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Abstract—Cognitive Autonomous Networks (CAN)
advance network automation by using Cognitive Func-
tions (CFs) which learn optimal behavior through in-
teraction with the network. However, as in self Orga-
nizing Networks (SON), CFs encounter conflicts due to
overlap in parameters or objectives. Owing to the non-
deterministic behavior of CFs, their conflicts cannot be
resolved using SON-style rule-based approaches. This
paper proposes the Cognitive Bargaining Mechanism
(CBM) as the optimal generic way for resolving - any
type of conflict among CFs, conflict among any number
of CFs and any number of simultaneously existing
conflicts among CFs. With the CAN modeled as a
multi-agent system (MAS), CBM uses Nash’s Social
Welfare Function (NSWF) to compute a compromise
among CFs that is fair and optimal for the collective
interest of the system. To prove the feasibility of the
approach, we model three different CAN scenarios in
Python and show the resulting configurations when
a CBM-enabled controller is used to resolve all the
possible conflicts in the CAN.

Index Terms—Cognitive Autonomous Networks,
Conflict Resolution, Game Theory, Machine Learning,
Nash’s Social Welfare Function

I. Introduction
Cognitive Autonomous Networks (CAN) [1] are ex-

pected to raise the degree of automation in mobile net-
works beyond what was achieved by Self-Organizing Net-
works (SON) [2]. SON proposed to deploy several closed-
loop control-based functions, called SON Functions (SFs),
each of which is responsible for managing an individual
target. An SF calculates network configuration parameters
following some predefined rules for a particular network
state which marks the basis of limitations of SON. Using
rules in automation implies that the system has several
disadvantages, like, limited adaptability in a changing
environment and difficulty in maintenance and upgrade.
CAN overcomes these drawbacks by replacing SFs with
Cognitive Functions (CFs). Each CF is a learning agent
which adapts itself in a changing environment based on
its experience and does not follow any predefined rules,
which makes the maintenance and upgrade of the system
easier, and thus, the disadvantages of SON are overcome.

However, making network automation functions (NAFs)
cognitive raises new problems. Since NAFs work in par-
allel, conflicts of interest may arise among them due to
overlap of parameters and objectives. In SON, to remove

the conflicts, conventionally a rule-based controller atop
the SFs is used. For example, in [3] authors proposed
an external controller which guides the SON for faster
convergence. However, a CF does not follow any pre-
written rules like a SF does, it generates its own rules
based on its previous learning experience, which makes
its behavior unknown to the controller beforehand. As
no external entity knows the rules a CF follows, a rule-
based SON controller fails to resolve conflicts in a manner
beneficial for the combined interest of all CFs and some
new approach is needed. The idea of a controller for CFs in
CAN already exists [1], but currently there does not exist
any mechanism for such a controller which is beneficial for
combined interest of all CFs in the CAN.
The main contribution of this paper is designing a tech-

nology, named Cognitive Bargaining Mechanism (CBM),
which can be used in the controller in CAN and which
is able to dynamically resolve - i) any kind of conflicts
which may arise among the CFs, ii) any number of si-
multaneously existing conflicts between the CFs, and, iii)
conflicts among any number of CFs. These properties of
the proposed CBM shows that it is suitable for use in any
real system with no restriction on number and type of
automation functions. The CBM, proposed in this paper,
is generic so that we do not need separate controllers
to resolve separate types of conflicts and a single CBM
implemented in a single controller can be used to resolve all
types of conflicts, which reduces the design complexity of
the controller and makes it easy to implement. Whenever
any type of conflict arises between two or multiple CFs over
a configuration, the controller recalculates the configura-
tion, which is optimal for combined interest of all parties
involved, using Nash’s Social Welfare Function (NSWF)
[4]. To prove the effectiveness of the solution proposed
by the CBM, we model the CAN in Python and perform
extensive numerical analysis. All the acronyms used in this
paper are listed in Table I.

