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ABSTRACT

Studying the impact of climate change on wintertime polar stratosphere is of particular relevance not only
for climate knowledge but also for tropospheric projections. Machine learning provides a way to extract
information from different climate models and combine the data in a such way that patterns are clearer, so
predictions can be inducted. The methods used in this study have been region growing algorithm, K-means
and combination of predictions. The final results show three clusters of response trends for the intensity
and location of the stratospheric polar night jet. The prediction shows an increase in zonal wind intensity
over the 2xCO2 and 4xCO2 concentration points and a decrease in the related latitude. Our methods can be
extended for more climate models and simulation periods, and will allow not only to map the behavior of
the polar night jet, but other stratospheric and tropospheric features and interactions between them.
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1 INTRODUCTION

Climate science is one of the disciplines with a high potential to apply artificial intelligence (AI) and data
mining. It typically deals with a large amount of data even in the simplest studies. It also implies the use of
large amount of computer resources. For instance, climate predictions are performed thanks to simulations
of global climate models. In most of the cases, these climate models involve the numerical solution of
millions of non-linear mathematical equations that reproduce the processes and interactions of the climate
system components (atmosphere, ocean, ice, vegetation and land). As a result, running a single climate
simulation may last several months, particularly when simulating several decades. Thus, machine learning
techniques can be useful in climate as can speed up analyses or extract relevant information from different
climate models as suggested by Huntingford et al. (2019). However, only just recently Al methodology has
been applied to climate analyses.
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One of the first attempts of applying data mining to climate simulations has been the use of a Bayesian
approach to develop forecasts of oceanic and atmospheric variables (Luo et al. 2007). Through cross
validation of these forecasts they could indicate an improvement in both, deterministic and probabilistic
forecast skills. More recently, Monteleoni et al. (2011) used an hierarchical learner algorithm based on a
set of generalized Hidden Markov Models, HMM, to perform predictions based on different climate model
simulations.

Totz et al. (2017) have focused their research on future climate over Europe, especially the Mediterranean
region where climate models project a reduction in winter rainfall and a very pronounced increase in sum-
mertime heat waves in the future. They proposed a method to predict precipitation anomalies in winter
inspired in a new cluster-based empirical forecast algorithm.

Considering the large amount of data provided by climate models, neural networks have also been shown
to offer very satisfactory solutions as powerful tools for classifying, identifying, and predicting patterns in
climate and environmental data. Chattopadhyay et al. (2019) proposed a method based on the deep learn-
ing pattern recognition technique by capsule neural networks, CapsNets, and the impact-based automatic
labeling strategy applied to large-scale circulation patterns in the middle troposphere. To address these chal-
lenges Chattopadhyay et al. (2020) continued their research and proposed an effective auto-labeling strategy
based on using an unsupervised clustering algorithm and evaluating the performance of convolutional neural
networks in re-identifying and predicting these clusters. To prove this efficiency they use this approach to
label thousands of daily large-scale weather patterns over North America in the outputs of a climate model,
obtaining an accuracy of 90%.

Given the relatively recent application of Al and data mining to climate sciences, analyses have mainly
focused on the first atmospheric layer (the troposphere). However, while the troposphere accounts for the
85% of the total mass of the atmosphere, the stratosphere (the next atmospheric layer) also plays an active
role in climate (Baldwin et al. 2001). Indeed, changes in the intensity of the stratospheric polar vortex (a
strong circumpolar circulation present from Autumn to Spring) have been linked to changes in precipitation
and near-surface circulation over Europe in the following two months. Actually, the effects of these extreme
events on European climate are so important that they can even provide predictability of wind electricity
generation in that area (Beerli et al. 2017). Despite the key role of the stratosphere, only a few studies such
as Kretschmer et al. (2016) and Kretschmer et al. (2017) have applied data mining and causal effect network
to investigate it. Kretschmer et al. (2016) analyzed the effects of the polar stratospheric variability on near
surface climate, whereas Kretschmer et al. (2017) predict extreme stratospheric events in a time scale of
weeks. However, applying Al might also reduce some uncertainties on stratosphere-troposphere climate. For
instance, the most recent climate models do not even agree on the sign of the polar stratospheric response to
increasing greenhouse gases concentrations (Ayarzagiiena et al. 2020). This in turn adds uncertainty in the
future tropospheric projections over Europe. Applying Al techniques to different model simulations might
help to provide a better picture of future stratosphere-troposphere projections.

