with hardware 

engineering processes and human engineering processes. They emphasize such practices as 

concurrent engineering of requirements and solutions, integrated product and process 

development, and risk-driven vs. document-driven processes. New process milestones enable 

effective synchronization and stabilization of concurrent processes.
49,50

 

6.5.2 Systems Engineering and GSwE2009 

In (Haskins, 2007) the primary SE professional society, INCOSE, defines systems engineering as 

―an interdisciplinary approach and means to enable the realization of successful systems.‖ 

―Interdisciplinary‖ implies that all key disciplines—hardware, software, human factors, 

economics, application disciplines, legal, and so forth—need to collaborate on defining the 

system requirements and solution approach. ―Enable‖ implies that good SE cannot guarantee 

success if its plans and specifications are furnished to incapable developers (but, as previously 

noted, poor SE can cause even good developers to fail to meet infeasible plans and 

specifications). ―Successful‖ implies that all of the system‘s success-critical stakeholders will be 

no worse off once the system is in operation; otherwise, they will refuse to use or support the 

system. All of this implies that a project‘s SE group needs the skills to: 

• Identify the success-critical stakeholders 

• Determine the stakeholders value propositions 

• Help stakeholders collaborate in defining and negotiating a mutually satisfactory set of 

plans and specifications 

• Help adapt the plans and specifications in mutually satisfactory ways to respond to 

changes (in the environment, technology, competition, or participating organizations).  

Each individual does not need to have all of the skills, but needs to understand how the other 

skills may impact their contributions. These four key SE skill areas are discussed more fully in 

Appendix C2. 

SE is a crosscutting KA, and its units and topics should be integrated throughout the GSwE2009 

curriculum components. For example, when knowledge from the Requirements Engineering KA 

is taught, how the systems context impacts software requirements should be addressed. 

Similarly, the Requirements Engineering KA should address how the feasibility of implementing 

specific software requirements influences both system requirements and system architecture.  

                                                

48 ISO (International Standards Organization), Systems Engineering – System Life Cycle Processes, ISO/IEC 15288, 

2008. 

49 Boehm, B., ―Anchoring the Software Process‖, IEEE Software, July 1996, 73-82. 

50 Kroll, P. and Kruchten, P., The Rational Unified Process Made Easy: A Practitioner’s Guide to the RUP, 

Addison-Wesley Professional, 2003. 
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The CBOK includes a separate section on SE knowledge that is not part of the original 

SWEBOK structure. However, this section does not fully capture the crosscutting nature of 

expected SE knowledge. This was the rationale for the name and terminology changes to the 

SWEBOK organization in the Requirements Engineering and Configuration Management areas. 

In addition, Table 2 includes a column labeled ―Systems Engineering Content‖ that indicates 

(with a SYS designation) that a KA or knowledge unit has content and activities that are part of 

or relevant to system engineering. This represents a high-level view of system engineering; for a 

more detailed view, see Appendix C2. It should also be noted that although Figure 4 lists 3-7% 

for the System Engineering KA, additional system engineering material would be covered under 

such KAs as Requirements Engineering and Configuration Management.  

A key distinction between SE and SwE is that SwE includes development of the software 

components, while SE excludes the development and manufacturing of software and hardware 

components, although it includes development and evolution of the plans and specifications for 

such activities, and integration and test of the resulting components. In particular, the terms in 

Table 2, such as Architectural Design, are not meant to imply that these activities are done once 

and sequentially at the beginning, but that they may involve continuing concurrent evolution 

throughout the system‘s life cycle. 
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7. Anticipated GSwE2009 Evolution 

From the beginning, it was intended for GSwE2009 to be a living document, with a broad, 

responsible, and knowledgeable community of practice. It was anticipated that after Version 1.0 

was published, Stevens Institute of Technology, which has managed the original development, 

would identify a steward who would assume responsibility for maintaining and refining the 

model and expanding and focusing implementation guidance based on experience and feedback 

from the supporting community and academia, industry, and students. Effort is now underway 

for a combination of the ACM and the IEEE Computer Society to become that steward. These 

organizations have played a major role in creating GSwE2009. As of the writing of this 

document, discussions are underway for those two organizations to take over maintenance 

responsibility for GSwE2009 within the first 6 months of the release of Version 1.0, with 

INCOSE playing a supporting role. Some minor changes are expected in the appearance of the 

document, such as the inclusion of the ACM and IEEE Computer Society logos, when that 

transition takes place. 

This report fits logically within the Computing Curricula series of the ACM and the IEEE 

Computer Society that started in 2001. Hopefully, it will enjoy the same widespread acceptance 

and influence as the other reports in that series. To support and enable that acceptance, two 

companion documents - Comparisons of GSwE2009 to Current Master’s Programs in Software 

Engineering and Frequently Asked Questions on Implementing GSwE2009– are being prepared 

concurrently with the release of GSwE2009.  They will be available in Fall 2009 at 

www.GSwE2009.org and updated regularly. 
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Appendix A. Summary of Graduate Software Engineering Programs in 2007 

The first step in the iSSEc project was to understand the structure and content of currently 

implemented master‘s-level programs. Over 50 universities in the United States and many others 

globally offer a master‘s-level degree in SwE. In summer and fall 2007, data from 28 programs 

was collected and analyzed to enable a reasonable description of the current state of practice. 

Publicly available data was collected and then augmented and validated with a knowledgeable 

faculty member from the program.  

A.1. Methodology 

A list of candidate schools and graduate programs was constructed through Web searches, author 

contacts, and recommendations from members of the CAT. The range of schools listed included 

traditional universities, Web-based programs, and government-associated schools. The 28 

programs that are included in the study are listed in Table 3. 

 

Table 3.  Participating Schools  

1. Air Force Institute of Technology 

2. Brandeis University 

3. California State University – Fullerton  

4. California State University – Sacramento 

5. Carnegie Mellon University 

6. Carnegie Mellon Silicon Valley 

7. DePaul University 

8. Drexel University  

9. Dublin City University (Ireland) *  

10. Embry-Riddle Aeronautical University 

11. George Mason University 

12. James Madison University 

13. Mercer University 

14. Monmouth University 

15. Naval Postgraduate School 

16. Penn State University – Great Valley 

17. Quebec University (Canada) *  

18. Rochester Institute of Technology 

19. Seattle University 

20. Southern Methodist University 

21. Stevens Institute of Technology 

22. Texas Tech University 

23. University of Alabama – Huntsville  

24. University of Maryland University College 

25. University of Michigan – Dearborn 

26. University of Southern California 

27. University of York (UK) *  

28. Villanova University 

* Non-U.S. schools 
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A taxonomy was needed to structure the analysis of competencies covered in the program 

curricula. Rather than create yet another SwE competency model, the team used the SWEBOK 

as a widely-available, collaboratively-developed and thoroughly-vetted taxonomy.  

An Excel-based survey instrument was developed in which to collect and organize the data from 

the selected programs. The instrument captured data about the program, the courses, and the 

competencies taught within each course.  

The program and course information was collected from public sources—primarily the Web. 

Using this information, the survey team performed an initial mapping of the course topics to the 

SWEBOK. Missing information was highlighted and any questions were captured during this 

initial pass. Subsequently, the survey team contacted a professor at the target institution. The 

initial data, emailed to and reviewed by that contact or a recommended substitute, was discussed 

in a telephone conference with members of the survey team. Missing data was filled in, errors 

were corrected, and in most cases, the contact made changes directly to the instrument and 

emailed it back to the survey team.  

Although attempts were made to standardize the way in which the data was provided, there were 

still some differences in the level of detail provided and the interpretation of the instructions by 

the academic program personnel. This led to adjustments to the way the team analyzed the data. 

To accommodate the differing levels of granularity, as represented by the differing SWEBOK 

levels of the data, the team decided that, for initial analysis, data would be analyzed at the third 

SWEBOK level and reported at the first SWEBOK level. This required the team to heuristically 

aggregate from lower levels to higher levels where the data had been provided at finer 

granularity.  

The findings from the survey fall into two general categories: program characteristics and 

curriculum characteristics. 

A.2. Program Characteristics 

The spectrum of programs investigated led to a number of findings about how the programs were 

managed, their faculty resources, size, longevity, and individual personalities. Some of the more 

interesting findings are as follows: 

[1] Software engineering (SwE) is largely viewed as a specialization of Computer Science—

much as SE was often viewed as specialization of industrial engineering or operations 

research years ago. Data shows that only 26% of the programs are in SwE departments, 

44% are within Computer Science departments, and the rest are in a myriad of other 

academic organizations. 

[2] Faculty size is generally small, with few dedicated SwE professors. Forty-eight percent of 

the programs have five or fewer dedicated full- or part-time faculty members. There is 

heavy reliance on adjunct faculty for teaching.  
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[3] Student enrollments are generally small compared to Computer Science and other 

engineering disciplines. Twenty-nine percent of the programs have 25 or fewer students 

and 71% have 100 or fewer. 

[4] Many programs specialize in specific markets such as defense systems acquisition or 

safety-critical systems. Those markets are often driven by local businesses. 

[5] Admission requirements vary widely. Some will accept anyone with a bachelor‘s degree 

and a B average, while others require a computer science degree and at least two years of 

relevant experience. Leveling courses are widely provided to support students unable to 

meet all requirements. 

[6] Program outcome goals are quite diverse. Programs are set up to produce graduates 

according to the perceived needs and desires of the target student population. Some 

programs focus on developing skilled software development team members. Others focus 

on the skills and knowledge required to manage complex projects. In some cases, the 

graduates are prepared to be chief engineers and software executives. 

[7] Programs continue to be started despite the widespread concern over the decline in 

computer science majors over the last few years. Of the 28 programs in our study, eight 

were started since 2001. 

[8] On-line offerings are popular, with many programs reaching students far from their 

physical campuses and some citing a global reach. 

A.3. Curriculum Characteristics 

The structure and content of courses in existing programs and the relationship of those curricula 

to standards such as SWEBOK provided valuable insight for GSwE2009 development. Although 

the survey team collected data on all courses offered by the master‘s programs, the initial 

analysis only looked at courses that were required or semi-required, where a semi-required 

course is one that a student has at least a 50% chance of taking. Some of the more interesting 

findings are: 

[1] Fewer than 40% of all programs required an introductory course on SwE. 

[2]  There is a wide variation in the depth and breadth of SWEBOK coverage in required and 

semi-required courses. The well-covered areas are courses in requirements, design, and 

management. The least well-covered areas are courses in maintenance, configuration 

management, quality, tools, and methods. 

[3] It is clear that the SWEBOK alone does not represent the breadth of many program‘s 

required courses. Many programs required courses on specific programming languages 

(such as C++, Java, and C#), software economics, human factors and user interface design, 

and legal/ethical issues of software development. 
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[4] Few surveyed programs explicitly address systems engineering in their required and semi-

required courses. 

[5] ―Object-Oriented‖ is the standard development paradigm. Almost no one teaches structured 

methods except for historical interest.  

[6] The flexibility of coursework varies widely. For example, one school offered no 

electives—every course was required. On average, students take 11.6 courses for their 

degree, 8.3 of which are required or semi-required. 

[7] Capstone practicums and projects are frequently required. 

A.4. Conclusions 

The initial work produced a reasonable profile of master‘s programs currently offered. The 

diversity is clearly evident, helping to motivate and inform the GSwE2009 effort. 
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Appendix B. Bloom Levels for the Body of Knowledge 

B. 1  Introduction 

Bloom‘s Taxonomy is a classification system devised in 1956 by group of educators lead by 

Benjamin Bloom.
51

 The taxonomy can be used by educators to set the level of 

educational/learning objectives required for students engaged in an education unit, course, or 

program. Bloom‘s Taxonomy divides educational objectives into three domains: Affective, 

Psychomotor, and Cognitive. In this document, the focus is on the Cognitive Domain, which is 

concerned with what we know and how we know it.
52

 Conventional education systems tend to 

stress outcomes in the cognitive domain, particularly the lower-level objectives. 