II. MAS model of CAN
In this section we provide a hierarchical overview of

CAN. In the hierarchy, the controller acts one layer above
the CFs as depicted in Fig. 1a. The input and output
of CFs and the controller are discussed in Section IV in
detail. To formulate the problem we study in this paper,

SummerSim-SPECTS 2020, July 20-22, Madrid, Spain; ©2020 Society for Modeling and Simulation (SCS) International



TABLE I: List of acronyms
Acronym Full name
CAN Cognitive Autonomous Networks
CBM Cognitive Bargaining Mechanism
CF Cognitive Function
MAS Multi Agent System
MLM Machine Learning Model
NAF Network Automation Function
NSWF Nash’s Social Welfare Function
SF SON Function
SON Self Organizing Networks

we abstract CAN as a Multi-Agent System (MAS), where
each CF acts as an agent of the system. All agents in the
MAS, i.e., CFs, have the following four properties -
P1 Each agent can learn and decide what is the best

action for it by itself in a dynamic environment.
P2 The agents do not communicate with each other and

no one has a complete knowledge of the system.
P3 Some or all of these agents share the same resources

and there exist conflicts of interests among them.
P4 The agents try to optimize its own target or goal

simultaneously, and the concept of a common or team
goal does not exist.

A detailed survey on existing research works on MAS,
where agents have these properties, are covered in Sec-
tion VI. This survey ensures that currently there does not
exist any research work on a MAS which has all the four
properties listed above.
Each CF to consist of two parts - Control function

part and Transfer function part. Let us consider a CF
F1 (shown in Fig. 1b) with its Control (fC) and Transfer
function (fT ) parts. The objective (or, output) of F1 is
o1. o1 is dependent on two configurations (or, parameters)
p1 and p2. The relationship between o1 and (p1, p2) can
be written as o1 = fT (p1, p2, sN ), where fT is the transfer
function and sN is the corresponding network state. When
sN changes, o1 also may change, so, fT is not constant and
it may vary over time.

The functionality of fC is to imitate and model fT which
is not constant and unknown beforehand. If we can model
fC such that it is the same as fT , we can - i) get the
value of output o1 for any (p1, p2) without trying (p1, p2)
directly on the network, and, ii) determine in advance the
values of (p1, p2) for which o1 is optimum. To model fT as
accurately as possible, fC always observes o1 and figures
out the dependence of o1 on (p1, p2). Hereafter, whenever
we mention CF, we refer to the Control function part (fC)
of the CF only.

III. Problem statement
In this section we elaborate the problem addressed

in this paper. As already stated earlier, NAFs work in
parallel often sharing the same resources and objectives
and because of that, conflicts may arise among them.
These NAFs exhibit three types of conflicts [2] -
• Category A. Configuration conflict which occurs on

either, (A1) Input, or, (A2) Output parameter(s).

(a) MAS abstraction of hierarchi-
cal CAN

(b) CF model

Fig. 1: CAN and CF model

• Category B. Measurement conflict where action of
one function influences measurement of output of
another.

• Category C. Characteristic conflict which are of
two types - (C1)Direct characteristic conflict and
(C2)Logical dependency conflict.

To state the problem we address in this paper, we build
three separate CAN models-
• CAN Model 1 with six CFs (F1, F2, F3, F4, F5,

F6) and a controller with in-built proposed CBM (as
shown in Fig. 2a).

• CAN Model 2 with four CFs (F ′1, F ′2, F ′3, F ′4) and
a controller with in-built proposed CBM (Fig. 2b).

• CAN Model 3 with two CFs (F ′′1 , F ′′2 ) and a
controller with in-built proposed CBM (Fig. 2c).

From CAN Model 1 we see that - both F1 and F2
share the same input parameter (p1), so if they have an
input parameter conflict (A1). As actions of F3 affects the
measurement of output of F4, it is a measurement conflict
(B1). Also, changing p7 affects o5 and o6 is dependent
on o5, hence it is a logical dependency conflict (C2).
Thus, this model exhibits all possible types of conflicts.
Similarly, if we analyze CAN Model 2, we see that four
CFs (F ′1, F ′2, F ′3, F ′4) have input parameter conflict over
input parameter p′1. Finally, when we analyze CAN Model
3, we see that F ′′1 and F ′′2 have - input parameter conflict
over p′′1 , measurement conflict (as action of F ′′1 impacts the
measurement of o′′2), and, characteristic conflict (logical
dependency conflict, o′′2 →o′′1 →p′′2), i.e., all three types
of conflicts are existing simultaneously. In all three CAN
models, design and working principle of the controller is
always the same.
Our target is to design a single controller to resolve -
• any kind of conflicts which may arise among the CFs,
• any number of simultaneously existing conflicts be-

tween the CFs,
• conflicts among any number of CFs, in a dynamic way.