In this study, we aim to obtain, for the first time, a prediction of the effects of increasing CO2 concentra-
tions on stratospheric polar vortex by applying data mining to an ensemble of simulations of the most recent
version of climate models. The paper is organized as follows: section 2 presents a description of the calcula-
tion methods applied throughout the document; section 3 describes the climate data including variables and
models; section 4 presents the results that are obtained; finally, the conclusions of the study are presented in
section 3.

2 METHODS

Here, we present a brief introduction of the full process in time series forecasting that has been followed in
this study:
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1. Obtaining the initial database of F features (i = 1...F’), each of them containing S samples (j =1...5).
Each sample in the database has three time points. Therefore, the total number of data points is
F xS x 3. Each of the time series will be referred to as y;;. The calculation of the climate database
studied in this document is described in section 3.3.

2. Validation of the database. The validation of the specific climate database in this project is described
in section 3.3.

3. Calculation of the trend features vector for each time series y;;. The trend features vector for each
time series is f; j- The method for calculating trend features is described in section 2.1.

4. K-means clusters applied individually to the group of trend features f; for obtaining M clusters. The
general clustering process is described in section 2.2, and, for this specific use case, in section 4.1.

5. Clustering algorithm validation. The specific validation for this climate use case is described in
section 4.1.

6. For each variable in the database, calculation of M predictions, corresponding to each cluster. This
method is described in 2.3.

7. Combination of the M predictions into one with weighted averaging. This method is described in
section 2.3 and, specifically for the climate database in section 4.2.

2.1 Trend Features Vector

The trend of each of the samples y;; in the database is described with a 4-component vector:
Fij = llmal, Ima|, sign(my), sign(ms)] M

where m means slope of the line joining initial point and second measurement, m, means slope of the line
joining the second and final or third measurement.

Both, the value of the slope and its sign are important when analyzing patterns of behavior. The absolute
values of the slopes and their signs have been separated into the features vector in order not to have infor-
mation canceled out in the K-means algorithm, described in section 2.2. For this reason, if the vector in
equation (1) has only two components ([m;,m;]), some information could disappear through the K-means
algorithm. This is the case in time series with opposite signs and very close values of m. To avoid the loss
of information, our algorithm separates sign and value of the trend information.

The trend features database is pre-processed before introducing it in the clustering algorithm. Each trend
feature is scaled individually so that its value is between zero and one. Also, samples whose m; ad m;
are both below 5% the value of the maximum for each group of trend features f; are eliminated from the
database; this percentage is considered a negligible response in the use case of this document.

2.2 K-means Algorithm

K-means is an unsupervised machine learning algorithm used for clustering (Yuan et al. 2019). In this
case, it is going to be used for clustering the group of features f; = [|m;|,|ma|,sign(m),sign(m,)] shown in
equation (1).

The inputs to K-means are a group of data and the number of M centroids that are desired as a result. The
output is M centroids and labels for each data point; each label is the centroid to which that data point is
assigned.

The algorithm consists of the following steps: the first one is initialization. The second step consists of
performing the following actions until convergence: data assignment, where each data point is assigned to
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the nearest centroid, by obtaining the minimum of the squared Euclidean distance; and centroid update,
where centroids are recomputed. New centroids are obtained by taking the mean of all data points assigned
to each centroid in the previous step.

The K-means method implemented in the calculations comes from the Python library scikit-learn (Pedregosa
et al. 2011).

2.3 Forecasting and Combination of Predictions

Once the cluster centers have been calculated by the K-means algorithm, information is available about
slope between first, second and third point, and their respective signs, from the each of the four component
center [|my|,|ma|,sign(my),sign(my)]. This information can be used to build two straight lines that predict
a time series that starts at an initial condition. The predicted time series are defined by equations (2). In the
use case of this document, y will be a climate variable, and ¢ will be measured in years.

y(tz) = y(tl) +m1,cluster ' (tZ - tl)

()
y(t3) = y(tZ) +my cluster (t3 - t2)

Equations (2) give as many predictions as the number of cluster centers for each database feature. There are
several ways to combine these predictions, so that in the end there is only one prediction. Some methods are
uniform averaging, weighted averaging and Naive classifiers (Trivedi et al. 2015). For this study, average
weighing has been selected.

3 DATA
3.1 Climate Models Data

In this study we use the output of simulations performed by state-of-the-art climate models participating
in the recent Coupled Model Intercomparison Project, Phase 6 (CMIP6). These climate models aim to
provide the most detailed representation of the climate system since they include as many of the Earth
system processes as possible. In the CMIP6 initiative the main international climate modelling centers have
contributed with simulations following the specifications provided by the CMIP Panel regarding forcings
such as greenhouse gases concentrations or solar forcings (Eyring et al. 2016). These are the simulations
that are currently being used to elaborate the next report of the Intergovernmental Panel on Climate Change
(IPCC).

