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ABSTRACT

Simulation-based optimization methods can support decision-making in industrial Production Planning and
Control (PPC) to include energy considerations as part of a multi-objective scheduling problem. In this
paper, we investigate a General Variable Neighborhood Search (GVNS) metaheuristic for simulation-based
energy-aware production scheduling, including optimization of setup times for thermal processes. The
fitness evaluation is based on a hybrid discrete/continuous simulation model that provides assessment of en-
ergy costs including time-dependent energy pricing together with other production goals, like storage costs,
while also considering dynamic interdependencies between production machinery and building facilities.
We demonstrate the method on a case study of flow shop scheduling in an industrial bakery in different sce-
narios. Comparisons show a potential gain of 6% when considering energy costs as an optimization target
within PPC.
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1 INTRODUCTION

Energy efficiency in industrial production has become an important topic in recent years due to legislative
pressure, but also because of the substantial potential for energy savings in the industrial sector (Chan, Kan-
tamaneni, and Allington 2015). Energy-aware Production Planning and Control (PPC) strategies can be
used to influence energy costs during operation. For example, the production of energy-intensive products
can be shifted to the night hours where energy is often cheaper, or to the midday hours in case more solar
energy is available. However, it is not sufficient to only consider energy as an optimization goal. Instead,
energy efficiency must be seen as part of a multi-objective system of production targets together with pro-
duction variables such as storage costs, throughput times or delivery delays. Such multi-objective problems
with complex, sometimes time-dependent constraints are hard to solve for real-world problems. Modern
solutions often rely on heuristic or metaheuristic methods.

According to (Wari and Zhu 2016), metaheuristics and customized multi-objective heuristic approaches
are well-suited for applications in real-life industrial production planning problems (which typically are
NP-hard), in contrast to exact approaches that usually require simplified models. Metaheuristics allow to
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explore the search space more efficiently and effectively, especially if they are tailored to the individual
problem (Giiller, Uygun, and Noche 2015). Among these, Variable Neighborhood Search (VNS) algorithms
have shown excellent capability for solving scheduling problems (Roshanaei, Naderi, Jolai, and Khalili
2009). This is in accordance with other publications, e.g. (Yazdani, Amiri, and Zandieh 2010, Roshanaei,
Naderi, Jolai, and Khalili 2009), which have successfully applied VNS for job scheduling problems in the
production domain. In (Gansterer, Almeder, and Hartl 2014), the authors compare different optimization
methods for simulation-based optimization of production plans, in which VNS also leads to the best results.

For evaluating the fitness of solution candidates during metaheuristic search, simulation-based methods are
gaining interest because they enable to capture complexity of real-world problems including difficult dy-
namic interactions without the limiting assumptions many other approaches have. However, with regard
to energy optimization, interdisciplinary holistic simulation models are required that include dynamic in-
teractions across engineering domains in order to get an accurate prediction of the overall energy demand,
that not only includes production machinery, but also technical building services. For example, heating
a production oven generates waste heat that is dissipated into the room and affects heating and cooling
energy demand for the building. Similarly, the actual setup time for preheating the oven depends on dif-
ferent conditions, including which products have been produced before, and the setup time affects produc-
tion throughput and scheduling. Incorporating energy considerations in production logistics simulations
with their time-dependent interactions in an accurate manner requires advanced modeling and simulation
approaches that combine discrete (product flow) and continuous dynamics (energy flow). Describing such
hybrid discrete/continuous simulation models in a consistent manner with formally sound semantics in com-
plex real-world applications is still challenging (Brailsford, Eldabi, Kunc, Mustafee, and Osorio 2019).

In our work, we aim to support modern PPC tools in incorporating energy considerations into the planning
process using simulation-based optimization techniques. In this paper, we present a metaheuristic procedure
for energy-aware optimization of production scheduling and demonstrate it on a case study. The procedure
employs a dynamic discrete/continuous simulation model for evaluating overall energy demand as well as
material flow, while taking into account dynamic interdependencies across domains. To this end, we have
developed a component-based hybrid simulation tool based on a formal model description, called hyPDEVS,
which is described in (Heinzl and Kastner 2019). The simulation tool includes reusable model components
that can be used to simulate interdisciplinary production systems. The optimization method aims at sequenc-
ing and time scheduling a given list of production jobs while minimizing energy demand together with other
production goals. This includes optimizing setup times to reduce energy demand and increase production
throughput. The procedure combines a Variable Neighborhood Search (VNS) metaheuristic with Variable
Neighborhood Descent and Simulated Annealing (SA) for local search and diversification. We demonstrate
the feasibility of this method on a flow shop scheduling problem of an industrial bakery. The simulation
model includes a production line with alternative paths as well as technical building services for energy
supply and a thermal building model. We compare different scenarios and highlight the potential benefit of
considering energy as an optimization target.