Bloom‘s taxonomy is hierarchical; i.e., learning at a higher level is dependent on attaining 

prerequisite knowledge and skills at the lower levels. Table 4 provides a description of the 

Bloom‘s Levels for the Cognitive Domain. There is some debate about the ordering of the two 

highest levels, Synthesis and Evaluation: should their order be reversed or should they be placed 

at the same level? This is a research area that the GSwE2009 project does not attempt to address, 

but rather stays with the more traditional view. 

Table 4.  Explanation of Bloom Taxonomy Cognitive Levels  

Level   Competency Objective Descriptors 

Knowledge (K) Remembering previously learned material. Test observation 

and recall of information, i.e., ―bring to mind the 

appropriate information‖; e.g., dates, events, places, 

knowledge of major ideas, mastery of subject matter. 

List, define, tell, describe, 

identify, show, label, collect, 

examine, tabulate, quote, 
name (who, when, where, 

etc.) 

Comprehension 

(C) 

Understanding information and ability to grasp meaning of 
material presented. For example, translate knowledge into 

new context, interpret facts, compare, contrast, order, 

group, infer causes, predict consequences, etc. 

Summarize, describe, 
interpret, contrast, predict, 

associate, distinguish, 

estimate, differentiate, 

discuss, extend 

Application (AP) Ability to use learned material in new and concrete 

situations; e.g., use information, methods, concepts, 

theories to solve problems requiring the skills or knowledge 

presented. 

Apply, demonstrate, 

calculate, complete, 

illustrate, show, solve, 
examine, modify, relate, 

change, classify, experiment, 

discover 

                                                

51 Bloom, B. S. (Ed.), Taxonomy of educational objectives: The classification of educational goals: Handbook I, 

cognitive domain, Longmans, 1956. 

52 Huitt, W., ―The cognitive system,‖ Educational Psychology Interactive, Valdosta, GA, Valdosta State University, 

2006. Retrieved May 22, 2008 from http://chiron.valdosta.edu/whuitt/col/cogsys/cogsys.html 
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Level   Competency Objective Descriptors 

Analysis (AN) Ability to decompose learned material into constituent parts 

in order to understand structure of the whole. This includes 

seeing patterns, organization of parts, recognition of hidden 

meanings, and obviously identification of parts. 

Analyze, separate, order, 

explain, connect, classify, 

arrange, divide, compare, 

select, explain, infer 

Synthesis (S) Ability to put parts together to form a new whole. This 
involves the use of existing ideas to create new ones, 

generalizing from facts, relating knowledge from several 

areas, and predict, draw conclusions. It may also involve 

the adaptation of ―general‖ solution principles to the 

embodiment of a specific problem. 

Combine, integrate, modify, 
rearrange, substitute, plan, 

create, design, invent, what 

if?, compose, formulate, 

prepare, generalize, rewrite 

Evaluation (E) Ability to pass judgment on value of material within a given 
context or purpose. This involves making comparisons and 

discriminating between ideas, assessing value of theories, 

making choices based on reasoned arguments, verify value 

of evidence, and recognize subjectivity. 

Assess, decide, rank, grade, 
test, measure, recommend, 

convince, select, judge, 

explain, discriminate, 

support, conclude, compare, 

summarize 

 

Table 5 shows some examples of various Bloom level competencies that might apply to 

GSwE2009 curricula and courses. 

Table 5.  Example Cognitive Levels for Software Engineering  

Level Competency 

Knowledge (K) 
 The student is able to recite the definitions of ―class‖ and ―object‖ and to state the 

connection between them.  

 The student is able to define the notion of the waterfall (iterative, incremental, spiral 

model) software development process. 

Comprehension 

(C) 

 The student is able to explain how to decide if something should be modeled as a 

class or as an object. 

 The student is able to explain, in a very general way, the conditions under which a 

software development team might choose to use a waterfall (iterative, incremental, 

spiral model) software development process as opposed to one of the others. 

Application (AP) 
 The student is able to start with a simple requirements document and produce a 

reasonable draft of a UML domain model. 

 Given the operational concept and requirements of a simple application or system 

along with a specified budget and required completion time the student is able to 

choose, and to provide a rudimentary justification for the choice of a particular 

software development process from among the popular ones, e.g., waterfall, 

iterative, incremental, and spiral. 

Analysis (AN) 
 Given a simple requirements document and a UML domain model for an 

application, the student is able to critique the domain model, e.g., finding classes 

that should probably have been modeled as objects and vice versa, associations 

whose names are hard to understand and should be renamed, incorrect multiplicities 

of associations, etc. 

 Given the operational concept of a simple application or system along with a 

requirements document, a budget, a required completion time, a choice of a specific 
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Level Competency 

software development process, and a justification of the use of that process on the 

project, the student is able to find and explain errors in the justification and/or in the 

choice of process. 

Synthesis (S)  Given a detailed requirements document and a well-constructed UML domain model 

for an application/system, the student is able to design at least one basic architecture 

and implementation class diagram(s) for the application/system. 

 Given an operational concept, requirements, architecture and detailed design 

documents for an application/system, the student is able to construct a complete 

implementation plan and provide a cogent argument that if the implementation of 

the architecture/detailed design is performed according to the plan, then the result 

will be an application/system that satisfies the requirements, fulfils the operational 

concept, and will be completed within budget and within schedule. 

Evaluation (E) 
 Given the operational concept, requirements, architecture, detailed design, and 

implementation plan, including budget and schedule, for an application/system, as 

well as a feasibility argument for the implementation plan, the student is able to 

assess the plan and to either explain why the feasibility argument is valid or 

why/where it is flawed with regard to any of the claims regarding implementation of 

the requirements, fulfillment of the operational concept, or ability to be completed 

within budget and schedule. 

 

B. 2 Frequently Asked Questions 

The following questions and answers should help explain why and how Bloom‘s Taxonomy is 

used in GSwE2009. 

[1] Why were Bloom’s levels used in the GSwE2009 Core Body of Knowledge (CBOK)? 

Bloom‘s Taxonomy is used in Section 6 (Tables 1 and 2) to indicate the desired minimum 

level of attainment of knowledge elements for the GSwE2009. The Bloom‘s classification 

system was chosen for two reasons: it is a well-recognized and widely-used system in the 

design and assessment of education components; and in the SWEBOK, Appendix D used 

Bloom‘s Taxonomy to specify ―general requirements‖ for practicing software engineers. 

[2] How were the Bloom’s levels in Tables 1 and 2 determined? 

Tables 1 and 2 Bloom‘s level designations were initially determined by a subgroup of the 

CAT, four SwE educators and practitioners, in a somewhat subjective manner. The process 

began with the assignment of the SWEBOK Appendix D designations and then, using a 

quasi-wideband Delphi technique, the CBOK Bloom‘s designations were adjusted. 

Subsequent review by the CAT and external reviewers helped finalize the Bloom‘s level 

designations. 
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[3] Why are there no Synthesis (S) levels or Evaluation (E) levels assigned to the CBOK 

elements? 

Appendix D of the SWEBOK uses only the Knowledge (K), Comprehension (C), 

Application (AP), and Analysis (AN) levels for SWEBOK elements. The reason for this is 

that the SWEBOK targets a SwE graduate with four years of experience and it is intended 

to specify ―generally accepted‖ knowledge that all software engineers should possess. 

However, software engineers working in specialized areas (e.g., configuration management 

or quality assurance) may need to possess knowledge at a higher Bloom‘s level. This is the 

philosophy adopted by the GSwE2009 CBOK. That is, the Bloom‘s levels in the 

GSwE2009 CBOK specify the minimum knowledge levels that all graduates of GSwE2009 

programs should attain. If a graduate program places special focus in its curriculum on a 

particular area, then it may want to use higher Bloom‘s levels in that area. 

In addition, one might view the S and E levels as more appropriately associated with 

knowledge acquired with additional experience and education. For example, a senior 

software architect would certainly be expected to have S and E level attainment in much of 

the Design area of the CBOK; and likewise, an accomplished researcher in software testing 

would be expected to have acquired the highest Bloom‘s levels in this area.  

[4] How should the level designations be used by developers of graduate software engineering 

curricula? 

The Bloom‘s level designations can help guide the type of learning activities that should 

incorporated into a curriculum. First, one should note that all of the GSwE2009 levels in 

Table 2 are at C level or above. This means that rote learning which results only in abilities 

to list, define, describe, and so forth is not appropriate.  

In developing a course or a unit in the curriculum, the Bloom‘s level for a specific area 

implies explicit student capabilities and could be used to develop the learning objectives for 

the course or unit. For instance, in a course in software or system requirements, the AP 

designation for Requirements Elicitation could lead to a learning objective such as 

―Students will be able to use requirements elicitation technique A to determine the 

requirements for a system in domain B.‖ The particular technique and application domain 

involved would vary from program to program. The AN designation for Requirements 

Analysis would demand that a requirements course incorporate learning objectives and 

activities that would involve the use of techniques to classify, organize, allocate, model, 

and analyze the requirements of a software system. 
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Appendix C. Description of CBOK Elements Not Found in the SWEBOK 

This appendix contains material that describes and elaborates on KAs and units that are part of 

the CBOK (see Section 6 of this document), but are not part of the SWEBOK or which have 

lesser emphasis in the SWEBOK. There should be no inference that Appendix C material is part 

of the current SWEBOK or is directly intended to influence future versions. 

C.1. Ethics and Professional Conduct 

Software engineers develop and maintain products that influence almost every area of human 

endeavor: medicine and health, transportation and communication, business and finance, 

education, government and law, and arts and entertainment. In order to deliver software products 

effectively and efficiently, software engineers must conduct themselves ethically and 

professionally. This KA outlines the issues and elements of such conduct. 

C.1.1. Social, Legal, and Historical issues 

Data Confidentiality and Security, Surveillance and Privacy 

Issues related to privacy, confidentially, and the security of individual information has become a 

significant problem in the information age. In particular, the Software Engineering Code of 

Ethics and Professional Practice
53

 states that software engineers shall ―work to develop software 

and related documents that respect the privacy of those who will be affected by that software.‖ 

The use of the Internet and large databases that hold private information (medical, financial, 

legal, etc.) place a greater responsibility for ethical and professional conduct on the software 

engineers who develop products that deal with this confidential and private information
54,55

.  

Contracts and Liability, Intellectual Property, Freedom of Information 

Software is typically developed in a society that has laws concerning contracts, intellectual 

property (copyrights, trademarks, and patents), freedom of information, and employment law. A 

software engineer must be aware of such laws and be governed in their practice by the 

requirements and restraints of such laws
56,57,58

. For example, in the U.S., UCITA
59

 governs 

                                                

53 ACM/IEEE-CS Joint Task Force on Software Engineering Ethics and Professional Practices, Software 

Engineering Code of Ethics and Professional Practice, Version 5.2, 1999. 
http://www.acm.org/serving/se/code.htm. 

54 Bott, F., et. al., Professional Issues in Software Engineering (3rd edition), Taylor & Francis, 2000. 

55 Tavani, H. T., Ethics & Technology: Ethical Issues in an Age of Information and Communication Technology. 

Wiley, 2003. 

56 Bott, F., et al., Professional Issues in Software Engineering (3rd edition), Taylor & Francis, 2001. 

57 Kaner, C., ―Issues in Commercial Law of Interest to Software Engineering Educators,‖ tutorial session at the 

Conference on Software Engineering Education & Training (CSEE&T), February 2002. 

58 Tavani, H. T., Ethics & Technology: Ethical Issues in an Age of Information and Communication Technology. 

Wiley, 2003. 
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transactions involving ―information rights,‖ which includes ―all rights in information created 

under laws governing patents, copyrights, mask works, trade secrets, trademarks, publicity 

rights, or any other law that gives a person, independently of contract, a right to control or 

preclude another person‘s use of or access to the information on the basis of the rights holder‘s 

interest in the information.‖ 

Computer Crime and Law Enforcement 

Clearly software engineers must not engage in criminal activity; however, with the advent and 

increase in cybercrime, software engineers must guard against such crime and report crimes or 

suspicions of criminal activity. This is in accordance with ACM,
71

 which states that software 

engineers shall ―disclose to appropriate persons or authorities any actual or potential danger to 

the user, the public, or the environment, that they reasonably believe to be associated with 

software or related documents.‖ 

Historical Developments, and Gender, Minor, and Cultural Issues 

Since software engineers develop and maintain products used by humans, it is important that 

they understand the historical and cultural aspects of their profession and the related context in 

which their products will be used.  