More specifically, here we use monthly data of zonal wind () of the 1pctCO2 simulation of the CMIP6
models indicated in Table 1. The 1pctCO2 run extends 150 years with a gradual increase of the CO2
concentration at a rate of 1% per year that starts at the pre-industrial level (year 1850, 284.32 ppm). In
this simulation the average mean concentration of CO2 in our recent past period (1958-2010) is reached
after approximately 20 years and corresponds to 284.32 pm, approximately 1.3 times the pre-industrial
concentrations (Meinshausen et al. 2017). Actually, these concentrations of CO2 for the recent past period
range from 315.34 ppm in 1958 to 388.72 ppm in 2010. In the 1pctCO2 simulation those values correspond
to years 11 and 31, respectively, so we will consider these 21 years to characterize the first time step of
our analysis (denoted by 1.3xCO2). The selection of this time step enables the validation of models. In
addition, in the same run the CO2 concentrations of the pre-industrial era (284.32 ppm) are doubled after
approximately 70 years and quadrupled after approximately 140 years. We consider these two other time
steps in our analysis, by selecting the 10 years surrounding year 70 and year 140 (hereafter denoted as
2xCO2 and 4xCO2, respectively).
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Table 1: List of models included in the analysis

Models Model reference

CanESM5 Swart et al. (2019b), Swart et al. (2019a)
CESM2 Danabasoglu (2019a), Danabasoglu et al. (2020)
CESM2-WACCM Danabasoglu (2019b), Gettelman et al. (2019)
CNRM-CM6-1 Voldoire (2018), Voldoire et al. (2019)
CNRM-ESM2-1 Seferian (2018), Séférian et al. (2019)
GFDL-CM4 Guo et al. (2018), Held et al. (2019)
GISS-E2-2-G NASA/GISS (2018)

HadGEM3-GC31-LL Roberts (2017), Williams et al. (2018)
INM-CM5-0 Volodin et al. (2017)

IPSL-CM6A-LR Boucher et al. (2018)

MIROC6 Tatebe et al. (2018), Tatebe et al. (2019)
MRI-ESM2-0 Yukimoto et al. (2019b), Yukimoto et al. (2019a)
UKESM1-0-LL Tang et al. (2019), Kuhlbrodt et al. (2018)

3.2 Reanalysis Data

Apart from model simulations, monthly mean data of zonal wind of the JRA-55 reanalysis (Kobayashi et
al. 2015) for the period 1958-2010 is used. Although reanalysis data are not exactly direct observations,
they can be considered as the real world of the last decades. They are derived from the assimilation of
observations of different sources that are then ingested by a model that produce an homogeneous data set.
The use of this data here has two purposes. First, it allows the validation of models by the comparison of the
simulation of the polar night jet in models in 1.3xCO2 step with reanalysis results. Secondly, as indicated
in the following sections, it constitutes the initial value to produce the predictions of the polar night jet state
under increasing CO2 concentrations.

3.3 Polar Night Jet Features

As indicated in the Introduction, stratospheric polar vortex is the main circulation structure in the polar
stratosphere in winter. It consists of a strong cyclonic circulation located over the polar cap. The core of this
cyclonic circulation or edge of the polar vortex is called the polar night jet (PNJ). The main characteristics of
the PNJ are u. pny and @pyy. uc pny corresponds to the climatological intensity of the PNJ and is computed
as the average of u. in the PNJ region in December-January-February) at 10hPa (the middle stratosphere),
in the relevant time points from the 1pctxCO2 simulation. @py; is the average latitude of the PNJ region.

Before calculating these magnitudes, the PNJ region is identified for each point in the time series and each
climate model of table 1. The PNJ region has been identified with a region growing algorithm which starts
at a seed value. In this case, the seed consists of the latitude and longitude with the maximum u.. In the
first step of the region growing algorithm, the 8 neighbors of the seed point are checked for their u.. They
are appended to the PNJ zone if their u. value is greater than a threshold value. The threshold value has
been adapted to each climate model, and it runs from 65% to 75% of the maximum u.. The same steps are
followed for each appended point, until reaching an edge where the threshold condition is no longer met.