If the controller can resolve all the conflicts in CAN
Model 1, we can say that it is able to resolve any kind
of conflicts which may arise among the CFs. Similarly, if
the controller is able to resolve the conflicts in CAN Model
2 and Model 3, we can say that it is able to resolve any
number of simultaneously existing conflicts and conflicts



among any number of CFs simultaneously. To summarize,
if we can show that the proposed CBM enabled controller
can resolve conflicts in all three CAN models, our claim
will be justified. To have the proposed functionality, the
controller has to hold the following properties -
• it has to be dynamic, i.e., the controller is automated

and is able to resolve the conflict automatically the
moment it arises, and,

• be generic, i.e., the solution mechanism is independent
of the specific conflict of interest.

In the remaining sections we discuss about the design of
CBM and its ability to resolve conflicts in detail.

IV. Design and model of proposed controller
In this section we discuss the design and workflow of

the CBM proposed in this paper. We discuss the working
principle of each component individually followed by a
complete overview on the workflow of the whole system.
We start the discussion with Nash’s Social Welfare Func-
tion (NSWF), and the reason behind using NSWF in the
CBM before going into details of the system design.

A. Nash’s Social Welfare Function (NSWF)
Conflict resolution in CAN is similar to a Multi-Agent

Resource Allocation (MARA) scenario in MAS [5] where
the CFs act as the agents. A MARA scenario is de-
fined as a triple < A,R,U >. A is a finite set of
n agents A = {1, 2, .., n}. R is a finite set of m re-
sources R = {r1, r2, .., rm}. U is a set of utility functions
U = {u1, u2, .., un} one for each agent. Each ui ∈ U
is a mapping from set of resources to the objective of
each agent. Utilities are often expressed in a same and
predetermined scale to make comparison among them
easier. A utility profile for a particular resource allocation
combination J is a vector which contains utility of all
agents for this particular allocation J and is defined
by u(J) = (u1(J), u2(J), .., un(J)). A Collective Utility
Function (CUF) is a function which operates on all the
utility profiles and maps u(J) to some real number. Most
social welfare functions can be defined as a CUF [5].

The Nash CUF, or the Nash Social Welfare Function
(NSWF), is defined as the product of the individual agent
utilities for a particular resource allocation J :

NSWF (J) =
∏
i∈A

ui(J) = u1(J)·u2(J)·u3(J)...un(J) (1)

The reason behind using NSWF in a resource allocation
problem is the solution provided by NSWF balances effi-
ciency and fairness ( [5], [6]), and it is sensitive to change in
overall welfare. The fairness in allocation can be observed
from the lowest difference in utilities obtained. For exam-
ple, NSWF prefers (50,50) to (99,1) and (24,76) as (50,50)
provides best and equal fairness to all. In the proposed
CAN model, objective of each CF has equal weight in the
system, that is why we use NSWF to obtain a solution
which provides equal weight to each output and is optimal

for their collective interest. How the proposed mechanism
changes when different objectives have different weights in
CAN is a part of our future research.
Now, in the CAN Model 1 described in section III,
A = {F1, F2, F3, F4, F5, F6}, R = {p1, p2, p3, p4, p5, p6, p7}
and U = {u1, u2, u3, u4, u5, u6}. For a particular resource,
usually multiple resource allocation combination (J) val-
ues are available to the controller. These J values are
the aggregation of all the suggested values by all the CFs
who share that particular resource (generation of J values
are described in the next section). For example, as F1
and F2 share the same resource p1, both of them suggest
multiple J values to the controller. The functionality of
the controller is to find the particular Jp, from the set of
all J values, for which

∏2
i=1 ui(J) is maximum.

B. Workflow of CF
Each CF is an independent learning agent which makes

decisions on its own based on its learning history. For
a certain network state, the CF is able to generate its
favorable set of values for a particular configuration, which
is defined as optimal-configuration-range set. The values
of optimal-configuration-range sets, proposed by different
CFs, serve as the J values (mentioned in the last section)
from which the optimal configuration (Jp) is to be found.
When value of the parameter lies within this set, the
output of the CF always lies within a certain percentage
of its value. We denote this percentage as cf-return-size
and this value can be set by the operator manually. An
optimal-configuration-range set has the following structure
- [minconfig, maxconfig]p, where minconfig denotes the
minimum and maxconfig denotes the maximum value of
the optimal-configuration-range set for p.
As each CF is a learning agent, it continually observes

the output and studies it and based on its learning, after
every pre-defined time interval, it calculates the optimal-
configuration-range set. Thus, whenever the CF is asked
to provide its optimal-configuration-range set, it is ready
with the latest one. Every time the CF generates the
optimal-configuration-range set, the CF checks if it is the
same as the last one. If they are the same, the CF takes
no action and continues with its normal workflow. If not,
the CF sends a request to the controller to recalculate the
configuration. This entire workflow of a CF is depicted in
Fig. 3a.
Sending a request to the controller is a two-step process