Software engineers need to be aware of societal diversity and always act without prejudice or 

discrimination. The British Computer Society (BCS)
60

 states, ―You shall conduct your 

professional activities without discrimination against clients or colleagues,‖ and the Software 

Engineering Code of Ethics and Professional Practice asserts that software engineers shall ―be 

fair to and supportive of their colleagues,‖ ―consider issues of physical disabilities, allocation of 

resources, economic disadvantage and other factors that can diminish access to the benefits of 

software,‖ and ―help develop an organizational environment favorable to acting ethically.‖  An 

article detailing the developments in SwE professionalism from 1996 to 2008 can be found in 

Encyclopedia of Computer Science and Engineering.
61

 

C.1.2. Codes of Ethics and Professional Conduct 

Responsibilities to Society 

All engineers who create products for society‘s use have an obligation to perform in a 

professional manner. Because of the software‘s criticality and its ubiquitous nature, software 

engineers have special responsibility.  

                                                                                                                                                       

59 Uniform Computer Information Transactions Act. National Conference of Commissioners on Uniform State 

Laws, 2001. 

 
60 British Computer Society, Code of Conduct & Code of Good Practice, 2004 and 2006, http://www.bcs.org/server. 

php?show=nav.10967. 

61 Thompson, J.B., ―Perspectives on Software Engineering Professionalism,‖ Wiley Encyclopedia of Computer 

Science and Engineering, edited by Benjamin Wah, Wiley, Hoboken, NJ, 2009. 
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The Software Engineering Code of Ethics and Professional Practice states, ―Software engineers 

shall act consistently with the public interest,‖ ―The ultimate effect of the (software engineer‘s) 

work should be to the public good,‖ and ―Moderate the interests of the software engineer, the 

employer, the client and the users with the public good.‖ 

Models for Professionalism, Professional Societies 

Models of a profession depend on society‘s understanding of the term ―profession.‖ The Oxford 

English Dictionary defines a profession as ―an occupation, vocation or high-status career, usually 

involving prolonged academic training, formal qualifications and membership of a professional 

or regulatory body. Professions involve the application of specialized knowledge of a subject, 

field, or science to fee-paying clientele.‖ The Accreditation Board for Engineering and 

Technology (ABET) (www.abet.org) defines engineering as ―the profession in which a 

knowledge of the mathematical and natural sciences gained by study, experience, and practice is 

applied with judgment to develop ways to utilize, economically, the materials and forces of 

nature for the benefit of mankind.‖ 

There have been several studies of the professional nature of SwE. In 1996, Mary Shaw traced 

the history of the evolution of several engineering disciplines and compared them with the 

evolution of software development practices. In their 1996 study of a SwE profession, Ford and 

Gibbs
62

 concluded that an engineering profession has the following features: 

• An initial professional education in a curriculum validated by society through 

accreditation 

• Registration of fitness to practice via voluntary certification or mandatory licensing 

• Specialized skill development and continuing professional education 

• Communal support via a professional society 

• A commitment to norms of conduct often prescribed in a code of ethics 

In the past decade there have been significant advances in these areas (Thompson 2009); 

however, there are no professional societies solely devoted to SwE. There are two international 

societies that are closely associated with SwE interests and practices:  

• Association for Computing Machinery (ACM), http://acm.org 

• IEEE Computer Society (IEEE-CS), http://www.computer.org 

 

                                                

62
 Ford, G. and Gibbs, N.E., A Mature Profession of Software Engineering, CMU/SEI-96-TR-004, Software 

Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, 1996. 
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Codes of Ethics and Practice 

A code of ethics and professional conduct is the hallmark of a profession. Medicine, law, and 

engineering have historically required adherence to such codes in order for an individual to 

pursue public practice of the profession. 

In 1999, the ACM and the IEEE-CS established the Software Engineering Code of Ethics and 

Professional Practice. Other organizations, countries and regions have codes that cover the 

practice of SwE (e.g., ACM 1192
63

, ACS 2008
64

, BCS 2008
65

, CSI 1993
66

). Views on 

professionalism and ethical considerations related to professionalism are given in a recent article 

by Loui and Miller
67

. 

C.1.3. The Nature and Role of Software Engineering Standards 

Nature and Role of Standards 

A major role of a profession is to standardize the terminology, measurement methods, and 

process methods used in national and international practice of the profession. The goal is to 

enable professionals, educators, and organizations to communicate internationally, and to 

improve the effectiveness and efficiency of professional practice.  

International Standards, Standards and Harmonization Organizations 

The IEEE–CS Software and Systems Engineering Standards Committee (S2ESC) has created 

many of the standards that guide the development and maintenance of software systems. The 

IEEE Software Engineering Standards Collection (http://standards.ieee.org/reading/ieee/ 

std_public/description/se/index.html) contains 40 IEEE standards for software development. This 

collection is described and discussed in Moore
68

; it also includes an overview of standards-

making organizations. The International Standards Organization (ISO) and the American 

National Standards Institute (ANSI) have created other software, system, and related standards. 

                                                

63 ACM Council, ACM Code of Ethics and Professional Conduct, October 1992, http://www.acm.org/constitution/ 

code.html. 

64 Australian Computer Society, ―Code of Ethics‖ website, 2008, http://www.acs.org.au/index.cfm?action=show 

&conID=200509022322219027. 

65 British Computer Society, Code of Conduct & Code of Good Practice, 2004 and 2006, http://www.bcs.org/server. 

php?show=nav.10967. 

66 Computer Society of India, CSI Code of Ethics, 2008, http://www.csi-india.org/code-ethics. 

67 Loui M.C. and Miller, K.W., ―Ethics and Professional Responsibility in Computing,‖ in Encyclopedia of 

Computer Science and Engineering, edited by Benjamin Wah, Wiley, Hoboken, NJ, 2009. 

68 Moore, J. W., The Road Map to Software Engineering: A Standards-Based Guide, Wiley-IEEE Computer Society, 

2006.  

http://www.csi-india.org/code-ethics
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Bodies of Knowledge, Accepted and Best Practices 

A body of knowledge, describing the organization and the principal elements of a discipline, 

provides a foundation for a profession that supports curriculum development, certification and 

licensing, continuing professional education, and a code of ethics and professional conduct. 

The best-known and most widely-used body of knowledge for SwE is the SWEBOK. In its 

introduction, SWEBOK presents its objectives: 

• To promote a consistent view of SwE worldwide 

• To clarify the place—and set the boundary—of SwE with respect to other disciplines 

such as computer science, project management, computer engineering, and mathematics 

• To characterize the contents of the SwE discipline 

• To provide a topical access to the Software Engineering Body of Knowledge 

• To provide a foundation for curriculum development and for individual certification and 

licensing material. 

Other SwE related bodies of knowledge include the CBOK in Section 6 of this document, and 

the bodies of knowledge in SE2004 and in the other curriculum guides at 

http://www.computer.org. 

In order to improve software products and to advance the state of SwE as a profession, there 

have been numerous studies of ―best‖ SwE practices: Beck
69

, CMMI
70

, Cusumano
71

, and Jones
72

. 

C.2. Systems Engineering 

A system is a collection of interconnected components that exist within and interact with an 

environment. System engineers analyze needs, develop solution concepts, and work with 

component and system quality attribute specialists (safety, cost, performance, etc.) to synthesize 

the evolving definition of complex systems consisting of diverse kinds of components. Systems 

engineers also play a part in the installation and support of these systems in their operational 

environment, and their eventual removal from service and safe disposal. Virtually all modern-

day systems ranging from air traffic control systems to nuclear reactors to financial transaction 

systems are dependent on software to coordinate the interconnections among system components 
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and to provide the functionality of these systems. Software engineers are thus key members of 

modern system engineering teams. 

C.2.1. Systems Engineering Concepts 

System Context 

The basic concept of a system is very simple: as stated above, it identifies a bounded collection 

of elements that interact with something larger. This simple idea can be applied to help 

understand many overlapping real-world relationships; e.g., a commercial aircraft is a system, 

and contains systems for navigation, propulsion, flight control, catering and entertainment, 

baggage handling, and so forth. The navigation system contains integrated hardware, software 

and human components, and has interfaces and relationships with other systems both inside and 

outside of the aircraft boundary. The aircraft is also part of the airline commercial system, the 

airport and air traffic control systems, and so forth, all of which can be considered as part of 

commercial transport, tourism, or commerce systems. To effectively apply the processes and 

techniques of systems and SwE, we need to select and identify a specific context.  

One valuable model that systems engineers use to focus on the systems relationships key in a 

given situation is to define a System of Interest (SoI) and Wider System context as shown in 

Figure 5.
73

 

The SoI is the selected system for which a life cycle is needed, and over which the organization 

can exercise some authority and decision-making. This authority may include the specification, 

design and build of custom-made solution elements and the selection and integration of 

Commercial Off-the-Shelf (COTS) components; or it may simply be setting the criteria for the 

selection and use of computing and other services. The Wider SoI is the broader context in which 

the problem situation and measure of success are defined. The SoI authority will have some 

influence in the wider system, but may have to negotiate with others. The Environment describes 

the system relationship and conditions in which the Wider SoI must operate. The SoI must be 

engineered to deal with a range of possible environments. The Wider Environment includes 

environmental issues that may not affect system operation directly, but may influence system 

choices (e.g., consumer market trends).  

People and Systems 

It is important to distinguish between Users and Operators. Users are those who will interact with 

the SoI in conjunction with their work activities or personal pursuits. Thus, users are part of the 

wider SoI, and are concerned with how a SoI enables them to contribute to the effectiveness of 

that wider system. Operators are people or organizations directly involved in the operation of the 

SoI. In one way, operators can be treated just like any other system component, making decisions 

about them to maximize system characteristics. While this view of humans treats them as a 
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technology that can be selected and used within the SoI, it is important to consider people‘s 

unique attributes and constraints when they are ―designed into the solution.‖ The human 

elements of a complex system are often hired and trained to perform specific functions. If so, 

they can be disciplined or dismissed if they fail to perform their duties in a satisfactory manner. 

They can also be encouraged and incentivized to find ways to improve the system‘s operation (as 

with, for example, air traffic controllers, operators of nuclear reactors, and bank tellers).  

 

System of Interest

(Authority and Control)

Wider System of Interest

(Influence and Relationships)

Environment

(Constrained by)

Wider Environment

(Influenced by)

 

Figure 5.  SoI Levels of System Context  

Alternatively, users are external to the system. Users of an automated teller machine (ATM), for 

example, must have an ATM card and a password plus minimal skills to operate the interface, 

but beyond that they are not within the realm of control of the system or its sponsors, as are bank 

tellers and system maintainers. There may be different user or operator classes who interact with 

the system in distinctive ways. Some of those distinctions may be reflected in different modes of 

system operation (e.g., full operational mode, degraded mode, emergency mode, training mode, 

and maintenance mode; or perhaps novice, intermediate, and expert modes). User and operator 

classes and modes of operation must be identified and documented. There may be gray areas in 

which people must be considered in both user and operator roles, such as nurses as medical 

device operators or aircraft pilots. 

A stakeholder is any individual or organization that affects or is affected by a SoI at some point 

during its life. Identifying stakeholders is thus a key aspect of SE. The main stakeholder 

distinctions are between customers, acquirers, and other interested groups. A customer is the 
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individual or organization that specifies the requirements and accepts the delivered system, and, 

if applicable, pays for system development. In some cases the users and customer are the same 

individual or organization. In other cases, users and customer may be distinct entities, possibly 

with a separate acquirer or system integrator role.  