2 CASE STUDY OVERVIEW

To evaluate the described method on a real-life example, we devised a simplified model of a real production
plant of an industrial bakery that produces baked goods (Heinzl and Kastner 2019, Heinzl 2020). The model
features a typical production line with machines, storage and conveyor belts, an energy supply system with
heater and cooler, and a building model with thermal zones.

The production and logistics components form a production line for two product variants: baked and frozen.
Baked products pass a oven for baking while frozen products are frozen directly (in a freezer) without being
baked. Both are designed as conveyor belts, meaning that new entities continuously enter the stations and
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Figure 1: Case study production facility, consisting of production machines (blue), logistics components
(purple), technical building services for energy supply (red) and thermal building zones (green)
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leave on the other side. The building is modeled as a simple thermal compartment model with four thermal
zones, each representing a distinct part of the facility: production hall, plant rooms and cold storage. These
zones all have independent conditioning (for example, the cold storage is kept at 4 °C) and exchange thermal
energy with one another according to the defined wall topology. They also exchange thermal energy with
the environment, for which a variable ambient temperature may be specified. The energy system provides
necessary technical building services, mainly supplying energy for the production machines as well as for
heating and cooling the thermal building zones.

3 SIMULATION-BASED OPTIMIZATION STRATEGY

Production optimization deals with finding an optimal combination of production resources, such as equip-
ment, utilities or energy, to achieve a given production target in the best possible way. Operative Production
Planning and Control (PPC) methods consider production resources and cost factors to find optimal pro-
duction schedules. To support PPC in practice, modern APS (Advanced Planning and Scheduling) software
systems offer integrated resource planning (Kilger, Meyr, and Stadtler 2015, Heinzl 2020). The complexity
of the underlying optimization problem with multiple competing objectives and complex constraint condi-
tions suggests using simulation methods as part of the objective function (Swisher, Hyden, Jacobson, and
Schruben 2000). Hereby, a simulation model of the system under consideration serves as a prescriptive tool
to predict and evaluate the performance of a given scenario. Dynamic simulation allows to consider more
complex systems than with conventional analytical models, especially for highly time-dependent problems,
while offering more accurate predictions and overall improving planning quality.

However, the fact that these methods in general do not provide closed analytical representations of the
objective function (or its derivatives) prevents straightforward deployment of many standard optimization
algorithms. Instead, many practical simulation-based optimization solutions employ metaheuristics that rely
solely on the evaluation of the objective function itself. These algorithms modify a candidate solution in an
iterative manner to find a near-optimal solution until termination criteria are met. The final solution may not
be the global optimum, but is often good enough in practice.
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The overall computation cycle of using the simulation-based optimization methodology for production
scheduling in industry is illustrated in Figure 2. The starting point is a given demand plan (Dplan) specifying
how many of which entities (i.e. products) need to be delivered when. This Dplan serves as a basis to gener-
ate an initial solution of a production schedule (Pplan), which is then evaluated using a dynamic simulation
model. The results of the simulation are fed back to the optimization to be evaluated for its fitness using a
specified cost function f(x) (objective function). Based on this evaluation, the optimization algorithm iter-
atively adapts the solution in order to find the minimum of f(x) subject to constraints. The cycle continues
until certain termination criteria (e.g. fixed number of iterations, computation time threshold, etc.) are met.
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Figure 2: Simulation-based optimization cycle. Input is a demand plan (Dplan) of entities to be produced.
The optimization algorithm generates a production schedule (Pplan), which is adapted iteratively based on
an evaluation of simulation results.