- i) CF generates the utility function, and, ii) send both
the latest optimal-configuration-range set and the utility
function to the controller (as can be seen from Fig. 3a).
As different CFs have different objectives with different
dimensions, it is convenient to convert them all into a
certain pre-defined scale to make decision making by the
controller easier. To do so, each CF maps the values of its
objective (or, output) to a common utility scale defined
a priori either by the network operator or provided by
the controller. An example scale may be [0:10], where 0



(a) CAN model 1 (b) CAN model 2 (c) CAN model 3

Fig. 2: Different CAN models

(a) Workflow of a CF (b) Input and output of proposed controller (c) Workflow of the controller

Fig. 3: Workflow and IO of CF and controller

indicates the lowest value and 10 indicates the highest
possible value of its objective. The mapping function,
which maps each output value between 0 and 10, is called
utility function. A utility function is denoted by f(p),
where p is the configuration value and corresponding to
a particular p, f(p) provides the utility value in the pre-
defined scale. Unlike optimal-configuration-range set, a
utility function is not calculated after every time interval,
it is recalculated only when optimal-configuration-range
set changes. The CF delivers both optimal-configuration-
range set and utility function to the controller in the
following structure: {[minconfig, maxconfig]p, f(p)}.

C. Workflow of Controller
The controller takes optimal-configuration-range sets

and utility functions from CFs as its input and returns
a single optimal configuration as its output (as shown
in Fig. 3b). Workflow of the proposed controller consists
of four steps as depicted in Fig. 3c. For several reasons
(environmental change, change of other network configu-
ration parameter), objective (output) value of a CF can
change and with it optimal-configuration-range set for a
particular parameter may change. Whenever a CF wants
to change the configuration, it sends a request to the
controller. Upon receiving the new request, the controller
sends requests to interested CFs (all the CFs who share
the same parameter or use the same configuration), ask-
ing them to send their corresponding individual optimal-
configuration-range sets and utility functions. After re-

ceiving information from all interested CFs, the controller
calculates the optimal configuration using NSWF and
makes the necessary changes in the network. The detailed
steps regarding the optimal configuration calculation are
described in the next section.
D. Calculation of optimal configuration
Main purpose of the controller is to calculate an optimal

configuration for the combined interest of all CFs from a
set of proposed configurations. By doing so, the controller
also resolves all existing conflicts among the CFs.
After receiving optimal-configuration-range sets from

multiple CFs, the controller combines them into a single
combined-configuration-range set by taking the lowest and
highest values from all the optimal-configuration-range
sets. As an example, let us assume that there are three
CFs F1, F2 and F3 interested in a certain configuration
p and they send - {[pmin,F 1

1 , pmax,F 1
1 ]p, f1(p)}, {[pmin,F 2

1 ,
pmax,F 2

1 ]p, f2(p)} and {[pmin,F 3
1 , pmax,F 3

1 ]p, f3(p)} to the
controller respectively. The controller takes the minimum
value from {pmin,F 1

1 , pmin,F 2
1 , pmin,F 3

1 }, which is denoted
by minp, and takes the maximum value from {pmax,F 1

1 ,
pmax,F 2

1 , pmax,F 3
1 }, which is denoted by maxp, and gener-

ates the combined-configuration-range set which has the
following structure - [minp, maxp].
In the next step, the controller samples as many values

as possible between minp and maxp. We denote the num-
ber of samples by controller-sampling-size. Following the
NSWF, corresponding to each sample value, the controller



calculates the product of the utilities of all three functions
and selects the highest product. For example, if s1, s2 and
s3 are three sampled values, then the controller computes
the product - f1(s) · f2(s) · f3(s) for each of them. If for
s2, the product f1(s) · f2(s) · f3(s) is maximum, then s2 is
selected as the optimal configuration.

