

SummerSim’20, July 20-July 22, 2020, Madrid, Spain; ©2020 Society for Modeling & Simulation International (SCS)

A FRAMEWORK FOR CONSTRUCTING AGENT-BASED AEROSPACE

SIMULATIONS USING MODEL TO TEXT TRANSFORMATION

B. Eren Dere Bilge Kaan Görür

Roketsan Inc. PO Box 30, Elmadag, Ankara, Turkey Roketsan Inc. PO Box 30,

and Department of Computer Engineering, Elmadag, Ankara, Turkey

Middle East Technical University, Ankara, Turkey kaan.gorur@roketsan.com.tr

eren.dere@roketsan.com.tr

Halit Oğuztüzün

Department of Computer Engineering,

Middle East Technical University

Ankara, Turkey

oguztuzn@ceng.metu.edu.tr

ABSTRACT

Engineering simulations, such as simulations in aerospace industry, have a complicated nature. In order to

cope with those complications and construct simulations by using loosely-coupled components, one of the

approaches is the agent-based modeling and simulation approach which ensures the separation of concerns.

Engineering simulations are extensively being used by researchers coming from various disciplines. These

researchers are used to use model-driven tools and languages. Unfortunately, several problems may arise

when only model-driven tools and languages are applied, including performance, scalability and

productization issues. These problems can be mitigated by using well designed frameworks that are

implemented with conventional programming languages. In this paper, a framework which builds the

simulation architecture with the help of a model-based language and transforms that into code is proposed.

Our study ensures code generation of an enterprise-level simulation implementation from a software

architecture which can be designed using SysML.

Keywords: Model to text transformation, code generation, SysML, simulation design

1 INTRODUCTION

In parallel with developments in model-driven software engineering, model-driven design and development

tools started to be employed by many engineering industries. Especially the industries that work on complex

engineering problems, such as aviation and automotive, benefit from model-driven tools very often, because

those tools aim to improve simulation design and development processes. For engineering simulations,

Simulink (2020), Xcos (2020) and Open Modelica (2020) are some of the popular tools that allow users to

design their simulations as a collection of block diagrams. By using those diagrams, developers easily

implement and run their simulations by without thinking about the processes outside their scope. However,

using those model-driven tools comes with two main disadvantages. The first one is the scalability problem.

Interpreted languages provided by model-driven applications may cause simulations to slow down

comparing to conventional programming languages because of the generic structure of model-driven tools.

The performance issue becomes worse when it comes to simulate multiple entities in the same scenario.

Secondly, there are maintainability problems with multi-agent systems while using model-driven

Dere, Görür, and Oğuztüzün

development tools. For instance, when a designer wants to add identical entities to the simulation, he/she

has to copy all elements in the model multiple times. Then, the model becomes harder to be refactored and

maintained. In addition, the object oriented compatibility of these tools which is promising for multi-agent

simulations are insufficient (Görür and Çallı 2018).

An agent based simulation which is implemented with conventional programming languages can deal with

performance and scalability issues. However, for most developers who are not familiar with software

development principles, an unusual approach of simulation development may be seen complicated and time

consuming. Trying to code essential parts of a simulation will prevent researchers and engineers focusing

on the actual field of interest. For example, implementing the connections among simulation entities (such

as subsystems in an air vehicle) and figuring out how the building blocks should constitute the whole

simulation is one of the challenging issues for the model designers with conventional languages. These

difficulties cause model developers to ignore conventional programming languages completely.

A simulation architecture framework that is programmed with an object oriented programming language,

such as C++, may mitigate scalability and maintainability problems stated above. Secondly, to make

designs easier and in a more robust fashion with non-programmer friendly properties, a visual modeling

tool and a code generator which acts like a bridge between the simulation infrastructure and model-driven

tool are needed. In this paper, we propose a framework that allows developers to design their models in a

model-driven design tool. The framework can generate C++ code that is compatible with an agent-based

simulation infrastructure that we have already implemented. The generated code provides a skeleton which

can be compiled and executed after modifying it by entering initial values of agents in the target framework.

Therefore, developers do not have to start developing their models from scratch. Instead of struggling with

details of the simulation engine, interaction of simulation entities and unrelated concepts, developers will

be able to focus on only their own duties.