4 METAHEURISTIC OPTIMIZATION METHOD

We employ a single-solution metheuristic method based on a General Variable Neighborhood Search (VNS)
procedure. The VNS (Roshanaei, Naderi, Jolai, and Khalili 2009) is an effective method guiding a local
search by switching between increasingly larger neighborhoods to efficiently explore the solution space.
The VNS consists of (1) a shaking phase that generates randomized perturbations of the solution for diver-
sifying the search to escape local optima, and (2) an intensification phase that searches for improvements
in the local neighborhood, typically using a local search procedure. For improving the performance of the
search, the Generalized VNS (GVNS) replaces the local search by a Variable Neighborhood Descent (VND)
procedure (Siarry 2016, Hansen and Mladenovi¢ 2009). The VND is similar to the VNS, but does not in-
clude shaking and thus limits the search to strict improvements (i.e. descent). It does not use the same
neighborhood structures as the VNS, which offers more flexibility in tailoring the search procedure to the
problem instance.

Algorithm 1 presents an overview of the optimization method as pseudocode. After generating a feasible
initial solution x, the VNS component (described in more detail in Section 4.3) guides a search for improve-
ments over a fixed number of iterations nj,, by generating in each iteration a random neighboring solution
x' (by means of the neighborhood structure 4% (x)) that serves as starting point for the VND that tries to
find a local minimum x”. If the solution is accepted, the VNS restarts with neighborhood .#{ and the new
starting solution x”. Otherwise, the neighborhood is enlarged. The acceptance criterion is based on Sim-
ulated Annealing (SA) (Siarry 2016) for further diversifying the search by allowing to accept potentially
worse solutions during the early search phase. Infeasible solutions are also allowed during the search and
are evaluated based on a penalizing cost function, which is described in Section 4.2. For the particular case
study, the optimization vector x contains the job starting times and the setup time duration for oven and
freezer, which allows to optimize job sequencing and scheduling as well as setup processes, which also have
an influence on the energy demand.
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Algorithm 1 GVNS/SA algorithm
1: A < set of VNS neighborhood structures for k =1, ..., kpax
2: x + InitialSolution()
30 k<1, i+ 0, T+ Ty
4: while i < nje; do

5: x' + shaking(A(x)) > generate random perturbation
6: X"« VND(X', ) > local improvement search
7: if acceptSA(x",x,T) then > acceptance based on SA
8: x <+ x’
9: k<1

10: else

11: k < (k mod kpax) + 1 > try next neighborhood

12: end if

13: i+—i+1

14: update T
15: end while

4.1 Initial Solution

An initial solution (function InitialSolution()) is generated by employing a custom construction heuristic,
which takes the jobs from the provided input list (Dplan), sorts them in increasing order of due date and
then schedules the jobs in this order as soon as possible (forward scheduling) while considering safety
gaps between jobs as well as setup times. This method ensures that no collisions occur, however, further
constraint violations, such as delivery delay, or energy considerations, are not checked during this phase.

4.2 Generalized Cost Function

The algorithm allows infeasible solution during the search process. Constraints are penalized by means of
the generalized cost function (Heinzl 2020)

f(x) = 'fdev(x) + 'fen(x) + w3 'fst(x) + 04 'fdel(x) + s 'fsep(x) (1)

where fy.y denotes a penalization for deviating number of entities produced, fe, the energy costs, fi the
storage costs, fgel is a penalization for any potential delivery delay, and fs, penalizes job separation viola-
tions. These part goals are evaluated based on the simulation. The energy costs f., are calculated by taking
the simulated power supplied by the energy providers (cf. Figure 1), rate them with time-dependent energy
prices and accumulate them over time to obtain the overall energy costs. This approach of using variable
energy prices allows to take into account different effects that potentially influence energy-aware production
planning, like lower energy prices during nighttime or due to an additional photovoltaic system that provides
solar energy during the day. The storage costs f; are determined based on the time difference between job
completion and delivery due date (given in the demand plan). For more details, we also refer to (Kamhuber,
Sobottka, Heinzl, and Sihn 2019). The coefficients @; > 0 are weighting factors, which may be adapted by
the user to balance their preferences for individual part goals and trade-offs in a transparent manner. This
weighted sum method is common for multi-objective optimization problems in practice as it is easy to im-
plement and intuitive for the user. However, the results are often highly dependent on the weights (Freitas
2004).
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4.3 Neighborhood Structures

The general operation of the VNS has been described in Algorithm 1. It is responsible for diversifying the
search in a structured way during the shaking phase by successively changing the neighborhood structures
. These neighborhood structures are usually defined implicitly by means of operators that modify the
solution. For our case, we have defined four different operators:

1. OpSwitch: This operator changes the order of jobs by taking a random number r of successive jobs
(starting from a random position) and moving them to a different position. Hereby, r is chosen in
the interval r € [1, min{rmax,n}|, where n is the overall number of jobs and 7y, changes depending
on the neighborhood k, see Table 1.