Clearly, software engineers and system operators affect the SoI and are key stakeholders. The 

other stakeholders who may be relevant to a SoI are generally representatives of some constraint 

or limitation on the system‘s operation or development: for example, a regulator such as the U.S. 

Federal Aviation Administration, a trades union or industry body, representatives of local 

community or environmental lobbies, or venture capitalists providing funds.  

System Hierarchical Relationships 

Complex systems are comprised of hardware, software, and human elements. The hardware 

elements include computers and other kinds of hardware devices (e.g., radars). Hardware is 

procured and/or developed as part of system development. The software element may include 

legacy software as well as software components to be developed and/or modified. There may be 

other hardware and software in the environment that provides interfaces to the system.  

An Enabling System is a system that complements a SoI during its life but does not necessarily 

contribute directly to its function during operation.
74

 To fully understand the context of a system 

we may need to consider not only its operational environment, but also how it is transported, 

stored, maintained, tested, and so forth. 

The hardware, software, and human elements of complex systems are also systems (i.e., 

subsystems): they are collections of interconnected components that exist within and interact 

with their environments. The environments with which they interact consist of other subsystems 

and the external system environment. Each hardware and software subsystem contains its 

subsystems. They are decomposed to whatever level is needed to specify and synthesize the 

collection of components that constitute a system. Different subsystems may be decomposed to 

different levels. 

A key concern for software engineers is that hierarchical relationships in hardware architectures 

are often incompatible with good software architecture hierarchies. Hardware architectures tend 

to have one-to-many ―part-of‖ relationships (the wings are part of the airplane, the ailerons are 

part of the wings, the aileron controls are part of the ailerons, the aileron control software is part 

of the aileron controls, the aileron control data management is part of the aileron control 

software). With many independent aircraft part suppliers, this often leads to incompatible data 

management, fractionated software management, and slow software response to cross-cutting 

changes.  
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Modern software architecture practices generally emphasize layered many-to-many ―served by‖ 

hierarchical relationships, which are extremely difficult to put in place once hardware-oriented 

systems engineers have committed the project to a ―part-of‖ architecture, work breakdown 

structure, management structure, and contract structure.
75

 This is one of many reasons why 

software engineers need to be proactive participants in SE. 

A System of Systems (SoS) is an interoperating collection of component systems that cooperate 

together to produce results unachievable by the individual systems alone. What makes this 

different from the levels of hierarchy described above is that the component systems can operate 

independently and may be part of more than one context, and that each system will have 

independent customers and life cycles. These SoS relationships will have a strong influence on 

the lifecycle choices and commercial framework within which a particular SoI is considered. 

They also present a challenge in aligning the degree of responsibility of a SoS engineer or 

manager with their degrees of authority over SoS decisions, another reason why software 

engineers need to be proactive participants in SE. 

The Role of System Engineers 

The complex systemic relationships in a real world business or public problem domain are dealt 

with in two ways: 

• Managed Problem Solving—making all necessary changes within an organization to 

provide stakeholder benefits, within the cost and other resource constraints of the 

organization. 

• Engineering Problem Solving—identifying, planning, and synchronizing technical 

activities to deliver identified system changes against agreed measures of effectiveness.  

The key skills of a SE team needed to support both of these were identified in Section 6.5, and 

are further expanded below: 

• Identifying the success-critical stakeholders. This includes the abilities to diagnose what 

is unsatisfactory to whom among the stakeholders in the current situation, and what are 

the root causes of this dissatisfaction, involving the various quantitative and qualitative 

techniques of operations research. It also involves envisioning opportunities to involve 

additional stakeholders who provide keys to better system solutions, such as COTS 

vendors, service providers, strategic partners with needed skills, investors, or new classes 

of system users. 

• Determining key stakeholders’ value propositions. This will depend on the classes of 

stakeholders. Users‘ value propositions can be determined via surveys, brainstorming, 

prototyping, option ranking techniques, or other preference-gathering techniques. Various 
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types of business case analysis can determine investors ‗and managers‘ value 

propositions, including market trend analysis, operational cost savings analysis, critical 

path analysis, and return on investment analysis. Developers, maintainers, administrators, 

and operators‘ value propositions will involve the development, maintenance, and 

operational feasibility of the system solution options, requiring the formulation and 

analysis of alternative development approaches (what to make, buy, or subscribe to for 

services) and operational concepts. Another key stakeholder class is the general public, 

whose value propositions concerning safety, security, fairness, or privacy may involve 

regulatory bodies, standards compliance, or legal constraints. 

• Helping stakeholders collaborate in defining and negotiating a mutually satisfactory set 

of plans and specifications. This will include identifying the actual or likely conflicts, 

risks, and uncertainties among the stakeholders‘ value propositions; analyzing the risks; 

identifying options for resolving the conflicts and risks; performing tradeoff analyses to 

evaluate the options with respect to the desired value propositions; combining options to 

synthesize candidate solutions; helping stakeholders negotiate mutually satisfactory 

solutions; and verifying and validating the feasibility of the solutions. These activities 

involve a wide variety of skills, including both technical and interpersonal skills. System 

engineers are not necessarily component specialists. Their expertise lies in knowing the 

business milieu or operational domain in which their systems will operate, in performing 

the top-level activities that must be accomplished to develop a complex system that 

incorporates various kinds of technologies, and in coordinating the work activities of 

specialists from various technical disciplines. But they must be conversant with the 

technologies to be used so they can speak intelligently with the component specialists 

concerning requirements, capabilities, interfaces, and tradeoffs. In addition, system 

engineers must work with those in specialty disciplines such as safety, security, 

reliability, usability, integration, configuration management, verification, and validation. 

Not everyone needs to possess all of the skills, but good systems engineers learn how to 

collaborate with specialists to help achieve good combinations of system requirements, plans, 

solutions, and evidence of their compatibility and feasibility. At a minimum, software engineers 

need to participate in SE as technical specialists. But they will be far more effective if they 

participate as systems engineers with a particular technical specialty. 

There are no one-size-fits-all processes for developing and evolving the wide variety of systems 

in terms of size, criticality, subset-ability, number of component systems, availability of reusable 

solution elements, degree of legacy constraints, ability to prespecify requirements, and degree of 

requirements volatility. Systems engineers need to be able to determine what type of process best 

fits the combination of such characteristics that are involved in the system they are engineering.  

• Adapting the plans and specifications in mutually satisfactory ways to respond to 

changes. This is an increasingly important skill, as the speed of change in our world 
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continues to increase. Traditionally, systems engineers would prespecify plans and 

specifications, and then go on to engineer other systems. But nowadays and increasingly 

in the future, systems engineers are necessary across a system‘s entire life cycle to assess 

changes in the environment, technology, competition, or participating organizations, and 

to help adapt the systems content, plans and specifications in mutually satisfactory ways 

to respond to the changes.  

The third problem-solving approach that systems engineers must be aware of is: 

• Strategic Problem Solving—initiating, monitoring, and guiding a collection of managed 

problem-solving activities to evolve and grow a SoS or enterprise. 

Traditional management or engineering approaches cannot directly tackle strategic problems. 

However, there is a need to understand SoS needs and constraints and propose alternative SoS 

solution strategies; make trades across project boundaries against SoS criteria and integrate 

delivered systems into a SoS environment; evaluate SoS performance to feedback into enterprise 

level investment decisions. One of the main enablers for this strategic approach is the ability to 

create modular system products integrated through an open, software-intensive infrastructure. 

Thus, both systems and SwE skills have a role to play in this level of problem solving.  

C.2.2. Systems Engineering Life Cycle  

Life Cycle Management 

A lifecycle is the organized collection of activities, relationships and contracts that apply to a SoI 

during its life. As such, it is the relationship to a lifecycle that shapes how and when SE is 

applied, and sets the context for the relationship between project management, SE and SwE 

activities. 

In standards such as ISO/IEC 15288:2008
76

, a lifecycle is described by a set of Life Cycle 

Stages. Each stage is related to part of a basic problem solving approach. The stage is described 

by an overall objective, an indication of the activities related to the stage, and a definition of the 

things to be achieved by the end of the stage. Figure 6 shows the simple set of stages in the ISO 

15288:2008
88

 standard.  
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Figure 6.  ISO 15288:2008 Generic Life Cycle Stages  

From a problem-solving viewpoint, the stages are put together in a logical way to move a project 

forward. At the end of each stage, the project will review its progress against the stage outcomes 

and make a decision to move to a new stage, return to a previous stage, extend the current stage, 

or stop or delay the project. 

It is important to emphasize that the activities shown against each stage are not confined to that 

stage. Figure 6 shows the activities critical to the purpose of a stage, and for which there will be 

significant activity during the stage. However, these activities may also need to be revisited 

during later stages, or considered and planned for in earlier stages.  

In the real world, life cycles are also used for strategic and financial project planning. The extent 

to which a project needs to fit within a predefined life cycle template or to plan several stages 

ahead to secure financial resources, depends upon the kind of problem, organization, and sector. 

To illustrate this we might expect life cycle planning to range from: 

• A predefined life cycle template, which a project must fully define and cost before it can 

gain approval to start any work. This gives a good understanding of cost and risk, but 

may not be flexible enough to deal with changing objectives and opportunities, and can 

lead to expensive rework and overruns. 

• A scoping study or demonstrator project can be used to run through the life cycle for a 

simplified problem, to gain confidence prior to full project planning. This helps to 

identify and remove risks, but it can take time and money that might be better spent on 

the real problem. 

• An incremental or spiral life cycle allows the project to deliver useful outcomes, while 

dealing with potential risk or uncertainties. This is a good approach for many systems, 
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particularly unprecedented systems in an environment of rapid change, but may be harder 

to manage without detailed forward planning and cost prediction.  

• The most flexible approach is to fund a single life cycle stage, and at the end of that 

stage, to review the results obtained so far, the plans for the next stage and the resources 

required to achieve them. This gives the most flexible approach, but needs an equally 

flexible view of funding and planning, including a continuous investment in concurrent 

SE during development stages, to make it work. 

These basic life cycle approaches apply to projects, which are focused commercial activities to 

produce a specific change to an identified SoI. As previously discussed, an enterprise may need 

to organize a number of projects to deliver synchronized changes. A program is a collection of 

projects dedicated to development and deployment of a complex SoS, or of a product-line family 

of systems.  

Software engineers working on the development of complex systems need to be able to look at a 

particular project/program life cycle and be able to relate it back to the spectrum of life cycle 

approaches above, and the simple life cycle stages and process relationships in a relevant 

standard. Emerging lifecycle model generators such as the Incremental Commitment Model 

include teachable decision tables that aid in tailoring these generic approaches to real problems.
77

 

Systems Engineering and Software Engineering Processes 

System engineers work with stakeholders to identify and understand needs and constraints; and 

to develop requirements and system architecture, and allocate (and negotiate reallocation of) 

requirements to the hardware, software, and human elements of a system. In addition, system 

engineers oversee and coordinate development of the system components; they also oversee 

integration and verification of the components, system-level validation, and transition of the 

system into the operational environment. System engineers thus provide technical leadership of 

projects and programs that are concerned with developing complex systems.  

Software engineers play a similar role for the software elements of a project, coordinating 

software requirements, design, and testing. Software engineers will also contribute to the SE 

activities and project decision-making. In larger projects, software and system engineers, 

working closely together, perform the two disciplines. In smaller project teams, individuals with 

both systems and software skills will be needed.  

The coupling and iteration between SE, SwE, and project management can vary greatly for 

different types of problems and business sectors. At one extreme, a project may need to follow a 

highly sequential model of system design and software component development, with system 

design being fixed and software requirements allocated by the systems engineers as an input to 

software development. At the other extreme, the project may need to take a highly iterative 
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approach in which an individual or small team, with a mixture of systems, software, and other 

skills, work with stakeholders to determine the best solution; explore software implementation 

and operation issues through user involvement; and continue to evolve the solution to deal with a 

changing environment through its life. 

