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ABSTRACT

In several cities, finding a parking spot is often a source of frustration for many drivers. If we ignore the
obvious solution to add more parking slots, a less expensive and easier solution could then be to optimize
the current parking slots by visibility, management and policies. This is how Smart-parking projects has
become popular, it has allowed to upgrade parking productivity and effectiveness without adding parking
slots. This paper propose to combine the discrete-event simulation provided by the discrete-event system
specification formalism with a supervised learning algorithm in order to classify parking slots depending
on their occupation time in order to predict departures. In comparison, the city Bastia (France) currently
accommodates more than 450 sensors. These have been used to test the proposed approach from the case
above.
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1 INTRODUCTION

Nowadays, the management of the parking slots occupancy in a city is a major issue in regulating traffic cars.
Mathematical models based on supervised artificial intelligence algorithms have been developed in order to
predict phenomena of traffic accumulation at peak hours according to the occupancy rates of parking slots
accumulated over a long period (Lin, Rivano, and Le Moué&l 2017, Mendoza-Silva, Gould, Montoliu, Torres-
Sospedra, and Huerta 2019, Lin 2015). It supervised algorithm therefore require large training and testing
dataset and it is based on hyper-parameters that are difficult to configure. In most cases, its dataset are not
accessible and it is necessary to simulate them in order to exploit the supervised learning algorithms. In
fact, there is some Parking datasets as in CNRPark project However all these projects have different goals
and so there datasets are specifically made for that. For example CNRPark made a datasets mainly for visual
recognition of car assisted by machine learning but there timing data are refresh every 5 minutes. So, to
counter this leak of data, we decide to simulate our data reflecting humans behavior.

On the other hand, discrete-event modeling and simulation (M&S) is an area that deserves special atten-
tion in the field of artificial intelligence (Wallis and Paich 2017, Feng, Chen, and Lu 2018). Indeed, the
combination of discrete events M&S with prediction or classification algorithms would allow for example:
to provide a M&S framework dedicated to the generation of learning data and to test artificial intelligence
algorithms devoid of real data or (ii) to consider more precisely early events (responsible for the parking
slots congestion) and to give an alternative action policy (to the driver who wants to park).
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This paper proposes to combine the discrete-event simulation provided by the discrete-event system spec-
ification (DEVS) (Zeigler and Sarjoughian 2013) formalism with a supervised learning algorithm in order
to predict the occupation time of a parking slot. This combination uses the simulation to randomly generate
the input learning dataset following the Poisson law and helps the modeler to develop classification model
without having to wait real data acquisition.

The methodology consists in developing data generation DEVS models based on the discrete Poisson distri-
bution which can help to describes the behavior of the number of parking occupancy slot events occurring
in a fixed time interval is used as a simple model (Pham,Tsai,Nguyen, Dow,andDeng2015). The gener-
ated events are used for learning and testing a neural network DEVS model, which aims to classify parking
slots according to their availability period. Finally, the prediction of the occupancy periods of parking places
from the neural network will be used in a mobile application allowing users to view the occupancy of parking
places as well as their predicted period of occupation.

The advantage of DEVS lies in the possibility of modeling and exploiting discrete-event simulation to gen-
erate learning data (from a Poisson discrete law) which is used by the neural network. In addition, DEVS
allows the simulation to be combined with the inline learning loop of the neural network. Indeed, thanks
to the DEVS simulation, the evolution of the parking slots occupancy is integrated into the learning of the
neural networks which can be done inline. In this kind of system, inline learning is very useful. In fact
the behavior of users can be modified by external events such as: change in parking policy, weather, public
tourism event, etc. In this context, an inline neural network can be very useful.

The paper is organized as follows: Section 2 gives some background about the DEVS formalism and the
DEVSimPy environment which is used to model and simulate the model of Smart-parking. A subsection
presents a related work about the machine learning algorithms applied in the context of Smart-parking.
Section 3 presents the proposed approach based on the use simulated input data to a neural network as
machine learning technique to predict the occupation times of parking slots. Finally, a conclusion is given
and some perspectives are envisioned.