2. OpShift: The shifting operator takes a random position an moves all subsequent jobs by a specified
time #gpifr, Where fgiee depends on k.

3. OpChangeSetuptime: Here, the setuptime is changed by a specified an amount fequp.

4. OpMerge: The merging operator takes two random jobs, which are removed by a distance of d, and
which have the same product type and combines them into one job. Merging jobs has the advantage
that it reduces the number of setup processes and avoids gaps between jobs, thereby increasing
production and energy efficiency.

The VND, which is used in place of a local search procedure inside the VNS to improve the generated
solution in the intensification phase (Hansen and Mladenovi¢ 2009), uses the same basic operations, albeit
in different neighborhoods depending on the current VNS neighborhood .4;(x). For the switching operator,
the VND neighborhood containing all pairs of successive jobs is explored exhaustively. The same is done
with respect to merging. For OpShift, the VND checks shifting groups of jobs in a binary search pattern by
a set of different times zhir. Similarly for the setup times, which are being reduced iteratively by a set of
different #ep. The complete neighborhood structures used for the case study are presented in Table 1.

Table 1: Neighborhood structures used in the GVNS

k Operator Shaking VND

1 1 Fmax = 2 Fmax = 1

2 1 Fmax = 4 Fmax = 1

3 2 tehift = 8 h fshift € {4, 2, —1 , 0.5} h
4 2 tshite = 120 g € {4,2,—1,0.5} h
5 3 fseup = 0.5h  feerp € {0.5,0.25} h

6 4 d=2 d=1

4.4 Acceptance Criterion

Instead of accepting only improving solutions, a modified acceptance criterion (acceptSA()) is used that is
based on a Simulated Annealing (SA) method (Siarry 2016). It enables to further diversify the search and
better escape local optima by accepting potentially worse solutions, albeit with decreasing probability as
the search progresses. To be more precise, while an improving solution is always accepted, a deteriorating
solution x” is accepted with the probability psa = exp (—(f(x”) — f(x))/T), where f is the generalizes cost
function (see Section 4.2) and T is the temperature that decreases linearly after every VNS iteration in such
a way that T < 1073 during the last 10% of iterations. This effectively tightens the acceptance criterion as
the search progresses until, finally, only improving solutions are accepted at the end. The temperature T
is initialized with Ty according to Ty = —Agsa /1og(0.5), meaning that, initially, a solution being Aga worse
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than f(x) is accepted with a probability of 50%. Experiments revealed a value of Aga = 15 to be suitable
for the case study.

5 HYBRID SIMULATION

As already mentioned, it is important to use hybrid discrete/continuous simulation methods in the context
of interdisciplinary assessment of energy efficiency in production. These allow both the material flow to
be accurately modeled as Discrete-Event system and the energy flow by means of differential equations,
while also taking into account dynamic interactions between these domains. Continuous representation of
energy flow, as opposed to discrete energy profiles, enables to accurately incorporate transient dynamics, for
example the heat-up process of an oven or the thermal heat capacity of the building. For hybrid modeling
and simulation, we employ a formal model description, called hyPDEVS, which is based on the Discrete
Event System Specification (DEVS) (Zeigler, Prahofer, and Kim 2000). The following provides a brief
introduction into the formalism in order to give the necessary background.

5.1 hyPDEVS Formalism

The hyPDEVS formalism is a formal model description based on the Discrete-Event System Specification
(DEVS) as an extension for incorporating continuous model aspects into a discrete-event model descrip-
tion (Deatcu and Pawletta 2012).

The formalism allows to build models from components in a hierarchical manner by distinguishing between
atomic and coupled components. More formally, a hyPDEVS aromic is specified by the tuple

M= <X) Y7S>f7 Csey)l/ca 5state> 5exta 6int7 6C{Jnf7 Adata> ’ (2)

with the sets of input events X, outputs ¥ and states S, all of which may contain discrete as well as continuous
values. The remaining entries in (2) are functions specifying the continuous and discrete behavior: rate
of change function f describing ordinary differential equations (ODEs), continuous and discrete output
functions A, and Ay, state event condition function cy, for localizing state events, and transition functions
Ostate> Oext» Ojmr and 8¢y ¢ for state event, external, internal and concurrent (confluent) transitions, respectively.