In this study, we aimed to accelerate the simulation development process by starting from the early design

phases of agents. Therefore, design to code transition will release the burden on model developers who do

not have expertise in object oriented programming. We used Systems Modeling Language, also known as

SysML (2020), to design agent-based simulations. Although SysML is not the only solution for model to

code transformation, we preferred SysML, because it is a widely used standard language for system

designers. It has block definition and internal block diagrams which designers are used to see for defining

behavior of systems. Moreover, all parts of the model to code generation have been done by open source

tools, including Eclipse Papyrus (2020), Acceleo (2020).

2 RELATED WORK

Model-driven engineering increased its popularity especially in the last two decades, due to its

attractiveness to stakeholders who do not have to have deep knowledge on computational science. Despite

this advantage, there are still many gaps that should be studied on model-driven engineering. Most of the

problems have been addressed by (Zeigler, Mittal, and Traore 2018), (Tolk, Diallo, and Mittal 2018) and

(Kautz, Roth, and Rumpe 2018). Bringing model-based systems engineering with various simulation

approaches together, toughness of creating complex code generator software, needs to domain knowledge

for modeling, and lack of tools for complex engineering systems are some of those problems.

Some studies in the literature focuses on model-to-model transformation, such as (Ledett et al. 2015) and

(Chabibi, Anwar, and Nassar 2018). The underlying motivation of model-to-model transformations can be

various, such as co-simulation. It is also possible to use the target platform for an intermediate solution for

a next step. For instance, after a SysML to Simulink transformation, C++ code can be generated by using

Simulink facilities (Vanderperren, and Dehaene 2006). A solution for generating a Simulink model from

SysML has been proposed to help engineers to deal with difficulties while designing complex systems by

Chabibi, Douche, Anwar, and Nassar (2018). In addition to model-to-model transformation from a SysML

Dere, Görür, and Oğuztüzün

model, they also generated some Matlab code with Acceleo templates to be used to generate the Simulink

model.

Maheshwari et al. (2018b) tackles with integrating SysML and agent-based modeling approach to allow

teams to trace evolution of systems architecture rapidly. Maheshwari et al. (2015) showed how a conceptual

model in SysML can be used to get an executable agent-based simulation in Matlab. An approach using

SysML diagrams in order to generate VHDL codes for reverse engineering purposes is introduced by

Boutekkouk and Zaidi (2015). They defined their rules for code generation using Java language. On the

other hand, there are some other studies that also handle the common problems of simulation with model-

driven engineering. For example, a solution for generating HLA (2010) based distributed simulations using

model driven architecture has been proposed by Bocciarelli, D’Ambrogio, and Fabiani (2012) to overcome

the limitations of implementing complex distributed simulations. They also used SysML for the modeling

studies. Moreover, in study (Bocciarelli et al. 2019) , MONADS method (Model-driveN Architecture for

Distributed Simulation) which allows one to generate HLA based distributed simulation code from SysML

models by using a chain of model-to-model and model-to-text transformations is proposed.

3 TARGET SIMULATION PLATFORM

In this study, the target platform of the code generation is our own simulation infrastructure that has been

already implemented in C++ by considering object oriented design approaches. SysML blocks which will

be designed while constructing the simulation model are represented as instances of classes in the

infrastructure. The most important classes of the infrastructure are Simulation, Module, Agent and

Connection and Engagement. In order to describe the code generation process in details, a brief summary

of the simulation infrastructure is given in this section. A basic class diagram of our simulation

infrastructure is shown in Figure 1.

Figure 1. Class Diagram of Simulation Infrastructure

The Simulation class can be considered as the root object of our simulation infrastructure. It harbors agents,

the engagement and the time advancing mechanism. Agents refer to autonomous entities in the simulation

while the engagement tackles with the interaction between agents. The time advancing mechanism is

responsible for driving the simulation engine by implementing both discrete and continuous simulation

approaches. A discrete simulation can be executed by one of the time-stepped execution or the event-driven

execution (Fujimoto 1999), while a continuous simulation is interested in using some differential equation

solvers. A user can specify time management related parameters by using input files. Other features of the

simulation infrastructure including plotting and logging options can be also configured by using these input

files.