2 BACKGROUND

2.1 Discrete-Event system Specification Formalism and DEVSimPy Environment

The Discrete-Event System Specification (DEVS) formalism was introduced by Zeigler in the seventies
(Zeigler 1976, Zeigler and Sarjoughian 2013) for modeling discrete-event systems in a hierarchical and
modular way. DEVS formalizes what a model is, what it must contain, and what it doesn’t contain (experi-
mentation and simulation control parameters are not contained in the model). Moreover, DEVS is universal
and unique for discrete-event system models. Any system that accepts events as inputs over time and gen-
erates events as outputs over time is equivalent to a DEVS. With DEVS, a model of a large system can be
decomposed into smaller component models with couplings between them. DEVS formalism defines two
kinds of models: (i) atomic models that represent the basic models providing specifications for the dynamics
of a sub-system using function transitions; (ii) coupled models that describe how to couple several compo-
nent models (which can be atomic or coupled models) together to form a new model. An atomic DEVS
model can be considered as an automaton (like Mealy FSM) with a set of states and transition functions al-
lowing the state change when an event occur or not. When no externals events occur, the state of the atomic
model can be changed by an internal transition function. When an external event occurs, the atomic model
can intercept it and change its state by applying an external transition function. The life time of a state is de-
termined by a time advance function called ta. Each state change can produce output message via an output
function called lambda. A simulator is associated with the DEVS formalism in order to exercise instructions
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of coupled model to actually generate its behavior. The architecture of a DEVS simulation system is derived
from the abstract simulator concepts associated with the hierarchical and modular DEVS formalism.
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Figure 1: DEVSimPy general user interface.

DEVSimPy (Python Simulator for DEVS models) (Capocchi, Santucci, Poggi, and Nicolai 2011, group )
is a user-friendly interface (Figure 1) for collaborative M&S of DEVS systems implemented in the Python
language. DEVSimPy is an open source project under GPL V3 license and its development is supported
by the University of Corsica "Pasquale Paoli" Computer Science research group. The DEVSimPy project
uses the Python programming language for providing a GUI (based on wxPython (Rappin and Dunn 2006)
graphic library which is a wrapper of the most popular WxWidgets C library) for the PyDEVS (Bolduc
and Vangheluwe 2001) and PyPDEVS (Tendeloo 2014, Van Tendeloo and Vangheluwe 2014, Van Mierlo,
Mustafiz, Barocca, Van Tendeloo, and Vangheluwe 2015) which is the the Parallel DEVS implementation
of PyDEVS APIs. DEVSimPy has been set up to facilitate both the coupling (part 2 in Figure 1) and the
re-usability of the PyDEVS classic DEVS models and the PyPDEVS Python Paralle]l DEVS models which
are stored inside repositories (part 1 in Figure 1).

In this paper, DEVS has been used in order to modeling and simulate sensors network that generate parking
availability information in order to help drivers find more efficiently desired parking slots using a neural
network based classification.

2.2 Machine Learning for Smart-Parking Solution

In the context of Smart-parking, some Markov chain based algorithms are used to predict the departure of
a car from a parking slot by using Poisson distribution process (Lin, Rivano, and Le Mouél 2017). They
are used to give drivers a probability of availability for one or multiple parking slots at the arrived time
as shown in (Pullola, Atrey, and El Saddik 2007). Users can find the parking slot with the highest chance
of being able to park their car. With this solution, there is no need of a big dataset and that’s why it is
the most common used method in Smart-parking solutions. However, a bigger dataset allows to use more
complex algorithms as a neural network, support vector regression and regression tree (Zheng, Rajasegarar,
and Leckie 2015). However giving occupancy probabilities to parking slots is not the only way to provide
smart-services to a city. In (Demisch 2016), the authors show that they can give services not only to users
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but also to municipalities. As shown, they made a dynamic pricing system on parking slot which is related
to demand, this may therefore be a solution for many cities to split up vehicle streams and increase park
slot availability rates in high demand zones. Moreover they also made an occupancy prediction on park
slots. So in this kind of system, both users and operators find their interest. There are 23 Smart-parking
projects (Lin,Rivano,andLe Moul2017)created since 1996 and they all have different specification as the
data acquisition model, but also services that they provide.

In this paper, we have a known data model, and we want to make predictions, which is well suited for
supervised learning. Indeed we want to predict the departure date of a user of a parking slot based on the
data model listed above. The proposed approach will be focused on a supervised learning method. Neverthe-
less, there are a lot of different methods for supervised models (Bishop2006). Due to the use of simulation,
we have a large dataset that are used to make parking slot departure predictions based on neural network.

3 THE PROPOSED APPROACH

Figure 2 depicts the proposed approach involving three processes: (i) DEVS model has been used to simulate
sensor data information with a pre-processing phase (ii) a NN model has been used to predict departure time
for each sensor (iii) a mobile application has been implemented to display remotely the available slots and
the simulated state of them.
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Figure 2: Proposed approach based on a pre-processing phase (Simulation based sensor data acquisition),
a major process based on supervised algorithm (NN based classification) dedicated to predict the departure
time of parking slot displayed in the end process through a mobile app.