Sometimes it may happen that instead of a single one,
we get multiple configuration values as the optimal one.
Under those circumstances, that sampled value is selected
for which the outputs of the utility functions are closer
to one another. For example, if we assume that s1 and s2
are two sampled values and also assume that f1(s1) = 8,
f2(s1) = 3, f3(s1) = 1, and, f1(s2) = 4, f2(s2) = 3, f3(s2)
= 2, we see that the product of the utilities are same in
both case. However, standard deviation of the outputs for
s1 is 2.943 and for s2 is 0.816. Thus, for s2 the utility
values are closer to one another than for s1, and so, s2 is
selected. Standard deviation gives a measure of closeness
of the values. The lower the standard deviation value, the
closer are the values to one another.

E. Special advantages of using CBM in controller
A CBM enabled controller has two important char-

acteristics which are important for managing CFs - i)
Tailing coordination, and, ii) Guaranteed minimum service
requirement.
1) Tailing coordination: To prevent undesired conflicts

among network automation functions, two types of pro-
tection can be taken [2] - i) active protection, which
resolves the conflicts in the run time, and, ii) pro-active
protection, which prevents future conflicts. Heading coor-
dination implements pro-active protection whereas Tailing
coordination incorporates the active protection. Between
these two, Tailing coordination is the more important as
it has the ability to overcome any problem that exists
in Heading coordination and it can change the incoming
requests in order to harmonize requests from multiple
automation functions concerning an identical target [2].
A CBM enabled controller provides Tailing coordination
providing an active protection to the CFs and most bene-
ficial to use in CAN.
2) Guaranteed minimum service requirement: Using a

CBM enabled controller, the Mobile Network Operator
(MNO) can guarantee that during and after conflict res-
olution, QoS will always remain above some predefined
threshold value. Let us elaborate this with an example
of CAN Model 1 (2a). Let us assume that, when the
controller is resolving conflicts between F1 and F2 over
p1, to maintain the minimum QoS, user satisfaction or
for some other reasons, o1, o2 should be always kept at
or above c1 and c2 respectively, with c1, c2 ∈ R+. In this
case, for a sample configuration s, the controller calculates
the product |f1(s) − c1| · |f2(s) − c2| and chooses that
configuration for which this product is maximum. If the
maximum product is found to be zero, then it means that
no compromise solution can be found with the constraints

Fig. 4: CAN System workflow

TABLE II: Dummy dataset structure
Row index p1 p2 o1
1 p1

1 p1
2 o1

1
2 p2

1 p2
2 o2

1
. . . . . . .
training-size ptraining-size

1 ptraining-size
2 otraining-size

1

o1 ≥ c1, o2 ≥ c2. In that case, the MNO reevaluates the
c1 and c2, and the controller recalculates the product with
new constraint values.

F. System workflow
We assume that CAN initially starts with some pre-

loaded configuration. After the system becomes opera-
tional, the CFs also start operating following its workflow
(shown in Fig. 3a). After one or multiple CFs determine
a new-optimal-configuration set for one configuration (or,
parameter), those CFs send a request to the controller to
recalculate the configuration. Upon receiving the request,
the controller recalculates the configuration (as described
in Sec IV-C and Sec IV-D) and the newly calculated
configuration value is propagated to the CFs and set in
the network by the controller. Every time a CF detects
a new optimal-configuration set for one parameter, the
whole process is repeated. This entire workflow is also
depicted in Fig. 4.

V. Simulation & Numerical analysis
A. Example model
To analyze the performance of the controller quan-

titatively, let us revisit the CAN models described in
Section III. During numerical analysis, we assume that
- oi∀i ∈ {1, 6}, o′j∀j ∈ {1, 4} and o′′k∀k ∈ {1, 2}, are
all Gaussian distribution functions. The reason behind
this assumption is that in a real life scenario, mobile
network parameters resemble this distribution very often.
For example, from [7] we see that both SNR and Latency
on a loaded cellular network follow Gaussian distribution.