Figure 6 defined the high-level process outcomes associated with each life cycle stage, and stated 

that this did not imply a one-to-one mapping between process and stages. Figure 7 is a graphical 

representation of the relationship between process activities and life cycle stages. 
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Figure 7.  Life Cycle Activity Mapping (Adcock, 2009)  

The lines on this diagram represent activity in each of the process areas over a simple life cycle. 

The life cycle stages along the top of the diagram are purely illustrative, and not drawn to scale. 

In a real project the Utilization/Support stages would likely be by far the longest part of the 

lifecycle. Requirements Analysis has a large input during the concept stage, but requirements are 

refined, reviewed, and reassessed over the rest of the life cycle. Similarly, Integration and 

Verification (I&V) is conducted during the transition from Development to Production. This is 

only possible if I&V issues, strategies, and risks are considered in earlier stages. Figure 7 is a 

schematic representation of these process mappings, sometimes called a ―hump diagram.‖
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The System Implementation line represents the hardware, software, human, and organizational 

changes needed to realize a system change. SwE activities are needed across the whole system 

life cycle, with the main software outcomes being achieved in the system development and 

production stages. With the increasing role that software has in integrating systems, and the use 

of COTS software and software services rather than custom-made code, software must be 

considered in parallel with system processes. Thus, COTS characteristics might need to be 

considered in deriving system requirements, making hardware design changes to solve software 

design problems, or configuring and testing software dynamically during operations and 

assessing the resulting system safety implications. 

The following sections give a brief overview of the systems engineering technical processes 

described in (Haskins, 2007), the INCOSE handbook. The structure and process descriptions in 

the handbook are consistent with ISO/IEC 15288:2008 – Systems engineering – System life 

cycle processes. This standard defines a set of high-level process outcomes and generic activities 

that can be used as the basis for identifying the detailed activities needed within whichever life 

cycle framework is selected for a given problem and commercial context. Within this generic 

framework there is scope to apply specific tools and techniques taken from other standards or 

development methodologies as needed. The INCOSE handbook also gives guidance on how to 

tailor the lifecycle and process definitions to an organization, dealing with any conflicts with 

existing policies, procedures, and standards.
80

 

Software engineers should be able to relate these high-level processes to a range of project 

lifecycle approaches within the spectrum described above. They should understand that the 

framework is not a one-size-fits-all, sequential process. Very few problems start with a clear and 

unchallenged customer need. Effective systems cannot be produced based on pre-specified 

requirements for software elements within the constraints of a top-down system design. The 

integration and testing of software and system elements, including human elements, is generally 

done iteratively with a strong stakeholder input as part of an incremental buildup of user benefits.  

C.2.3. Requirements 

The INCOSE handbook contains two requirements processes. One is stakeholder-focused, and 

defines need and measures of effectiveness. The second deals with one or more levels of 

technical requirements for a chosen solution. These processes are closely linked to the 

Architectural Design process in C.2.4. 
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Stakeholder Requirements 

The purpose of the Stakeholder Requirements Definition Process is to elicit, negotiate, 

document, and maintain stakeholders’ requirements for the System of Interest within a defined 

environment. This is achieved by developing system views that concentrate on system purpose 

and behavior and are described in the context of the operational environment and conditions.  

The outputs of this process consist of formally documented and approved stakeholder 

requirements that will govern the project. These will include required system capabilities, 

functions and/or services; quality standards; cost and schedule constraints; concept of operations 

and support. It is important to understand that stakeholder requirements do not follow the 

traditional Webster‘s dictionary definition of requirements as ―something claimed or asked for 

by right and authority.‖ Early stakeholder requirements are generally negotiable statements of 

wants, needs, goals, and objectives, which are refined and agreed on as our understanding of 

problems and potential solutions matures. 

The activities to achieve the outcomes of this process across the life cycle fall into three groups: 

 Capturing requirements, through a process of working with users and other stakeholders 
to generate a ―context of use,‖ and from it, extract needs and constraints. 

 Structuring of the needs and constraints into a statement of stakeholder requirements. 
Documenting, reviewing, configuring, and sharing the requirements as needed. 

 Using the requirements to support relevant system decisions across the life cycle. 

The stakeholder requirements will form the basis for validating that a system service meets the 

needs of stakeholders. The process outputs should document the agreed context of use and 

include measures of effectiveness that will be used for assessing the realized system and enabling 

systems. 

The terms ―Stakeholder Requirements‖ and ―context of use‖ are generic terms used in the 

INCOSE handbook. Other standards use similar ideas, such as ―Operational Requirements,‖ 

―User Requirements,‖ ―Concept of Operations,‖ ―Concept of Employment,‖ and so forth.  

There may be a number of software engineering stakeholders considered in generating 

stakeholder requirements. This may include representatives of legacy software systems within 

the wider SoI or understanding of the implication of the possible software issues raised by how 

the problem is framed. 

Requirements Analysis 

The purpose of the Requirements Analysis Process is to review, assess, prioritize, and balance 

all stakeholder and derived requirements (including constraints); and to transform those 

requirements into a functional and technical view of a system description capable of meeting the 

stakeholders’ needs. This view can be expressed in a specification, set of drawings or any other 

means that provides effective communication. 
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The output of Requirements Analysis is a technical description of characteristics the future 

system must have in order to meet Stakeholder Requirements, which will be evolved into one or 

more specific solutions in subsequent development processes. The project team derives 

additional requirements resulting from analysis of the Stakeholder Requirements as required to 

meet project and design constraints; defines the functional boundaries for the system to be 

developed; and identifies and documents any interfaces and information exchange requirements 

with external systems. The total set of requirements encompasses the functional, performance, 

non-functional requirements, and the architectural constraints.  

The activities to complete this process include requirements capture and structuring as before. 

The approaches, methods and tools to achieve this will be very similar to those defined in the 

software requirements section. 

System requirements are a basis for verifying compliance of the realized system with its 

technical description. The process outputs should document relevant standards and interfaces 

through life constraints, utilization environment, and verification criteria. 

Again, the requirements analysis process is a generic one that can be mapped onto any process 

that deals with requirements derived from solution choices. These requirements are also referred 

to as ―Technical Requirements,‖ ―System Specifications,‖ and so forth.  

If the requirements are going to be used as the basis of an internal or external contract to develop 

a system within a given set of cost, schedule, safety, security, or other constraints, the 

Requirements Analysis activity should provide evidence that a system can be developed to 

satisfy such constraints.  

C.2.4. System Design 

System design is concerned with identifying the major hardware and software components of a 

system that will provide the features and quality attributes of the system in conjunction with the 

manual operations to be performed by humans. In addition, the interfaces among the hardware 

and software components and interfaces to and from the operational environment must be 

specified.  

The INCOSE handbook includes an Architectural Design Process, which describes a system 

solution as a collection of manageable sub-problems, and an Implementation Process, which is 

really a placeholder for the relevant hardware, software, or human system design standards, as 

needed. The point at which system design identifies one or more bounded software-intensive 

system elements forms one of the key relationships between systems and software engineering. 

The overall system architecture also has a key role in the other key relationship between the two 

disciplines, the integration and verification of system components. 
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Architectural Design 

The purpose of Architectural Design is to synthesize a solution that satisfies system 

requirements. To do this we define areas of solution expressed as a set of separate problems of 

manageable, conceptual, and, ultimately, realizable proportions.  

The result of this process is an architectural design that is placed under configuration 

management. This baseline includes: 

 System element detailed descriptions with documented justification for concept 

selections 

 Requirements assigned to system elements and documented 

 Interface requirements and a plan for system integration and verification strategy. 

Architectural design forms the link between problem understanding, stakeholder value, and a 

coherent set of realizable solution elements (see Trade Studies below). The process may involve 

the generation, evaluation, and selection of solution options. The process outputs should 

document the evaluation process and the resulting logical system architecture; partitioning of 

system requirements to solution elements; and interfaces and interactions between elements, 

integration, and verification plans and all relevant decisions to reach an agreed design baseline. 

Again, if the architecture is to be used as a basis for system development and evolution within a 

set of resource constraints and performance requirements, the design deliverables should include 

evidence that a system developed to the specified architecture would be buildable within the 

resource constraints, and would satisfy the performance and evolution growth requirements. 

As discussed in Section 6.5, the overlap between system design and software development is a 

critical one. The linear system development model, in which software components are bounded 

and specified by the software engineer and then designed, delivered, and integrated, is 

increasingly insufficient both for the generation of efficient software and the creation of flexible, 

agile, and resilient systems. For most system lifecycles, we would expect the selection of 

software components to be a critical driver on the system architecture, with the overall system 

design, software allocation and high-level software design decisions being may in parallel by a 

multi-skilled design team. 

Implementation 

The purpose of the Implementation Process is to design, create, or fabricate a system element 

conforming to that element’s detailed description. The element is constructed employing 

appropriate technology and industry practices. 

Initial development of requirements and identification of the major system components are 

accomplished in an iterative manner. Sub-system requirements are then allocated to the major 

hardware and software components and to the human elements. These requirements are typically 

at a high level and must be iterated and refined into derived requirements that provide detailed 
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specifications for the hardware and software components and detailed qualifications for the 

human operators.  

Hardware and software components can be obtained in a variety of ways: by purchase, by lease, 

by building in-house, by modifying existing components, by contracting, and (in the case of 

software) from open sources. In some cases the customer may provide components that are to be 

incorporated into the systems, either as-is or after modification. 

The human elements of a system can be obtained by recruiting and training, or by retraining 

current employees of the acquiring organization. 

Trade Studies 

Trade study describes a process for comparing the appropriateness of different technical 

solutions. The characteristics of each option are traded against each other. Once a best 

alternative has been identified, the stakeholders in the decision will want to know how sensitive 

the recommended selection is to differently evaluated criteria or to different estimates of the 

alternatives’ characteristics—perhaps a different best alternative would result. Therefore, a 

good trade study provides a disciplined process that justifies the selected approach, and includes 

sensitivity analysis. 

Systems engineers may use trade studies to support any of the key decisions discussed above. 

This can include helping to identify the problems most important to a stakeholder; to explore 

their value propositions; and to identify and plan for solutions to deliver those values.  

Conflicts among stakeholders‘ value propositions are frequent, and are built into the various 

stakeholder roles. Users would like many system capabilities, right away, with high levels of 

performance, reliability, and ease of use, with the option of frequently changing their minds 

about features and priorities. Acquirers have limited financial and other resources for developing 

and operating all the desired capabilities, and would like to keep the acquisition well defined and 

stable. Developers have limited capabilities to develop, verify, validate, and document large 

amounts of software on limited budgets and schedules. They would prefer to use their own tools 

and reusable components, even though these may be incompatible with other developers and the 

users‘ other applications. Maintainers want well tested and documented systems, with extensive 

support for backup, recovery, debugging, and version control, and systems and tools delivered 

that are compatible with the ones they are already maintaining. Other success-critical 

stakeholders such as the testers, interoperators, venture capitalists, administrators, and the 

general public may add further potential conflicts. 

Systems engineers need the knowledge, skills, and abilities to collaborate with others to identify, 

analyze, and prioritize the potential conflicts, risks, and uncertainties among these stakeholder 

value propositions. They need to identify and evaluate options for resolving the conflicts, risks, 

and uncertainties, including development and evaluation of candidate architectures, processes, 

and operational concepts; assessment of reused, purchased, or subscribed-to services; and 

analysis of tradeoffs among various combinations of options. If none of the available options 
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satisfy all of the stakeholders‘ value propositions, they need to communicate this to the 

stakeholders and help manage their expectations and prioritize capabilities to achieve a mutually 

satisfactory solution, or at least an initial operational capability achievable within the currently 

available resources. Increasingly, these skills involve a balance of satisficing and multi-criterion 

optimizing among multiple stakeholders rather than optimizing around a single criterion such as 

performance.  

Trade-studies are also be used to identify overall solution concepts and key solution elements. 