3.1 DEVSimPy Modeling

The discrete-event simulation has been used in order to make a machine learning model based on simulated
input pattern. Due to its modular hierarchical aspect, DEVS is a very interesting tool for creating data in
this project. It allows both to apply genericity but also to simplify this process. In addition, composition in
atomic model with the possibility in DEVSimPy of being able to change the input parameters of each model
makes the test phase much more accessible. It also allows us to be able, in real-time mode, to simulate the
evolution of car park states in order to be able to develop and test the mobile application as we can see on
the figure 2. A Poisson based random generator DEVS model has been implemented to return a random
occupation state for each of the sensors according to a Poisson distribution.

Poisson’s rare events law is used to calculate the probability of a parking slot sensor occupying time. The
problem can be formulated as follows: During a period of parking activity, a parking slot is occupied during
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a period m (expressed in minutes for example) on average. Poisson’s law makes it possible to calculate the
probability that the place is occupied during 1,2,3, ..., k period in a given time interval.

The probability is given by the following formula (from (Ahrens and Dieter 1982)):

-
Plkm)=e " (1)

where m is at the same time the mean and the variance of the law. We use the inversion method to efficiently
generate Poisson distributed events (Willmot 1987).

The formula 1 has been used by the generator DEVS model according to an algorithm that can be resumed
as follows: (i) we randomly draw a decimal number between O and 1 and consider it as a cumulative
probability (the probability that there are 0,1,2 or k events in a Poisson distribution of parameter m) (ii)
thanks to the calculation of the cumulative probability of Poisson’s law, we seek to which random variable
k this corresponds.

The DEVSimPy environment based on the DEVS formalism has been used to implement the proposed ap-
proach that includes a random generation value process based on the Poisson law. First, an atomic DEVS
model (Sensorl in Figure 3 for example) has been implemented to generate events with a life time corre-
sponding to the occupancy time of a parking space according to the Poisson distribution. The atomic DEVS
model Collector has been implemented to collect all events and to classify them in order to prepare the input
data set for the NN model (pre-processing phase). The model WebServer exposes the occupancy prediction
information (web service) to the mobile application.

Sensor!  Sensor?  Sensor3 Sensord Sensor5 Sensorf  Sensor7 Sensor8  Sensor9  Sensori0

Collector NN WebServer

Figure 3: DEVSimPy simulation model used to simulate the occupancy of 10 sensors in a Smart-parking.
The model Collector aggregates all of its input events to classify them in pre-processing of data for the
neural network.

For being able to predict a vehicle departure from a parking slot we first had to choose the corresponding
methods according to the datasets and the inline learning possibilities. As we said in section 2.2, NN has
been used as a supervised learning algorithm. The NN model has been developed using the Keras (Chollet
et al. 2015) library which was designed to provide a simplistic interface for quickly creating prototypes by
building neural networks that can work with TensorFlow (Abadi, Barham, Chen, Chen, Davis, Dean, Devin,
Ghemawat, Irving, Isard, and et al. 2016). In addition, it is developed on Python language, and therefore
is more easily compatible with DEVSimPy. The DEVSimPy atomic model NN in Figure 3 embed this
Keras-based implementation.
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Figure 4: The proposed Neural Network (NN model in Figure 3) architecture with time information as inputs
and membership classes as outputs.

The classification of the occupancy (outputs of the NN model in Figure 4) is defined in Table 1. These
classes were fixed with a widening gap but that they will in the future be fixed to the different activity
exercised by the residents in order to avoid class crossing and therefore to lose precision.

class co C1 Cc2 C3 Cq Cs Ce c7 Ccg (o)

occ. | <=5 1 ]5,10] | ]10,25] | 125,60] | 160,120] | 1120,200] | ]200,300] | ]300,400] | ]400,500] | >500
Table 1: Duration classes used by the neural network. For example, if an occupancy (occ.) is between 10
and 25 minutes, the sensor belongs to the class c;.

Finally, the DEVSimPy atomic model WebServer allows to expose the simulation results as web services.
In this way, membership of occupancy classes can be exploited to be displayed on a map for example.

3.2 DEVSimPy Simulation Results and Analysis

The simulation has been performed with the following software/hardware characteristics: Windows 10;
Python 3.7.6; 6 CPU (2.2 GHz Intel Core i7) and 32GB of RAM.