Dere, Görür, and Oğuztüzün

There are two kinds of simulation entities in the infrastructure: modules and agents. In terms of aerospace

simulations, a module refers to a subsystem or a computational block that can be designed partially

independent from the other components. Propulsion, aerodynamics, flight mechanics, guidance and

autopilot are some of the components that can be handled as modules. The module class is an interface for

all entities that will be deployed to the simulation. This interface has three main methods that are left to the

developers to be implemented: initialize, act and postProcess. The initialize function is designed in case the

initial conditions of the attributes are determined. The act function specifies the behavior of the module at

the each time step while simulation is running. After the simulation is completed, the postProcess function

runs to allow user to examine the results of the simulation. For instance, plotting, saving the simulation data

and similar tasks can be handled in this function by a developer.

Agents are the autonomous entities in our simulation infrastructure which can be vehicles, radars or

satellites. They inherit characteristic properties of modules and are built by connecting different modules

which work together. The Agent class is also an interface to all kind of agents in a simulation. In the

initialize function of an agent the developer should set the connections among its own modules.

Engagements between the agents are also being set in this method. An agent’s act function is also

responsible for modules to be traversed and acted. In addition to the initialize and the act functions, an agent

should also implement the createModules function which creates module instances that are harbored by the

agent.

Connections determine the data flow between modules. In the simulation infrastructure, they are responsible

for sending the necessary variable from the source module to the target. A connection object carries

attributes named as Service Functions, which are leveraged from function pointers of “get” methods inside

the source module. Therefore, every entity has a map which stores the connections that is needed to be used

for inputs.

Engagement class ensures the connection between agents. For each step during the simulation, engagement

information is being distributed to subscribed related modules before their act methods are run. Although

the engagement approach is very similar to connections that has been defined above, it is intentionally

differentiated from connections. The main reason of this differentiation is keeping the simulation

infrastructure ready for distributed simulation concerns. Therefore the engagement approach was

implemented in a compatible manner with publish-subscribe mechanism. There are two important duties

of the Engagement class. The first one is managing the publication-subscription tables among agents. The

subscription can be done by agents by indicating either a specific agent or an engagement data type, such

as position, sensor, or radar cross section (RCS) data. The other responsibility of the Engagement class is

providing engagement data to right agents at right time. Providing data operations are mostly abstracted

from simulation entities. Simulation entities are not aware of how the data is provided to itself; instead they

only know data provided by the Engagement. From these aspects, it can be said that the Engagement class

works similar to the Run-Time Infrastructure in High Level Architecture.

4 MODEL DESIGN IN SYSML

The code generation was done by examining models in BDD (Block Definition Diagram) and IBS (Internal

Block Diagram) of SysML. A BDD represents the architectural structure of the model, while an IBD focuses

on the behavioral structure of the agents. Figure 2 shows the mapping between these diagrams and the

simulation platform. The mapping is done by considering the studies of Macal and North (2014) and

Maheshwari et al. (2018a).

Dere, Görür, and Oğuztüzün

Figure 2. The mapping between SysML diagrams and the simulation infrastructure.

4.1 BDD Elements

A BDD diagram has three kinds of elements that are Simulation Block, Agent Definition Block and Data

Type Blocks (Figure 3). While generating code, every element inside the BDD is traversed and C++ code

is generated accordingly. Simulation Block describes which agents will be used in the simulation scenario.

It also carries the information about simulation parameters, such as time management mechanism and user

configurations. Data Type Blocks are implemented in order to define the types of the attributes of simulation

entities. These types are generally the primitive types of C++ language and some other types which are

implemented in the simulation infrastructure. Agents are described as separate Agent Models and contain

module definitions that will be implemented.

Figure 3. Simulation Block and Agent Definition Block Representation

4.2 IBD Elements

An IBD has two main elements that are Agent Behavioral Block and Engagement Block (Figures 4-5).

Agent Behavioral Block represents how act in each simulation step. Inside this element, modules are

connected to each other. During the code generation, the data flow between modules of an agent are

generated by considering elements in the Agent Behavioural Block.

Interactions between agents are described in the Engagement Block. There is a predefined Engagement

Service Block and it has three ports named RCS, SENSOR and POSITION. Model designers use references

of modules that are defined in the Agent Architectural Structure in the BDD. In the generated code, the

agents interact with each other’s by allowing these modules to connect with the Engagement class. There

is no direct communication between agents. All data should pass through the Engagement Service Block

and distributed to target modules. There is a publish-subscribe relationship between the source and target

modules. For example, if a module is publishing its attribute, then it means that this module sends data to

the engagement service block. The engagement block manages how to deliver this data to the related

modules of the subscribed agents.