One critical part of this is deciding on which system functions to allocate to hardware, software, 

and human system elements, and to understand the full cost and risk implications of design 

choices. These system trades will require software engineering knowledge and skills to help 

explore feasible solution directions and to understand the issues and constraints of different types 

of software-enabled solutions.  

C.2.5. Integration and Verification (I&V) 

The processes of system I&V take implemented and tested system elements and combine them to 

realize the SoI. These processes are strongly linked to the equivalent software processes, since 

some elements of software assessment may only be possible when combined with other system 

elements. For many software-intensive systems, a continuous integration approach, such as daily 

or weekly builds of partial unit-tested components, has become preferable to waiting for fully-

realized components to be individually developed and unit-tested before beginning integration 

and test. 

Both processes have a strong ―through life‖ aspect, with issues, strategies, and plans for both 

being an essential part of the requirements and architecture process outcomes. Both may also 

require the creation of relevant enabling systems, facilities, instrumentation, information 

repositories, and so forth. 

The relevant Planning and Configuration Management process to handle this will be very similar 

to that described in the CBOK. 

Integration 

The purpose of the Integration Process is to realize the System of Interest by progressively 

combining system elements in accordance with the architectural design requirements and the 

integration strategy. 

This process confirms that all boundaries between system elements have been correctly 

identified and described, including physical, logical, and human-system interfaces and 

interactions (physical, sensory, and cognitive), and confirms that all functional, performance, and 

design requirements and constraints are satisfied. If a project is taking an incremental approach 

to satisfying stakeholder needs, all system configurations need to be tested.  
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Verification 

The purpose of the Verification Process is to confirm that all requirements are fulfilled by the 

system elements and eventual System of Interest—that is, that the system has been built right. 

This process establishes the procedure for taking remedial actions in the event of non-

conformance. 

The process confirms that all elements of the SoIwhen working together perform their intended 

functions and meet the performance requirements allocated to them. 

C.2.6. Transition and Validation  

The processes of System Transition and Validation are more closely related to the satisfaction of 

stakeholder needs.  

As above, these processes will have a strong ―through life‖ aspect, with much of their impact 

being in the project strategy and planning activities. These processes deal with external project 

issues such as links to other projects, availability of customer-owned facilities, or strategies for 

fitting system release into operational tempo. 

The conduct of both Transition and Validation in a particular sector will be constrained by the 

regulatory frameworks and business practices of that domain. This requires systems engineers 

and project managers to ensure that any technical activities needed can be properly managed and 

synchronized with non-technical deliverables. 

Transition 

The purpose of the Transition Process is to transfer custody of the system and responsibility for 

system support from one organizational entity to another. This includes (but is not limited to) 

transfer of custody from the development team to the organizations that will subsequently 

operate and support the system. Successful conclusion of the Transition Process typically marks 

the beginning of the Utilization Stage of the System of Interest. 

The process installs a verified system in the operational environment along with relevant 

enabling systems, such as operator training systems, as defined in the agreement. As part of this 

process, the acquirer accepts that the system provides the specified capabilities in the intended 

operational environment prior to allowing a change in control, ownership, and/or custody. 

Validation 

The purpose of the Validation Process is to confirm that the realized system complies with the 

stakeholder requirements System validation is subject to approval by the project authority and 

key stakeholders. 

This process is invoked during the Stakeholders Requirements Definition Process to confirm that 

the requirements properly reflect the stakeholder needs and to establish validation criteria—that 

is, that the right system has been built. This process is also invoked during the Transition Process 

to handle the acceptance activities. 
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C.2.7. Operation, Maintenance, and Disposal 

The INCOSE handbook includes technical processes for system Operation, Maintenance, and 

Disposal. Much like the Implementation process, these processes are a placeholder to recognize 

that the system users and acquirers will need to have identified and acquired or created all of the 

Enabling Systems Plans and Resources necessary for the Utilization and Disposal life cycle 

stages. These processes also describe activities to ensure that systems engineers are aware of and 

constrained by utilization issues during early lifecycle stages, and that they plan for and integrate 

all enabling systems and external relationships across the system lifecycle. Recently, efforts have 

been made to emphasize that Disposal includes the option of planning and preparing for 

Recycling.  

C.2.8. System Engineering of Software 

Virtually all of the procedures and techniques of SE can be directly applied to software 

development. Many people have commented that SwE has more in common with system 

engineering than with other engineering disciplines. In both system and software development, 

requirements must be defined, analyzed, and documented (or refined if allocated from system 

requirements), a design specification must be synthesized, components must be implemented or 

otherwise obtained, and V&V must be applied throughout the development or modification cycle 

to ensure the feasibility of proceeding forward, and to find and fix defects in the stage where they 

are inserted. Both rely on supporting disciplines such as configuration management and user 

interface design. In some cases, SwE has contributed new approaches to SE: for example, 

context diagrams, the Concept of Operations, use cases, activity diagrams, and object-oriented 

design. 

Software system engineers play the role of system engineers within the more limited context of 

software development and modification: they work with users, customers, acquirers, and other 

stakeholders to identify, analyze, and prioritize operational requirements; they translate 

operational requirements into technical specifications; they identify the major software system 

components and allocate requirements to them; they work with software component 

specialists(e.g., the user interface, database, telecommunications, and algorithm specialists); they 

work with specialists in disciplines such as safety, security, reliability, usability, configuration 

management, and quality assurance; and they oversee delivery and installation of software 

system elements. 

It is evident that strong synergy exists between SE and SwE. Increasingly it is useful to think of a 

software engineer as a systems engineer with a specialist skill in software, rather than as a 

supplier of bounded software sub-systems. The strong relationship between the two disciplines 

will become increasingly important as the needs and desires of modern society result in demands 

for larger, more complex, and more dynamic information-intensive systems, for which software 

is the preferred medium for adapting to rapid change. 
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C.3. Engineering Economics 

Engineering Economics is about making engineering decisions in a business context
81

. It means 

aligning technical decisions with the business goals of the organization. Decisions such as 

―Should we use Extreme Programming or should we use Scrum on this project?‖ may be easy 

decisions from a purely technical perspective, but those decisions can have serious implications 

on the business viability of an engineering project and the resulting product. 

C.3.1. Proposals 

Making a business decision begins with the notion of a proposal. A proposal is a single, separate 

option that is being considered. For example, carrying out a particular software development 

project or not, or enhancing an existing program versus redeveloping that same software from 

scratch. Each proposal represents a unit of choice—choose to carry out a proposal or choose not 

to. The purpose of business decision-making is to decide, given the current business 

circumstances, which proposals should be carried out and which should not.  

C.3.2. Cash Flow 

To make a meaningful business decision about any specific proposal, the proposal must be 

evaluated from a business perspective. The concepts of cash flow instances and cash flow 

streams are used to describe the business perspective of a proposal. A cash flow instance is a 

specific amount of money flowing into or out of the organization at a specific time as a direct 

result of some proposal. 

The term cash flow stream refers to the set of cash flow instances, over time, which would be 

caused by carrying out some given proposal. The cash flow stream is, in effect, the complete 

financial picture of that proposal.  

A cash flow diagram is a picture of a cash flow stream. The cash flow diagram provides the 

reader a concise overview of the financial picture of that subject. Figure 8 shows an example 

cash flow diagram for a proposal. 

A cash flow diagram shows the cash flow stream in two dimensions: time runs horizontally, from 

left to right, and amounts of money run vertically, up and down. Each cash flow instance is 

drawn on the diagram at a left-to-right position relative to the timing of that cash flow after the 

start of the proposal. The horizontal axis is divided into units of time that represent years, 

months, weeks, or other unit as appropriate for the proposal being studied. 

                                                

81 Tockey, S., Return on Software: Maximizing the Return on Your Software Investment (1st edition). Addison-

Wesley Professional, 2004. 
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Figure 8.  A Cash-Flow Diagram  

The Business Decision-Making Process 

When evaluating the optimum solution to a problem, both technical issues and business criteria 

(cost and income) must be considered when make such decisions. Figure 9 depicts a systematic 

process that could be used to make such decisions.  

 

Figure 9.  A Business Decision-Making Process 

The Time-Value of Money 

A fundamental concept in business decision-making is that money has time-value: that is, the 

value of money, because of economic conditions such as inflation, changes over time.  
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Equivalence 

Due to the time-value of money, two or more cash flows are equivalent when they equal the 

same amount of money at a common point in time. Comparing cash flows only makes sense 

when they are expressed in the same time frame. 

Bases for Comparison 

A basis for comparison is a common frame of reference for comparing two or more cash flows. It 

is a way of using equivalence to meaningfully compare proposals. Several bases of comparison 

are available, including: 

 Present worth 

 Future worth 

 Annual equivalent 

 Internal rate of return (IRR) 

 (Discounted) Payback period 

Mutually Exclusive Alternatives 

When an organization is considering carrying out multiple proposals at the same time, the 

interrelationships and dependencies between proposals can make decision-making complex and 

risky. Such a situation can be simplified by restructuring and reorganizing the set of proposals 

into an alternate, but equivalent, set of mutually exclusive proposals. 

C.3.3. For-Profit Decision-Making 

For-Profit Decision Analysis 

Figure 10 describes the process for identifying the best alternative from a set of mutually 

exclusive alternatives for for-profit organizations. 
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Figure 10.  A For-Profit Decision-Making Process 

Minimum Attractive Rate of Return 

An organization‘s minimum attractive rate of return (MARR) is the lowest IRR the organization 

would consider to be a good investment. The MARR is a statement that an organization is 

confident it can achieve at least that rate of return. It represents an organization‘s opportunity 

cost for investments. An alternative proposal‘s present worth evaluated at the MARR shows how 

much more or less (in present-day cash terms) that alternative is worth than investing at the 

MARR. 

Economic Life 

When an organization chooses to invest in a particular proposal, money is bound to that 

proposal—the money is called ―frozen assets.‖ The economic impact of frozen assets (―capital 

recover with return‖) tends to start high and decrease over time. On the other hand, operating and 

maintenance costs of elements associated with the proposal tend to start low but increase over 

time. The total cost of owning and operating a proposal is the sum of those two costs. Early on, 

frozen asset costs dominate, and later the operating and maintenance costs dominate. There is a 

point in time where the sum of the costs is minimized—the economic life, or minimum cost 

lifetime. 

Planning Horizon 

The planning horizon, also known as the study period, is the consistent time frame over which 

proposals are considered. Effects such as economic life and the time frame over which 

reasonable estimates can be made must be factored into establishing a planning horizon. Once 
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the planning horizon is established, several techniques are available for placing proposals with 

different life spans into the planning horizon. 

Replacement and Retirement Decisions 

A replacement decision is a special case of for-profit decision analysis that happens when an 

organization already has a particular asset and they are considering replacing it with something 

else (for instance, replacing a legacy software system with a new application). Replacement 

decisions use the same decision process but there are additional challenges such as sunk cost and 

salvage value. A retirement decision is concerned with ceasing a current activity, such as when a 

software company decides to cease selling a software product, or a hardware manufacturer 

decides to stop building and selling a particular model of computer. 

Inflation 

Inflation describes long-term trends in prices. If the planning horizon of a business decision is 

longer than a few years, or if the inflation rate is significant, it can cause noticeable changes in 

the value of a proposal. 

Depreciation 

Depreciation addresses how investments in capital assets are charged against income over 

several years. Depreciation is an important part of after-tax cash flows, which is critical to 

accurately addressing income taxes. Software itself typically isn‘t depreciated, but if a proposal 

has a planning horizon longer than one year, the proposal involves capital assets, and there is a 

need to accurately reflect the effects of income taxes in the decision analysis, then depreciation is 

an important analysis factor. Depreciation is also useful when comparing software proposals 

with non-software proposals. 

General Accounting and Cost Accounting 

The primary role of general accounting is to measure a company‘s actual financial performance. 

Cost accounting is a specialized branch of general accounting that is used to find the cost of 

providing the products and services that were sold. Accounting systems are also a rich source of 

historical data for estimating. 