Coupled hyPDEVS models are comprised of an external interface (input/output), sub-components (which
must again be hyPDEVS components) and coupling relations. Coupled systems can be arranged hierar-
chically, meaning they can be incorporated just like an atomic into a larger coupled system. This property
allows to construct modular hierarchical (tree-like) models in a component-based manner. Components
also facilitate separation of concerns in order to be able to manage the complexity of large-scale simulation
models. More details ar given in (Heinzl 2016, Zeigler, Prihofer, and Kim 2000).

5.2 Case Study Implementation

Based on the described hyPDEVS formalism, a simulation tool was implemented in C++ (Heinzl and Kast-
ner 2019) together with a library of model components for modeling production systems, which are also
used in the case study, see Figure 1. The production stations, especially oven and freezer, are modeled as
hybrid discrete/continuous models, where the discrete model is responsible for entity flow and control logic,
and the continuous model handles energy input and conversion. In particular, the energy conversion follows
simple energy balance equations, including thermal heat capacity of the station, and generates diffuse waste
heat that is dissipated into the respective thermal zone in the room model. The energy model also interacts
with the material flow by means of state events that indicate e.g. when the oven has reached its target temper-
ature and is ready to accept entities. More details are described in (Heinzl 2016). Outside energy providers
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supply the energy across the system boundary to the energy system, which is billed to the customer using
time-dependent energy pricing. Specifying energy price profiles allows to incorporate various energy cost
effects that influence production planning. To demonstrate the effect of variable energy pricing, we specify
reduced price for electric energy between 8 a.m. and 6 p.m. on selected days for this case study, see the plot
in Figure 6. The idea is that this accounts for cheaper energy from a photovoltaic system during sunshine.

6 CASE STUDY EXPERIMENTS

This section demonstrates the application of the proposed GVNS/SA method on the flow shop scheduling
case study (Heinzl 2020). The optimization was implemented as a prototype in MATLAB and coupled with
the standalone hyPDEVS simulator (see Section 5.2). Table 2 presents two typical scenarios of demand lists
(Dplan) needing to be scheduled over the course of one week (i.e. 168 h simulation time). The table lists
different orders (coming from customers) with quantities and delivery due dates (measured from the start of
the week). Duplicate entries constitute different orders to be delivered to different customers.

Table 2: Demand plan for the example scenario

Product Type Quantity Due Time
Scenario 1  Scenario 2

baked 6 48 h 168 h
baked 6 48h 168 h
frozen 20 48h 168 h
frozen 20 48h 168 h
baked 24 72h 168 h
frozen 50 72h 168 h
baked 36 120h 168 h
frozen 50 120 h 168 h
baked 8 144h 168 h
baked 8 144 h 168 h
baked 8 144h 168 h
frozen 25 144 h 168 h
frozen 25 144h 168 h
baked 20 168 h 168 h
frozen 75 168 h 168 h

Scenario 1 is based on a real demand plan and features two different products (baked and frozen) in different
batch sizes and with different due dates. Figure 3 shows the progression of the cost function over the course
of iterations. The simulation time was 1 week, and the total number of VNS iterations was chosen as
nier = 100. Further experiments showed that increasing the number of iterations does not improve the end
result significantly anymore. For testing purposes, the weighting factors for the part goals were chosen as
o = (@)i=1.5 =(1,2,0.5,1,1). When looking at the part goals, it shows that no significant constraints
have been violated that would have caused penalties (entity deviation, delivery delay) and that the majority
of the costs is divided between storage costs and energy costs. Overall, the cost function could be reduced
by about 34%, with energy costs reduced by 30% and storage costs by almost 50%.

Figure 5 depicts in more detail the oven and freezer allocations (i.e. number of entities and temperature over
time) in the initial solution, which was generated using the simple construction heuristic from Section 4.1,
against the final optimization results. The different humps in the entity count correspond to different jobs.
The results show that the jobs are being grouped together around the due dates and that some are produced
earlier than necessary, which saves on storage costs as well as energy costs, on the one hand by avoiding
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unnecessary setup processes (e.g. reheating the oven), on the other hand also by optimizing the operating
times. The gaps, where the stations are idle, increase, which allows to switch off the oven and freezer (shown
in the figure) instead of continuing them to run, which would consume unnecessary energy.