Dere, Görür, and Oğuztüzün

Figure 4. Internal Block Diagram of Object

Figure 5. Engagement Block

5 CODE GENERATION

To generate C++ code from the SysML model, we used Acceleo language in this study. Generated code

becomes a C++ project which is compatible with an already implemented simulation infrastructure.

However, because Acceleo uses templates for code generation, it is only suitable for generating plain text.

This means that Acceleo syntax is not the best option for implementing algorithms. So, whenever we

encountered problems during the implementation of code generation algorithms with Acceleo, we appealed

Java by invoking our Java-based code generation methods inside the Acceleo code There are three main

templates used in the Acceleo code, that will be described in the next subsections. Figure 6 demonstrates

our high-level code generation template that is written in Acceleo.

Dere, Görür, and Oğuztüzün

Figure 6. Pseudo Code for Acceleo code generation.

5.1 Generation of Main Simulation Code

The first step of the code generation process is generating the main function that is the entrance of the

desired simulation program. During this step, agents that have been described inside the simulation block

of SysML model are added into the main.cpp. A configuration file is also created in this step for main

simulation parameters, such as simulation time related parameters, by considering the other attributes of

the Simulation block. This process is applied by following Acceleo steps respectively:

• Step 1 – Generation of included files: Necessary header files of agents and the simulation

infrastructure are included in the main.cpp.

• Step 2 – Declaring a simulation object and creating a configuration file: A global simulation

object is created. This object is going to be used by all agents and modules inside the simulation.

Attributes of the simulation object are set by reading the configuration file. The configuration file

is a simple text file and generated in this step.

• Step 3 – Generation of agent objects: Instances of agents that have been defined in the BDD are

generated in the main function and added into the simulator object as entities.

• Step 4 – Generation of the simulation runner: After all the steps above are completed, the code

that executes the simulation is generated.

• Step 5 – Generation of delete commands: At the end of the main function commands for deleting

the objects are added.

5.2 Generation of Agent Code

After simulation block has been processed, Acceleo code starts traversing the agent blocks inside the BDD

and generates agent classes by invoking generateAgentHeader and generateAgentCpp templates. The

generated .cpp and .h files are stored under a folder whose name is the same with the agent block. The agent

generation process is applied by following Acceleo steps respectively. The first two rules provides

generating the header file, while rest of the rules provides generating the source file.

• Step 1 – Generation of included files for header file: In addition to including parent agent class in

the simulation infrastructure, the header files of modules which are found by traversing the contents

of the agent in IBD are also included.

• Step 2 – Generation of agent class: The agent class is generated with the necessary attributes and

methods that have been defined in the BDD. In addition to getter methods and user defined

methods, a createModules method is also created for every agent. This method is responsible for

creating and initializing modules of the agent and establishing connections between modules.

• Step 3 – Generation of included files and extern variables for source file: Similar to the Step 1,

including some necessary header files are provided in this step. Basically, generated .cpp files

include some standard header files from the simulation infrastructure (i.e. “Simulator.h”, common

Dere, Görür, and Oğuztüzün

data structure headers, etc.) and the related header file that becomes ready after Step 2 is completed.

In addition to including headers, a reference for the Simulator object that has been already defined

in main.cpp is generated.

• Step 4 – Creating module instances: All module attributes of the agent are instantiated in this

function. Their names, launch times and exit times are described. Moreover, if the module is

involved in engagement with a module of another agent, then according to whether that module is

a subscriber or publisher, suitable code is generated.

• Step 5 – Establishing connections: Connections between modules that have been created in the

previous step are established in this step. Connection information is stored in connection maps that

are defined inside the modules, to be used later.

• Step 6 – Determining the execution order of modules: After connections are established, the

execution order of modules is determined. In our simulation infrastructure, modules are executed

in the order in which they are added to the simulation engine. Therefore, the entity order is

determined from the IBD by using depth first search graph algorithm.

The initialize and the act functions of an agent are not created intentionally. Instead, agents use them from

its parent class, namely Agent. Agent class’ initialize function calls the initialize function of its modules in

the correct order which is determined in Step 6. Similarly, Agent class’ act function calls the act function

of its modules in the correct order which is determined in Step 6. If a developer needs to specialize these

two functions, he/she can override these methods after all the code is generated.