The parameters of the NN model (figure 4) are momentum = 0.9, weightdecay = 1e — 6, learningrate = 0.1.
The parameters of the Poisson law used in the 10 Sensor models are different for each simulated sensor.
Respectively from ID 0 to 9 they are: m = {5,20,45,68,70,150,270,330,450,600}. These numbers are
randomly generated expect for two who need to be close enough to have the same result. After the simulation
both sensors will generally be in the same duration class (Table 1).

This first modeling approach implies that we do not have an equal number of examples from each class and
the dataset is an Imbalanced Classification Dataset (Shukla and Bhowmick 2017). Nevertheless, accuracy
metric must be equally important in both classes. Additionally, to improve the approach and to make dataset
more balanced when fitting the supervised learning algorithm, we setup a NN model taking in input the
following set (see figure 4): {id: (sensor ID), day: [1-7], hour: [0-24], minute: [0-60], duration class: [co-
c9]} for training and giving the duration class (Table 1) of the parking slot. The input data are stored in
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CSV and imported into the NN for the training and testing phase. We separate the input (resp. output) as a
variable X (resp. Y). The latter will be binary encoded in a certain number of classes (here 10). For example,
class 3 will therefore give in binaries [0,0,1,0,0,0,0,0,0,0]. Then we divide the training data from the test
data. We choose to keep 75 percent of the data for the training dataset and 25 percent for the testing dataset.
This ratio has been choose after trying different combination and it seems the most optimize ratio for the
machine learning (Bishop1995). This separation is done randomly with a seed. The data is finally ready to
be used in the neural network. Before the training we already knew that the accuracy on the NN will be
really low because of the data. The data had no correlation between them because of the simple Poisson
distribution based simulation. So the NN will have some difficulties to predict the departure time if it can’t
base his prediction on some connectedness. Because of all these negative point the accuracy with these data
was only 36%.

In fact the data needs to be link between them in a way to get more correlation. So the system need to be
integrate in constraint system which will reflect users behaviour with parking. For making the data more
consistent with more correlation, we set up some rules in the generation of park slot occupancy duration
according to the non-homogeneous Poisson Processes (Ross 2010). Without any numeric data taken from
the real parking slots we had to make a constraint simulation based on the experience. To achieve that, we
created users categories:

e The worker:
— which park is car the morning, eat at work and come back at home the night
— which park is car the morning, go back at home for lunch and return to work before leaving
back home.
e The customer:
— which randomly come each hour of the day to make some grocery, or buy something.
— which will go at restaurant mostly at lunch and dinner
— which will take a drink mostly at night
e The delivery or intervention man which come at each hour of the day to make a delivery.

To make that system, we made a new atomic model named "ConstraintPoissonSensor" and in each internal
transition, following the Poisson law, we simulate different case as the worker, the customer and the delivery
man. They all got different impact on the time the simulate user will stay on the park slot depending on what
type it is. So we follow the Poisson law but we put some condition in a way to make data more realistic.
That’s why we called it, the constraint Poisson sensor law.

The simulated sensor, for each cycle that it will make, will execute one of these cases with a certain percent
chance of happening following the Poisson law. This chance is based on the visual ascertainment and we
tried to be as close as we can see from the reality cases.

We didn’t set up any cycle limit on the simulation and we activate the no time limit option in DEVSimPy.
We choose to use only 10 atomic models, but this number can be modified without changing the process.
Moreover, here, we just want to obtain some data who fits to the general behavior of parking slots. Once the
data simulated, we made graph representing the turn over of these 10 slots depending one the hour.

We had more realistic data as shown on the figure 5. It shows the number of arrival (the count of events)
happening for each hour. We did not make a scale of days because the simulation doesn’t contain the rule
for each day of the week. The figure 5 depicts the fluctuation peaks for each realistic arrival time slot. So
we can say that the data reflects with the average drivers behaviour.



Dominici, Capocchi, de Gentili and Santucci

12000 A

10000 A

8000

count

6000 -

4000 A

2000

01456 7 8 9101112131415161718192021
hour

Figure 5: Park slot arrival count with constraint simulated sensor following the users categories based on
non-homogeneous Poisson process.

With this more balanced dataset, we set up the NN model (figure 4) and we train it to obtain an accuracy of
49 percent which is still too low for the future usage considering the desired tolerance. Our goal is for our
users to have less than 3 minute waiting time, thus the results are too low. For example, we can improve
these results by considering some additional constraints such as:

e the reservation time: billing time will be an huge facilitator prediction for NN because of the impact
that it had on the departure time

e the sensor location: as real impact on the users interest for a certain park slot. It will help also to
know the average behaviour of user for a know place(grocery, near house park slot, etc..).

e daily behaviour consideration: the dataset will need to be also scaled on day. With some rules apply
to the simulation base of current day of the week, we can follow in a more realistic way the user
behaviour depending on the day. It allows the neural network to understand the link between the day
and users conduct.