This effect becomes even more apparent in Scenario 2, where, compared to Scenario 1, all delivery due
dates are shifted to the end of the week (cf. Table 2). This gives more leeway for job scheduling but makes
it more important to balance energy costs against storage costs. It also serves as a plausibility check for the
optimization algorithm. The cost function for Scenario 2 is shown in Figure 4 with the final oven and freezer
allocations presented in Figure 6. For the oven allocation, it is noticeable that the jobs have been merged
into two clusters and that, instead of pushing the two clusters together, a gap remains that is intended to take
advantage of the reduced energy costs during the day (cf. energy price plot). Intuitively, without considering
energy costs, the best solution would be to produce everything as late as possible in order to minimize storage
costs. This is also the solution depicted in Figure 7, where, for validation, the same scenario has been tested
with a modified cost function that excludes energy as a part goal. In particular, the coefficient @, of fe,
in Equation (1) was set to @, = 0.

Table 3 compares the results of Scenario 2 with and without energy, by taking the respective final solutions
and evaluating them using the same cost function from Equation (1), including energy (i.e @, = 2). This
makes sense because, either way, the energy costs still have to be paid in the end. This comparison shows that
considering energy costs together with other production goals during optimization can result in an overall
better solution. While the storage costs have slightly increased, this is outweighed by the gain in energy
costs. Not considering energy costs and only optimizing storage costs would ignore significant potential for
cost savings.

Table 3: Comparison between Scenario 2 with and without energy, showing final cost value using Equa-
tion (1) with @, =2

with Energy without Energy | Improvement
Energy costs @; - fen () 173.53 188.92 8.15%
Storage costs @3 - fi(x) 16.72 13.18 -26.86%
Total costs f(x) 190.25 202.1 5.9%

While the runtime performance of the simulation-based optimization has not yet been studied in detail,
the case study gives a first indication: The scenarios with nje, = 100 iterations needed about 2600-3600
evaluations (i.e. simulation runs), with one simulation run taking about 800 ms (1 week simulation time
with 15 jobs). Overall, there is still room for decreasing the runtime by improving the implementation
efficiency. However, these first results indicate feasible runtime also for larger scenarios.
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7 CONCLUSION

The case study serves as a demonstration that including energy considerations into the planning optimization
can potentially reduce overall costs and therefore provide better planning results. Although the case study
has been simplified to highlight the essential characteristics, it is easy to imagine applying the described
method to more complex production systems with more diverse material flow and product types, as part
of a practical PPC tool. This makes the optimization problem even more interesting because of the job
completion times being more difficult to predict due to potential bottlenecks etc. From the current point of
view, the presented simulation-based approach should also be applicable for these cases.

One advantage of the VNS metaheuristic is that it allows to tailor the operators and neighborhood struc-
tures to the individual problem instance, thereby allowing more efficient search and decreasing computation
time. Neighborhoods (i.e. switching, shifting, etc.) are explored repeatedly and iteratively instead of se-
quentially, and the trade-off between exploration and exploitation can be controlled by the user. In contrast
to population-based approaches, like Genetic Algorithms, VNS as a single-solution-based methods needs
fewer function evaluations (i.e. simulation runs), which is a topic of importance for simulation-based meth-
ods. In the future, more extensive comparisons to population-based methods are planned. Experiments on
the case study have also shown that the Simulated Annealing (SA) acceptance criterion is important espe-
cially for the merging operator, since, although merging two jobs might be beneficial in the end, there might
sill be a short-term increase in the cost function (e.g. if the products from the second job are being produced
sooner and therefore increase storage costs). In the future, VNS parameter and neighborhood calibration
might still be improved and even be automated to directly adjust to the problem instance without the need
for user intervention.

The hyPDEVS-based simulation itself, despite its hybrid nature, delivers sufficient performance to be feasi-
ble for simulation-based optimization tasks with with a large number of iterations. This has also been tested
with larger real-world case studies, see e.g. (Sobottka, Kamhuber, Faezirad, and Sihn 2019).
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