5.3 Generation of Module Code

After agent codes are generated, modules of each agent are traversed and their classes are generated by

invoking generateModuleHeader and generateModuleCpp templates. The module generation process is

applied by following Acceleo steps respectively. The first two rules provides generating the header file,

while rest of the rules provides generating the source file.

• Step 1 – Generation of included files for header file: The parent module class, namely Module, is

included.

• Step 2 – Generation of module class: The module class is generated with the necessary attributes

and methods that have been defined in the BDD. In addition to getter methods and user defined

methods, an initialize method and an act method are also created for every module. Generated getter

methods provides function pointers to connection objects. On the other hand, the engagement block

inside the SysML model is examined. If the module is publishing any data to the engagement

services, then the sendEngagementData function is generated accordingly.

• Step 3 – Generation of included files and extern variables for source file: Similar to the Step 1,

including some necessary header files are provided in this step. Basically, generated .cpp files

include some standard header files from the simulation infrastructure (i.e. “Simulator.h”, common

data structure headers, etc.). In addition to including headers, a reference for the Simulator object

that has been already defined in main.cpp is generated.

• Step 4 – Generation of the initialize function: From the SysML model, attributes of the module

are iterated. Initial values of those attributes are left blank for user to fill in. After the code

generation process, the developer should set the initial values by modifying the source file.

• Step 5 – Generation of the act function: Connections inside the agent are traversed and the ones

coming to the module as inputs are detected. Then, all the input data are stored in local variables

by fetching the inputs coming from connection object by calling the source module’s get method.

After code generation is completed, the designer should explicitly write what calculations need to

be done with these local variables.

• Step 6 – Generation of the sendEngagementData function: If the Acceleo code detects that the

module is involved in engagement in Step 1, then sendEngagementData function is generated to

allow the developer to specify what data will be sent.

Dere, Görür, and Oğuztüzün

6 CASE STUDY

To demonstrate how code generation from SysML is done, an example air vehicle simulation model has

been designed in SysML and the code generation is executed. Modeling in SysML is made by using Eclipse

Papyrus environment. In this simulation, time stepped-execution is used for time advancement method and

no ODE solver is used for the sake of simplicity.

In this case study, there are two agents in this simulation named as AirVehicle and Target. AirVehicle tries

to arrive at Target which is a moving agent. The definition of these two agents is specified in Figure 3. In

this case study, AirVehicle agent has these 7 modules Gravity, Aerodynamics, Propulsion, MassInertia,

Control, Sensor and FlightMechanics. Figure 3 also shows the Agent Definition Block Representation of

Air Vehicle. Attributes of each module is also defined in this view. Internal Block Diagram of AirVehicle

is given in Figure 4. This view shows the behavioral logic of AirVehicle by establishing connections among

modules.

For this case study we kept the business logic of Target agent very simple. The Agent Definition Block

Representation and Internal Block Diagram of Target agent is given in Figure 7.

Figure 7. Agent Definition Block and Agent Behavioural Block of Target agent.

The interaction between AirVehicle and Target agents is defined in the Engagement Block in Figure 5. In

this representation, VehicleMechanics module of Target publishes its position variable to the Engagement.

On the other hand, Sensor module of AirVehicle subscribes to data whose type is POSITION.

After the code generation from the SysML model above is processed, all header and source files are created

in a hierarchy as shown in Figure 8. Some examples of generated code for Sensor module of AirVehicle

agent, VehicleMechanics module of Target agent and Main.cpp are shown in Figures 9-10. Details of the

generated code files can be seen on the GitHub repository (SysML2Code 2020).

Figure 8. File structure of generated C++ project

Dere, Görür, and Oğuztüzün

Figure 9. Generated Main.cpp

7 CONCLUSION AND FUTURE WORK

In this study, we have proposed a solution for creating agent based simulations with model driven approach

using SysML and Acceleo. This way, some implementation details become transparent to engineers and

researchers, allowing them to focus on their fields instead of spending time on struggling with unrelated

parts of the simulation. Our case study showed that generated code is a promising starting point for

simulation development process. After the user can specify the initial values of the variables in code, the

generated code can be easily to compiled and run. During the study, various problems have been

encountered. In model to code transformation, using SysML diagrams decreased the ability of creating

convenient model to code transformation algorithms. Therefore, extensive amount of predefined rules had

to be introduced. For instance, in order to declare a certain block to be recognized an Agent during the code

generation, user should type “Agent_” in front of the block’s name. As a result, these rules caused

disadvantages for modelers while creating SysML models. Instead of using SysML, we aim to create a

custom metamodel from scratch which is directly associated with the simulation infrastructure. We plan to

use Ecore tools in Eclipse Modeling Framework (2020) for creating the metamodel. Secondly, by using