The outputs of the CFs are given by:

o1 = e
− (p1+50)2

2p2
2 (2)

o3 = e
− (p4+60)2

2p2
5 (3)

o5 = e
− (p7+70)2

2p2
8 (4)

o′1 = e
−

(p′1+100)2

2p′22 (5)

o′2 = e
−

(p′1+50)2

2p′23 (6)

o′′1 = e
−

(p′′1 +50)2

2p′′22 (7)

o2 = e
− (p1−50)2

2p2
3 (8)

o4 = e
− (p6−60)2

2
o2

3 (9)

o6 = e
− (p9−o5)2

2p2
10 (10)

o′3 = e
−

(p′1−50)2

2p′24 (11)

o′4 = e
−

(p′1−100)2

2p′25 (12)

o′′2 = e
−

(p′′1−50)2

2
o′′21 (13)

These equations have been formulated in such a way
that between a pair of CFs, the conflict(s) as mentioned
in Section III hold true. For example, when p1 is -50, o1
is maximum and when p1 is 50, o2 is maximum, and thus,
F1 and F2 have a conflict over p1. In the second case,
o4 does not have any direct dependency on p5. However,
increasing p5 increases o3 which decreases o4, and thus,
F3 and F4 have a measurement conflict over p5. Lastly,
o6 is dependent on o5 and o5 is dependent on p7 (and
p8), thus, F6 has a logical dependency conflict with F5
over p7 (and p8). Using similar analysis, input parameter
conflict can be observed among (o′1, o′2, o′3, o′4) and all
three types of conflicts can be observed between (o′′1 , o′′2).
Moreover, for better analysis and graphic visualization, we
model all conflicts as parameterized conflicts without any
loss of generality.

B. Analysis Setup
In reality, the underlying relationship between the out-

puts and network states (or, configurations) is not known
beforehand. As mentioned previously, main functionality
of a CF is to learn the variation of its output when the
network state or configuration changes, so that it can
predict its output and generate the utility function for
any particular network state or configuration. To make
the numerical analysis as close to reality as possible, we
create dummy datasets, using which the CFs can learn
the variation of output w.r.t. input parameters. For each
individual CF Fi, we create a dummy dataset Di following
equation oi. Next, we create a Machine Learning Model
(MLM), and train the MLM using the dummy dataset.
After the training is complete, the MLM, which now acts
as a CF, is able to predict its output corresponding to a
particular input configuration.
1) Dummy Dataset Generation: To create a dummy

dataset(e.g., D1 for F1) we take a random combination
of the input parameters (p1, p2), calculate the output o1
(using Eq. 2), and store them in a table like Table II.

We select the value of p1 and p2 randomly from their
predefined range (which can be found from Table III) and
make sure they are unique. The total number of instances

TABLE III: Parameters and their default values
Parameter Value Parameter Value
p1 [-150, 150] p2 20
p3 60 p4 0
p5 [-50, 100] p6 100
p7 [-150, 80] p8 80
p9 40 p10 60
p′

1 [-200, 200] p′
2 35

p′
3 60 p′

4 85
p′

5 150 p′′
1 [-100, 100]

p′′
2 40

of (p1, p2), which is used for generating D1, is denoted by
training-size.
2) ML Model Training: To model the CFs in Python, we

use Polynomial Regression block of order 5 using Python
package sklearn. The code to implement a CF in Python
can be found in [8]. Each individual Fi is trained using
dummy dataset Di, so that, Fi can predict its output oi

for any combination of its input parameters.
3) Parameter Values: Relevant parameters and their

values used in the numerical analysis are:
1. cf-return-size: it is already defined in Section IV-B.

Default value is 25%, unless stated otherwise.
2. controller-sampling-size: it is already defined in Sec-

tion IV-D. Default value is 2000 unless stated otherwise.
3. training-size: it has already been defined in Sec-

tion V-B1. Unless stated otherwise, default value of this
variable used in the analysis is 2000.
4. pi, p′i, p′′i : The input parameters of the system are

chosen in a way such that the outputs are distinct from
one another and the impact of the proposed solution is
clearly visible. The parameters with their default values
or range of values are described in Table III.

C. Numerical analysis of the controller performance
1) CAN Model 1: Let us start the analysis with the

variations of the outputs (oi) w.r.t. the parameter of
conflict. For example, F1 and F2 have a conflict over
parameter p1, and in Fig. 5a we show the variations of
o1 and o2 w.r.t. p1. The black vertical line shows the
output values corresponding to the calculated solution and
each other vertical line shows the maximum output of the
function with the same color. For example, in Fig. 5a, the
red vertical line shows the optimal configuration for F1, the
green vertical line shows the optimal configuration for F2,
and the black vertical line corresponds to the calculated
optimal configuration which lies between the other two
vertical lines. From Fig. 5a we see that when the value of
p1 is as depicted by the black line, neither o1 nor o2 have
their maximum values, but it is a good balance between
these two outputs. In the same way we plot F3 and F4 in
Fig. 5b and F5 and F6 in Fig. 5c. However, from Fig. 5c
we see that, although F5 and F6 have a logical dependency
conflict over p7, o6 remains almost constant w.r.t. p7, i.e.,
maximum of o6 is independent of p7. In such cases, the
ideal configuration is the point where the other function
has its maximum output. Now from Fig. 5c we can see that
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Fig. 5: Numerical analysis of CAN Model 1
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Fig. 6: Numerical analysis of CAN Model 2 and 3
the proposed configuration in this case coincides with the
point where o5 has its maximum, proving that proposed
CBM always provides the best configuration.
2) CAN Model 2: Using this model we show that the