Income Taxes 

In the U.S., the federal government and most states charge income taxes, which combined can 

amount to between 20% and 40% of a corporation‘s net profit. In some areas, federal, state, and 

local income taxes can add up to more than 50%. Across the globe, each country establishes its 

own tax policies. Income tax accounting must be part of business decisions about proposal 

acceptance and profitability. 
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C.3.4. Not-for-Profit Decision-Making 

The for-profit decision techniques discussed in Section C3.3 do not apply when an organization 

does not have a profit goal, which is the case in government and in non-profit organizations. In 

these situations a different set of decision techniques are needed. 

Benefit-Cost Analysis 

Benefit-cost analysis is a widely used method for evaluating proposals in non-profit 

organizations. Any proposal with a benefit-cost ratio of less than 1.0 can usually be rejected 

without any further analysis because it would cost more than it would benefit. 

Cost-Effectiveness Analysis 

Cost-effectiveness analysis shares similar philosophy and methodology with benefit-cost 

analysis. There are two versions of cost-effectiveness analysis. The fixed cost version maximizes 

the benefit given some upper bound on cost. The fixed effectiveness version minimizes the cost 

needed to achieve a fixed goal. 

C.3.5. Present Economy 

Break-Even Analysis 

Given functions describing the costs of two or more proposals, break-even analysis helps in 

choosing between them by identifying points where the cost functions are equal. Below a break-

even point, one proposal is preferred and above that point, the other is preferred. 

Optimization Analysis 

The typical use of optimization analysis is to study a cost function over a range of values to find 

the point where overall performance is optimal. Software‘s classic space-time tradeoff is an 

example of optimization (e.g., an algorithm that runs faster will typically use more memory).  

C.3.6. Estimation, Risk, and Uncertainty 

Estimation Techniques 

Four families of estimation techniques exist: 

 Expert judgment 

 Analogy 

 Decomposition 

 Statistical (or parametric) methods 

Addressing Uncertainty 

Estimates are inherently uncertain and that uncertainty should be addressed in business 

decisions. Techniques for addressing uncertainty include: 

 Consider ranges of estimates 
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 Sensitivity analysis 

 Delay final decisions 

Decisions under Risk 

Decisions under risk techniques are used when the decision-maker can assign probabilities to the 

different possible outcomes. The specific techniques include: 

 Expected value decision-making 

 Expectation variance and decision-making 

 Monte Carlo analysis 

 Decision trees 

 Expected value of perfect information 

Decisions under Uncertainty 

Decisions under uncertainty techniques are used when the decision-maker cannot assign 

probabilities to the different possible outcomes. The specific techniques include:
82

 

 Laplace Rule 

 Maximin Rule 

 Maximax Rule 

 Hurwicz Rule 

 Minimax Regret Rule 

C.3.7. Multiple Attribute Decisions 

Most of the topics discussed earlier in Section C.3 are used to make decisions based on a single 

decision criterion, money. The alternative with the best present worth, the best incremental IRR, 

the best incremental benefit-cost ratio, and so forth, is the one selected. Aside from technical 

feasibility, money is almost always the most important decision criterion, but it is not always the 

only one. Quite often there are other criteria, other ―attributes,‖ that need to be considered and 

those attributes can‘t be cast in terms of money. Multiple attribute decision techniques allow 

other, non-financial criteria to be factored into the decision. 

Value and Measurement Scales 

In an abstract sense, the decision making process—be it a financial decision or not—is about 

maximizing value. The alternative that maximizes total value is chosen (e.g., whether an item is 

a ―name brand‖ or not can significantly affect its perceived value). Relevant values that cannot 

                                                

82 Jordaan, I., Decisions under Uncertainty: Probabilistic Analysis for Engineering Decisions, Cambridge 

University Press, 2005. 
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be expressed in terms of money need to be measured. A number of measurement scales are 

available and the scale chosen can limit the kinds of manipulations allowed by that measurement: 

 Nominal scales 

 Ordinal scales 

 Interval scales 

 Ratio scales 

Compensatory and Non-Compensatory Techniques 

There are two families of multiple attribute decision techniques, which differ in how they use the 

attributes in the decision. One family is the ―compensatory,‖ or single-dimensioned, techniques. 

This family collapses all of the attributes onto a single figure of merit. The family is called 

compensatory because, for any given alternative, a lower score in one attribute can be 

compensated by—or traded off against—a higher score in other attributes. The compensatory 

techniques include: 

 Non-dimensional scaling 

 Additive Weighting 

 Analytic Hierarchy Process (AHP) 

In contrast, the other family is the ―non-compensatory,‖ or fully dimensioned, techniques. This 

family does not allow tradeoffs among the attributes. Each attribute is treated as a separate entity 

in the decision process. The non-compensatory techniques include: 

 Dominance 

 Satisficing 

 Lexicography 
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Appendix D. Security in the Software Life Cycle 

Security has become a widespread and significant issue in the development of software systems. 

Although the current SWEBOK does not have a specific KA or section devoted to software 

security, it does have numerous references, throughout the KA chapters, to methods and 

practices that support the development of secure software systems: requirements, design, 

construction, testing, maintenance, and so forth. The 2010 revision of the SWEBOK will 

strengthen the discussion of security throughout the SWEBOK and add a supplementary KA on 

Software Security. Table 6 points to areas and locations, within the SWEBOK, where security is 

a relevant issue. The table is not a complete specification of security issues and their relation to 

the SWEBOK, but rather is intended to illustrate how the SWEBOK KAs are and will be related 

to security curriculum issues. Additional security issues could be included: further elaboration of 

the KAs listed and additional KAs such as in maintenance, configuration management, and 

quality.  

Curriculum-related security issues are explored more fully in (Redwine, 2007)
83

, which provides 

a comprehensive guide to software security issues and is similar in style and nature to the 

SWEBOK. Redwine provides detailed guidance to those who wish to design a GSwE2009 

curriculum that focuses on software security; as it states, ―The primary audiences for this guide 

are educators and trainers who can use this guide to help identify both appropriate curricular 

content and references that detail it.‖ In Table 6, the column headed ―Security Topics‖ uses 

topics cited in (Redwine, 2007). 

Table 6.  Software Security and the SWEBOK 

Knowledge Area  Security Topics SWEBOK 

Requirements 

Engineering 

Description and classification of ―security requirements‖ Chapter 2: Sections 1.2, 4.1 

Analysis of security-related needs and expectations 
Chapter 2: Sections 3.2, 4.2, 

4.3 

Validation of security requirements 
Chapter 2: Sections 6.1, 6.2, 

6.3 

Software Design 
Analysis of security data flows and fault tolerance Chapter 3: Section 2.4, 5.2 

Invocation and utilization of security functionality Chapter 3: Section 2.2 

                                                

83 Redwine, S. T. Jr. (Ed.), Software Assurance: A Curriculum Guide to the Common Body of Knowledge to 

Produce, Acquire, and Sustain Secure Software, Draft Version 1.2. U.S. Department of Homeland Security, 2007, 

https://buildsecurityin.us-cert.gov/daisy/bsi/940-BSI/version/default/part/AttachmentData/data/Curriculum 

GuideToTheCBK.pdf 

 



94 

Knowledge Area  Security Topics SWEBOK 

Distribution and allocation of software functionality Chapter 3: Sections 2.3, 3.1 

Analysis of design vulnerability  Chapter 3: Section 4.2 

Design review of security attributes Chapter 3: Section 4.2 

Software 

Construction 

Selection of construction tools and usage standards Chapter 4: Sections 1.2, 3.2 

Usage of security best design and coding practices, with 

knowledge of common vulnerabilities 

Chapter 4: Sections 3.1, 3.3, 

3.4, 3.5 

Performance of security-oriented review and testing Chapter 4: Sections 3.2, 3.5 

Testing 

Description of security testing levels Chapter 5: Section 2.1 

Testing security functionality 
Chapter 5: Sections 3.2, 3.6, 

3.7 

Attack and penetration testing 
Chapter 5: Sections 3.4, 3.6, 

3.7 

Classification of security defects Chapter 5: Section 4.1.2 
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Appendix E. GSWE2009 Outcomes CBOK Mapping 

A mapping of the ten GSwE2009 Outcomes to the CBOK is shown in Table 7. The mapping 

clarifies where CBOK alone falls short of achieving the outcomes, highlighting the importance 

of the 50% of the curriculum that is not covered by CBOK. A course that addresses CBOK 

material could include additional material, concepts, case studies, pedagogical methods, and 

other facets that substantially address an outcome. However, those additional facets are program-

specific and not inherent in the CBOK content. Each outcome is rated high, medium, low, or 

none for how well the CBOK addresses the outcome. For example, a rating of high would mean 

that the CBOK—with its designated Bloom levels—fully supports the outcome; medium, low, 

and none describe decreasing levels of support of the outcome within CBOK.  These ratings are 

subjective, but are substantiated by the observations column in the table. 

Table 7.  GSwE2009 Outcomes-CBOK Mapping Table 

Outcomes 
Supporting 

Knowledge Areas 

Supporting Topics 

in Knowledge 

Areas 

How Well 

CBOK 

Addresses 

Outcome 

Observations 

CBOK All All High 
By definition, the CBOK 

addresses this outcome fully. 

DOMAIN All All Low 

There is no requirement in the 

CBOK to learn any domain in 

depth. However, almost any 

pedagogical approach to teaching 

the CBOK will cover at least one 

domain to a minimal level of 

proficiency.  

DEPTH Any All Medium 

The CBOK does not require 

Bloom‘s Synthesis level.  
However, the CBOK coverage of 

such areas as Requirements 

Analysis to the AN level takes a 

student significantly towards the 

Synthesis level.  

ETHICS 

A.  Ethics and 

Professional 

Conduct 

All High 

The Ethical and Professional 

Conduct KA specifically 

addresses this outcome. 
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Outcomes 
Supporting 

Knowledge Areas 

Supporting Topics 

in Knowledge 

Areas 

How Well 

CBOK 

Addresses 

Outcome 

Observations 

SYS ENG 

Primarily B. System 

Engineering, but also 

aspects of the other 
KAs, especially A. 

Ethics and 

Professional 

Conduct, C. 

Requirements 

Engineering, F. 

Testing, H. 

Configuration 

Management. and I. 

Software 

Engineering 

Management 

A.1. Social, legal, 

and historical issues 

directly supports 

 
A.2. Codes of 

ethics and 

professional 

conduct is directly 

supporting 

 

B, C, F, and H 

topics at least touch 

on SE 

 

I.3. Risk 

Management 
directly supports 

Medium 

Systems Engineering proficiency 

is required at the Bloom C and 

AP levels in Table 2. There are 

many opportunities to incorporate 

SE into courses when teaching 

requirements, architecture, and 

other CBOK topics.   

TEAM 

A. Ethics and 

Professional 

Conduct 

I.  Software 

Engineering 

Management 

 

Others as needed to 
demonstrate 

leadership in a 

technical area 

A.1. Social, legal, 

and historical issues 

 

A.2. Codes of 

ethics and 

professional 

conduct 

 

I.3. Software 
Project 

Organization and 

Enactment 

Medium 

Working in teams is 

pedagogically straightforward and 

will typically be covered in 

courses that teach CBOK 

material.  However, teaching 

about ―multinational 

communication and 

geographically distributed‖ 

teams will be much more 

challenging for many programs. 

 
In order to ―lead in one area of 

project development‖ the student 

will need to master that area 

beyond the CBOK recommended 

level. 
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Outcomes 
Supporting 

Knowledge Areas 

Supporting Topics 

in Knowledge 

Areas 

How Well 

CBOK 

Addresses 

Outcome 

Observations 

RECONCILE 

A. Ethics and 

Professional 

Conduct 

C. Requirements 

Engineering 

 
I.  Software 

Engineering 

Management 

 

A.1. Social, legal, 

and historical issues 

 

A.2. Codes of 
ethics and 

professional 

conduct 

 

C.3. Initiation and 

Scope Definition 

 

I.1. Software 

Project Planning 

 

I.2. Risk 

Management 
I.3. Software 

Project 

Organization and 

Enactment 

 

I.7. Engineering 

Economics 

Medium 

There is no KA or topic 

specifically tied to ―reconcile 

conflicting project objectives, 

finding acceptable compromises 
within limitations of cost, time, 

knowledge, risk, existing systems, 

and organizations.‖ However, 

aspects of Ethics, Requirements 

Engineering and Software 

Engineering Management should 

cover this in part. 