Sirius (2020), an editor for model implementations is planned to be implemented and embedded on the

custom metamodel. This way, encountered disadvantages when SysML is used will be mitigated and

optimal conditions for model driven code generation will be ensured. In addition, as introduced in (Möller

et al. 2016) and (Möller et al. 2017), an extension to this study by integrating Space Reference FOM

(SRFOM) for simulation interoperability is considered.

Another issue of the study is going back from the C++ code to SysML model. If a developer wants to

modify the model after he/she codes business logic, he/she cannot go back to SysML model. Instead, he/she

has to generate code again and migrate the business logic to new code. We are planning to figure it out by

exactly separating generated code from the business logic that will be developed by developers.

Dere, Görür, and Oğuztüzün

Figure 10. Generated Sensor.cpp and VehicleMechanics.cpp files

REFERENCES

Acceleo 2019. “Eclipse Foundation, Acceleo”. https://www.eclipse.org/acceleo. Accessed Mar. 04, 2020.

P. Bocciarelli, A. D’Ambrogio, A. Falcone, A. Garro, and A. Giglio. A model-driven approach to enable

the simulation of complex systems on distributed architectures. SIMULATION: Transactions of the

Society for Modeling and Simulation International, 95(12), 2019. doi: 10.1177/0037549719829828.

url: https://doi.org/10.1177/0037549719829828.

Bocciarelli, P., A. D'Ambrogio, and G. Fabiani, 2012. "A model-driven approach to build HLA-based

distributed simulations from SysML models." In SIMULTECH, pp. 49-60.

Boutekkouk, F., and O. Fartas, 2015. "Automatic generation of SysML diagrams from VHDL code." In

Symposium on Complex Systems and Intelligent Computing (CompSIC).

Chabibi, B., A. Anwar, and M. Nassar. 2018. "Towards a Model Integration from SysML to

MATLAB/Simulink." Journal of Software vol. 13, pp. 630-645.

Eclipse Modeling Framework 2020. “Eclipse Modeling Framework”.

https://www.eclipse.org/modeling/emf/. Accessed Mar. 04, 2020.

Fujimoto, R. M. 1999. Parallel and Distributed Simulation Systems. New York, USA, John Wiley & Sons,

Inc.

Görür, B. K., A. N. Çallı, 2018. “An Object Oriented Agent Based Framework for Modeling and Simulation

in Aerospace”, 2018 AIAA Modeling and Simulation Technologies Conference – AIAA Scitech Forum.

HLA 2010, “1516-2010 IEEE Standard for Modeling and Simulation (M&S): High Level Architecture

(HLA) – Framework and Rules”.

Kautz, O., A. Roth, and B. Rumpe, 2018. “Achievements, Failures, and the Future of Model-Based

Software Engineering”. In The Essence Of Software Engineering, edited by V. Gruhn and R. Striemer,

pp. 221 – 236. Berlin, Springer.

Ledett, J., S. Cam, B. K. Gorur, O. Dayibas, H. Oguztuzun, L. Yilmaz, and A. E. Smith, 2015. “A Hybrid

Transformation Process for Simulation Modernization and Reuse via Model Replicability and Scenario

Reproducibility”. In Proceedings of the 2015 Alabama International Simulation Conference.

https://www.eclipse.org/acceleo
https://www.eclipse.org/modeling/emf/

Dere, Görür, and Oğuztüzün

Macal, C., and M. North, 2014. “Introductory tutorial: Agent-based modeling and simulation”. In Proc. of

Winter Simulaion Conference. pp. 6 – 20.

Maheshwari, A., A. Raz, A. Dervisevic, R. Campbell, D. A. DeLaurentis, W. Colligan, A. Murphy, and O.

Kolawole, 2018a. “Minimum SysML Representations to Enable Rapid Evaluation using Agent-Based

Simulation”. INCOSE International Symposium vol. 28, pp. 1706 – 1719.