In this paper, only the last constraint has been considered. Basically, the parking’s slot are empty during
the weekend except for special events which we will not count here. As a result we have set up a duration
generation rule for free park slot, during weekends we increase the slot availability rate.

For all week except for the weekend as well as Friday, users have in general the same behaviour. So there is
no need to make different rules for these days. But the users have different behaviours during the weekend
depending on if they live inside the city or if they live outside. We have decided to make some constraint
for these two different types of users:

e downtown resident:
— Sedentary: citizen that stay all the weekend in the city.
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— Active: citizen who make some outside city activities during the weekend. They can go back
into the city at any day of the weekend depending of their activities.
e outside resident:
— Customer: User that will come into the city to make different activities (shopping, grocery,
coffee, walks, restaurant). There is different activities and they all had a custom generation time
based Poisson Distribution law.

After integrating these constraints to the simulation, we simulate and train the NN with this new dataset and
60.61 percent has been obtained which is slightly better than the previous model and can be explain by the
more complex correlation between data.

The add of sensor location constraint in the simulation has been ignored (because of the realistic data leak
that we are missing for the moment) and the park slot billing time has been considered. We supposed that
when a driver arrive on a parking slot, the driver parks and goes and buy a ticket for a certain amount of
time. But in case they don’t respect the billing park duration, an infraction rate of 20 percent is raised. The
accuracy of the NN with this new value is 96.6 percent. This result means that we need at least as much data
as we got in the simulation model to get sufficient accuracy in the realistic model.
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Figure 6: Evolution of the NN accuracy during the integration of the constraints: non-homogeneous Poisson
(NHP), Daily Behavior Consideration (DBC), Billing Time (BT).

Figure 6 shows the evolution of the NN accuracy when more complex constraint are added. The simulation
process is useful to identify constraints which should be applied in a real dataset. Moreover, the simulation
also allows to anticipate the configuration/development of the NN and the mobile application. Now that we
have configured the NN based on simulated data, we can ask ourselves how efficient is it when confronted
with real data? In this way, a real case on the city of Bastia (France) including more than 450 sensors has
been used in order to test the proposed approach.

3.3 Application on the Real Case of Bastia City

Bastia is a city located in Corsica, an island part of France. In this city, as in many others, the problem of
parking slots is on everyone’s mind because we are missing a lot of space. That’s why the city decide to
use Smart-parking as a primary solution to resolve these issues. We installed 340 sensors on street to detect
parking slots availability. We installed also another 110 sensors on the street to detect limited time park slot
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where the user can only park for 40 minutes. We have collected data for one year and we now have historic
data for over 1 million parking instances.

At the beginning of the project no real data were available. The simulation has been used to anticipate the
configuration phase of the NN that will be used on the real data.
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Figure 7: Dendrogram with heat maps showing the comparison between real (a) and simulated data (b).

The two different datasets (real and simulated) have been considered under the same format in order to
generate dendrograms with heat maps. Figure 7 shows that the two dendrograms are similar, but we can
see more complex links on the left dendrogram ((a) in Figure 7). Obviously, the real data points out some
classes that are not considered in the simulated data. However, the similarity of the input data suggests the
use of previous trained NN on the real data. The accuracy of the NN on this model with simulated data was
60.61 percent.

After testing with real data we obtain a lower accuracy but we envision to apply the pre-progressing phase
on the real data based on the dendrograms analysis and to consider the billing time information in order to
significantly increase the accuracy.

4 CONCLUSION AND PERSPECTIVES

In this paper, a combination of discrete-event simulation provided by the discrete-event system specification
(DEVS) formalism with a supervised learning algorithm has been proposed in order to classify parking
slots depending on their occupation period. More specifically for the Smart-parking context, the proposed
approach is based on a neural network learned using input dataset according to a Poisson law and generated
by a discrete-event simulation. The simulation results make it possible to obtain a prediction model for the
parking slots classification that depends on their occupancy rate.

In perspective, it is envisaged to develop a Markovian prediction model based on reinforcement learning in
order to determine an optimal policy of actions to guide the driver in his search for a parking slot. Indeed, a
reinforcement learning model based on a reward algorithm (Q-Learning) with a model-free approach could
be considered.
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