proposed controller can resolve conflict among any number
of CFs. We consider a CAN model with 4 CFs - F ′1, F ′2,
F ′3, F ′4, all of which share the same input parameter p1
and have a conflict over it. To resolve this conflict, we
use the same controller and plot the result in Fig. 6a to
show the optimal configuration for combined interest of all
four CFs. Although in this model we consider only 4 CFs,
the solution idea can be extended and used for any finite
number of CFs.
3) CAN Model 3: To show that the proposed controller

can resolve any number of simultaneously existing conflicts
among CFs, we consider CAN model 3 with 2 CFs - F ′′1 ,
F ′′2 as shown in Fig. 2c. All three types of conflicts exist

simultaneously between F ′′1 and F ′′2 - they have input
parameter conflict (over p′′1), measurement conflict (as
action of F ′′1 influences measurement of o′′2) and logical
dependency conflict (o′′2 →o′′1 →p′′2). To resolve all these
conflicts simultaneously, we use the same controller and
plot the result in Fig. 6b to show the optimal configura-
tion. It proves that the proposed CBM enabled controller
is able to resolve any number of conflicts which may exist
simultaneously.

VI. Related Works
A. Related works in MAS
In this paper CAN has been abstracted as a MAS and

the proposed controller works on removal of conflicts in the
MAS. So, in this section we study already existing research
works on MAS ( [14], [22]) and removal of conflicts (or,
reaching consensus) in a MAS ( [18], [23]).
In the MAS model used in this paper, described in

Section II, we already highlighted that each agent (CF)
should have four properties. Based on agent characteris-
tics, we divide existing research works on MAS into several
categories so that a combination of these features are
covered in each category. These categories are listed in
Table IV. From Table IV we see that there are a number
of prior research articles which encompass one or some
combinations of those four features described above, but
there does not exist any paper which covers all the four
features (as shown in Table IV). Ours is the first one
which considers a MAS with all of these four properties
and proposes a solution for conflict removal (or, reaching
consensus) in such a MAS.

B. Related works on controller
As mentioned earlier, the idea of a controller for network

automation functions is not new and already exists in
SON [3], [24], [25]. In these papers some external con-
trollers have been proposed which work on top of the
SON Functions and these controllers also coordinate and
remove conflicts among SON Functions. SON coordination
has extensively been researched in SOCRATES (2008) [26]
and SOCRATES (2011) [27] also. But these coordination
mechanisms or controllers cannot be used in CAN because
these are rule based controllers which follow predefined



TABLE IV: Existing works on MAS features

P1
X X X X X X X X

P2
X X X X X X X X

P3
X X X X X X X X

P4
X X X X X X X X

[9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] X

rules and rule-based coordination does not work in CAN.
To remove conflicts among CFs in CAN, we need some new
coordination mechanism which is dynamic and generic,
like the one proposed in this paper.

VII. Conclusion and Future Direction

In this paper we provide design of a CBM enabled
controller which coordinates among CFs in CAN and
dynamically resolves - any type of conflict among CFs, any
number of simultaneously existing conflicts among CFs,
and, conflict among any number of CFs. The proposed
mechanism is generic,i.e., to resolve conflicts in all possible
cases a single mechanism is used, and it has the ability to
resolve the conflict reactively, i.e., whenever the conflict
arises. The proposed mechanism calculates configuration
for the system using NSWF, so that the calculated config-
uration is optimal for the collective interest of the whole
system. To prove the validity of the proposed model, we
implement three separate CAN models in Python and
perform numerical analysis on the performance of the
controller. As a future direction from this work, we plan
to implement some real life network automation functions
(like, CCO, HO) from simulator generated dataset in 5G
scenario and explore the implementation and performance
of the proposed mechanism.
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