Maheshwari, A., A. Raz, D. A. DeLaurentis, A. Murphy, and O. Kolawole, 2018b. “Integrating SysML and

Agent-Based Modeling for Rapid Architecture Evaluation”. Insight vol. 21, pp. 47 – 51.

Maheshwari, A., C. R. Kenley, and D. A. DeLaurentis, 2015. “Creating Executable Agent-Based Models

Using SysML”. INCOSE Internatiional Symposium vol. 25, pp. 1263 – 1277.

Möller, B., Garro, A., Falcone, A., Crues, E. Z., & Dexter, D. E. (2016, September). Promoting a-priori

interoperability of HLA-based Simulations in the Space domain: the SISO Space Reference FOM ini-

tiative. In 2016 IEEE/ACM 20th International Symposium on Distributed Simulation and Real Time

Applications (DS-RT) (pp. 100-107). IEEE.

Möller, B., Garro, A., Falcone, A., Crues, E. Z., & Dexter, D. E. (2017, October). On the execution control

of HLA federations using the SISO space reference FOM. In 2017 IEEE/ACM 21st International Sym-

posium on Distributed Simulation and Real Time Applications (DS-RT) (pp. 1-8). IEEE.

OpenModelica, 2020. “OpenModelica”. https://www.openmodelica.org/. Accessed Mar. 04, 2020.

Papyrus 2020. “Eclipse Foundation, Papyrus”. https://www.eclipse.org/papyrus/. Accessed Mar. 04, 2020.

Simulink 2020. “Mathworks MATLAB/Simulink”. https://ch.mathworks.com/. Accessed Mar. 04, 2020.

Sirius 2020. “Eclipse Foundation, Sirius”. https://www.eclipse.org/sirius/. Accessed Mar. 04, 2020.

SysML 2020, “OMG Systems Modeling Language”. https://www.omgsysml.org. Accessed Mar. 04, 2020.

SysML2Code 2020. “SysML2Code in Github”. https://github.com/yatiyr/Sysml2Code/. Accessed Mar. 04,

2020.

Tolk, A., S. Diallo, S. Mittal, 2018. “The Challenge of Emergence in Complex Systems Engineering”. In

Emergent Behavior in Complex Systems Engineering: A Modeling and Simulation Approach, edited by

S. Mittal, S. Diallo and A. Tolk, pp. 79–97. John Wiley & Sons Inc.

Xcos 2020. “Scilab”. https://www.scilab.org/software/xcos. Accessed Mar. 04, 2020.

Vanderperren, Y., and W. Dehaene, 2006. “From UML/SysML to Matlab/Simulink: Current State and

Future Perspectives”. In Proc. Design, Automation, and Test in Europe (DATE), Munich, Germany.

Zeigler, B. P., S. Mittal, and M. K. Traore, 2018. “MBSE without Simulation State of the Art and Way

Forward”. Systems vol . 6.

AUTHOR BIOGRAPHIES

B. EREN DERE is a computer engineer at Roketsan A.S., Ankara, Turkey and master’s student at the

Department of Computer Engineering, Middle East Technical University (METU), Ankara, Turkey. His

current research interests are agent based modeling and simulation and model driven engineering. His email

address is dereeren@yahoo.com.

B. KAAN GÖRÜR is a leader computer engineer at Roketsan A.S. in Ankara, Turkey. He received his

Ph.D. degree in Department of Computer Engineering in Hacettepe University. His research interests are

parallel and distributed simulation, agent based modeling and simulation, model driven engineering, and

simulation visualization. His email address is bkaangorur@gmail.com.

HALİT OĞUZTÜZÜN is a professor at the Department of Computer Engineering, Middle East Technical

University (METU), Ankara, Turkey. He got his Ph.D. in Computer Science from University of Iowa, Iowa

City, IA in 1992. His current research interests are model-driven engineering and distributed simulation.

His email address is oguztuzn@ceng.metu.edu.tr.

https://www.openmodelica.org/
https://www.eclipse.org/papyrus/
https://ch.mathworks.com/
https://www.eclipse.org/sirius/
https://www.omgsysml.org/
https://github.com/yatiyr/Sysml2Code/
https://www.scilab.org/software/xcos
mailto:dereeren@yahoo.com
mailto:bkaangorur@gmail.com
mailto:oguztuzn@ceng.metu.edu.tr