PERSPECTIVE 

C. Requirements 

Engineering 

 

I.  Software 
Engineering 

Management 

 

 

C.3. Initiation and 

Scope Definition 

 

C.4. Requirements 

Elicitation 
 

I.3. Software 

Project 

Organization and 

Enactment 

Medium 
The capstone project and related 
presentations reinforce 

communication and leadership. 

LEARN None None Low 

No specific KA or topic related to 

this outcome. The capstone and 

class project could cover aspects 

related to learning new models 

and technologies. 

TECH None None Low 

No KA or topic related to this 

outcome. Elective courses, 

capstone project and class 
projects could cover analyzing 

and testing new technologies. 
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Glossary 

 

Abbreviations 

ABET Accreditation Board for Engineering and Technology 

ACM Association for Computing Machinery 

ACS Australian Computer Society 

AHP Analytic Hierarchy Process 

AN Analysis level in Bloom's taxonomy 

ANSI American National Standards Institute 

AP Application level in Bloom's taxonomy 

ASEE American Society for Engineering Education 

ATM Automated Teller Machine 

BCS British Computer Society 

BS Bachelor of Science 

BSCE Bachelor of Science in Computer Engineering 

BSCS Bachelor of Science in Computer Science 

BSEE Bachelor of Science in Electrical Engineering 

BSSE Bachelor of Science in Systems Engineering 

C Comprehension level in Bloom's taxonomy 

CAT Curriculum Author Team 

CBD Component-Based Design 

CBOK Core Body of Knowledge 

CM Configuration Management 
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CMMI Capability Maturity Model Integrated 

COTS Commercial Off-the-Shelf 

CS Computer Science 

CSEET Conference on Software Engineering Education and Training 

CSI Computer Society India 

DoD United States Department of Defense 

E Evaluation level in Bloom's taxonomy 

ECTS European Credit Transfer and Accumulation System 

EIA Electronic Industries Alliance 

EST Early Start Team 

GPA Grade Point Average 

GPS Global Positioning System 

GSwE2009 
Graduate Software Engineering 2009: Curriculum Guidelines for Graduate 

Degree Programs in Software Engineering 

GSwERC Graduate Software Engineering Reference Curriculum 

I&V Integration and Verification 

ICSE International Conference on Software Engineering 

IEC International Electrotechnical Commission 

IEEE Institute of Electrical and Electronics Engineers 

IEEE-CS Institute of Electrical and Electronics Engineers – Computer Society 

INCOSE International Council on Systems Engineering 

IP Intellectual Property 

IRR Internal Rate of Return 

ISO International Standards Organization 
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iSSEc Integrated Software and Systems Engineering Curriculum  

K Knowledge level in Bloom's taxonomy 

KA Knowledge Area 

MARR Minimum Attractive Rate of Return 

MS  Master of Science 

MSE  Master of Software Engineering 

NDIA  National Defense Industrial Association—Systems Engineering Division 

NITRD 
Networking and Information Technology Research and Development 

Program—specifically, the National Coordination Office for NITRD 

OSD Office of the Secretary of Defense 

PMBOK®  Project Management Body of Knowledge 

RFP Request For Proposals 

S Synthesis level in Bloom's taxonomy 

SE Systems Engineering 

SE2004 
Software Engineering 2004, the ACM/IEEE Computer Society reference 

curriculum for an undergraduate degree in software engineering, published 

in 2004 

SEI Software Engineering Institute 

SoI System of Interest 

SoS System of Systems 

SwE Software Engineering 

SWEBOK The IEEE ‘s Software Engineering Body of Knowledge, published in 2004 

SYS Systems engineering content in CBOK 

S2ESC IEEE–CS Software and Systems Engineering Standards Committee 

UCITA Uniform Computer Information Transactions Act 
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UML Unified Modeling Language 

V&V Verification and Validation 



109 

Terms 

Admission Requirements. Admission requirements are the minimum standards an individual must meet in 

order to enter an academic program. These requirements are generally mandatory, and waivers 

require justification. Admission requirements are not specified in GSwE2009. (See Entrance 

Expectations) 

Architecture. Architecture refers to the framework used to develop software, which is specifically covered 

in the Core Body of Knowledge. (For information on the architecture of GSwE2009, please see 

Curriculum Architecture.) 

Bloom Taxonomy. A categorization of the intellectual activities associated with learning. The taxonomy 

has six levels of activity: Knowledge (K), Comprehension (C), Application (AP), Analysis (AN), 

Synthesis (SYN), and Evaluation (EV). These levels are used to describe the depth to which 

curricula should cover specific elements in the Core Body of Knowledge (CBOK). The 

GSwE2009 Curriculum is focused primarily at the K, C, AP, and AN levels, with 

recommendation of SYN level understanding in an elective area. (Please see Appendix B for 

more information.) 

Bridging Course. See Leveling Course. 

Capstone Experience. A detailed and work-intensive endeavor that demonstrates the application of 

knowledge and skills gained in a program to a specific problem. Capstone projects have 

traditionally been in the form of a thesis. More recently, capstone projects that handle problems 

relevant to a particular industry segment or area of expertise and develop potential solutions have 

been included. (For more information on the capstone experience recommended by GSwE2009, 

please see Section 5, Curriculum Architecture.) 

Configuration Management. Generally, the management discipline focused on maintaining consistent 

structure and performance for a specific product. Configuration management practices help to 

identify the configuration for a product, track any changes to the product that may alter 

configuration, and verify that changes do not detrimentally affect performance. For GSwE2009, 

configuration management refers specifically to software configuration management. (For 

additional information, please see Appendix C.) 

Core Body of Knowledge (CBOK). The recommended knowledge areas that should be obtained within a 

software engineering master‘s degree program. In addition, the CBOK provides a 

recommendation as to the appropriate Bloom‘s level for each knowledge area. (The CBOK is 

described in Section 6 of this document.) 

Core materials. Fundamental skills and knowledge that all students must master within a given program.  

Course. A collection of material, exercises and assessment for which academic credit is awarded, which 

may be part of a number of programs. 

Credit Hours. A unit used to indicate the amount of in-class time for a given course. Generally, this refers 

to one hour of class time per week per term. This may be affected by the types of terms used (e.g., 

semesters vs. quarters) and by the instructional mode (e.g., on-line vs. traditional classroom). 

(Also referenced as course credits.) 
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Curriculum. All the courses associated with a specific course of study. The curriculum will depend on the 

level (e.g., graduate or undergraduate) and specificity (i.e., discipline or specialty) of the course 

of study. 

Curriculum Architecture. The structure and framework used to develop a specific course of study. The 

GSwE2009 Curriculum Architecture is discussed in Section 5. 

Degree Program. A collection of courses, delivered by an appropriate authority, leading to an academic 

degree. 

Elective Materials.  A set of courses to accommodate different interests and goals of individual students 

that may include special topics.  

Engineering Economics. The application of economic principles to engineering projects. This discipline 

generally considers the economic implications along with the technical aspects when determining 

a solution to a particular problem. This discipline is recommended within the GSwE2009 

curriculum and is discussed in further detail in Appendix C. 

Entrance Expectations. Knowledge and skills expected of students when they enter an academic program. 

These are often prerequisites to the topics they will study. 

Faculty. Academic or teaching staff.  These may include both full-time permanent staff who are 

employed in an academic unit and external staff attached to the program, such as adjuncts.. 

GSwE2009-Satisfying Program. A university program that offers a master‘s in software engineering with 

a curriculum that largely satisfies GSwE2009 recommendations. Reasonable deviation from those 

recommendations for individual university or program constraints is expected. There is no precise 

measure of how much deviation is ―reasonable‖.  

Human Computer Interface Design. The discipline concerned with providing user-friendly displays that 

better enable individuals to comprehend electronic information. 

Integration and Verification (I&V). The process that combines implemented and tested system elements 

to realize the System of Interest (SoI). 

Lessons Learned. A description of the insights gained when attempting to address a problem and which 

may prove valid in future situations. In GSwE2009, lessons learned specifically refer to the 

insights gained when trying to adapt an existing SwE curriculum to the GSwE2009 curriculum. 

Lessons learned are primarily discussed in the companion document Frequently Asked Questions 

on Implementing GSwE2009.) 

Leveling Course. A course designed to allow students who do not meet entrance expectations to enroll in 

an academic program. In general, these are courses designed to ensure that students have the 

requisite knowledge, skills, and abilities to succeed in the program. These may also be referred to 

as bridging courses or preparatory courses. 

Master’s Degree. A graduate or professional-level degree intended to follow an undergraduate course of 

study. Within GSwE2009, a master‘s degree in software engineering is focused on developing 

knowledge, skills, and abilities to meet the current and future challenges of complex systems that 

require software in order to operate properly. 
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Outcomes. The expected accomplishments of an individual who has completed an academic program. 

(Please see Section 3, Expected Outcomes When A Student Graduates.) 

Pedagogy. The style of instruction and strategies used within a specific course of study. Pedagogy is 

discussed primarily within the Frequently Asked Questions on Implementing GSwE2009. 

Preparatory Course. See Leveling Course. 

Program. See Degree Program. 

Program track. A specific set of courses within a program that emphasizes different areas of study such 

as telecommunications, real-time systems, and information systems. 

Practical experience. Professional experience that allows a student to be exposed to a team environment 

and the product life cycle in the context of software engineering. 

Reference Curriculum. A set of outcomes, entrance expectations, architecture, and a body of knowledge 

that provide guidance for faculty who are designing and updating their programs. That guidance 

is intentionally flexible so that faculty can adopt and adapt it based on local programmatic needs. 

A reference curriculum is not intended to be used directly for program certification or 

accreditation. 

Requirements Engineering. The process for determining the necessary capabilities and/or functions for a 

specific product or service. Within GSwE2009, requirements engineering refers specifically to 

the development of software requirements. 

Risk Management. The process of assessing potential threats to an endeavor, developing strategies to both 

reduce the probability of the problem occurring and counter these threats if they occur, and 

implementing these strategies using program resources. Risk management in GSwE2009 

specifically refers to the processes used to understand and mitigate software-related risks for a 

project or product. 

Software Engineering (SwE). A systematic approach to the development of operational software, and the 

maintenance of that software. 

Software Maintenance. Continued support of a software product after delivery, either to correct 

deficiencies or errors or to enhance the functionality of the software and its performance. 

Software Security. Ensuring that software continues to function correctly in spite of attack or misuse.   

Supporting Processes. A GSwE2009-specific supplement to the knowledge areas presented in the 

SWEBOK. Specifically, this is a knowledge area that includes the activities of configuration 

management, verification and validation, quality assurance, reviews and audits, and software 

documentation processes.  

Systems Engineering (SE): An interdisciplinary approach and means to enable the realization of 

successful systems. It focuses on defining customer needs and required functionality early in the 

development cycle and documenting requirements, then proceeding with design synthesis and 

system validation while considering the complete problem.  

Testing. The process by which a product is systematically checked to ensure that a product functions as 

expected. Within GSwE2009, this specifically refers to the discipline of software testing. 
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Track. See Program Track. 

University-specific materials. Specific materials that an institution might include in order to tailor a 

program to meet specific objectives.  For example, university-specific materials may be used for a 

program with a specific focus in security or human computer interfaces. 

Verification and Validation (V&V). The process of ensuring that a product or program meets its 

specifications and purpose and satisfies the stakeholders‘ needs. Specifically, this process often 

ensures that all critical stakeholder requirements are met and that the product will provide the 

target capabilities specified by the stakeholders. Within GSwE2009, this specifically refers to 

methods for ensuring that software programs enable appropriate functionality. 
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