After the identification of the PNJ zone, u. py; and @py; are calculated on this region as a weighted average
of the values. u. pyy is calculated by weighing u,. with the cosine of the latitude at each point in the region,
whereas @py; is calculated by weighing the latitude of each point in the PNJ with u, at that point.
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An example of the results of region growing algorithm is shown in figures 1 and 2. Figure 1 shows the
distribution of u, over the Earth surface at 10 hPa, for the CESM2-WACCM model at the 1.3xCO2 point
of the time analysis. As was previously mentioned, u, refers to the climatology of u in the winter months.
Figure 2 shows the polar night jet region as detected by the region growing algorithm that has been applied
to the data in figure 1.

The calculated data for the PNJ database is presented in figure 3. The left figure of 3 shows u. py; for the
three time steps of the analysis 1.3xCO2, 2xCO2 and 4xCO2, whereas the figure on the right shows the
approximate center of the polar night jet ¢py; for the same three time points. The corresponding reanalysis
data points from the simulation, which will be taken as initial conditions for predictions, are also shown in
these figures. The context of the reanalysis data was described in section 3.2.

Uc, CESM2-WACCM, 1.3xCO>
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Figure 1: Climatology of u (m/s) at 10hPa in winter months for CESM2-WACCM model in 1.3xCO2 data
point.

The PNJ data shown in figure 3 has been validated by comparing their trends with the calculation of the
maximum of u.’s zonal mean, and its associated latitude. These two magnitudes are also representative
of the average intensity and location of the PNJ. The results are presented in the following table 2, which
shows the relative errors between the sign of each time segment (s; and s,) of each atmospheric feature in
this document, as calculated with the region growing approach, and the approach described at the beginning
of this paragraph. Most relative errors are 0%: the signs of each of the two time segments are, in general,
similar. Therefore, the region growing algorithm as it has been applied here is considered validated, except
for future potential improvements on the segments whose signs do not match.

4 CLUSTERING AND PREDICTION RESULTS

4.1 K-means Clustering Results

Before launching the K-means calculations, the number of clusters has to be set. There are several methods
for doing this, but in this case the optimal number of centroids for launching K-means has been chosen by
analysing the curve of inertia indicator versus the number of clusters. The inertia indicator is the sum of
squared distances between the samples and the closest cluster center. The optimal number of clusters has
been chosen as the point where this curve begins to linearly decrease, a method otherwise known as elbow
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Figure 2: PNJ region derived from figure 1 for CESM2-WACCM model in 1.3xCO2 data point.
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Figure 3: u. pys and ¢py; for three CO2 concentrations over time in each model.

method (Yuan et al. 2019). The analysed curve for u. py; is shown in figure 4, where M=3 clusters have
been selected as an optimal number. The criterion has been the start of the decrease of the second derivative
of the curve at M =3, which in this case, means the curve is beginning to look like a straight line.

The clusters produced by applying the K-means algorithm to the features vector of the climate database are
shown in tables 3 and 4. The information in these tables means that, for each variable u. py; and @py; in
the database, there are three clusters. The models assigned to each cluster are considered to have the same
behavior according to the K-means algorithm and the trend features vector given in equation (1).

As mentioned in section 2.2, the information that we get from the cluster centers is the slope between
first and second time point, slope between second and third time point and their respective signs (f; =
[|mi],|m2|,sign(m;),sign(my)]). The cluster centers are the inputs to the prediction equations (2), which
will be combined afterwards with weighted averaging.
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Table 2: Relative error of sign of trend of two time segments for two approaches for calculation of u. pny
and @py;.

Model / Relative error [%] (PPNJ 51 (PPNJ §2 Uc,PNJ S1 Uc PNJT S2

CanESMS5 0 -100 0 0
CESM2 0 0 0 0
CESM2-WACCM 0 0 0 0
CNRM-CM6-1 0 0 0 0
CNRM-ESM2-1 0 0 0 0
GFDL-CM4 0 -100 -100 0
GISS-E2-2-G 0 -100 0 -100
HadGEM3-GC31-LL 0 0 0 0
INM-CM5-0 -100 0 0 0
IPSL-CM6A-LR 0 0 0 0
MIROC6 0 0 0 -100
MRI-ESM2-0 0 0 0 0
UKESM1-0-LL 0 0 0 0
K-means for Uc, pry
8 ~—— Inertia indicator
First derivative

] Second derivative
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Figure 4: Inertia indicator analysis for K-means clustering of u. py; trend features.

Table 3: Models clusters for u. pny

Cluster 1 Cluster 2 Cluster 3
CanESM5 GISS-E2-2-G CESM2-WACCM
CESM2 HadGEM3-GC31-LL. CNRM-CM6-1
CNRM-ESM2-1 IPSL-CM6A-LR GFDL-CM4
INM-CM5-0 MIROC6 MRI-ESM2-0
UKESM1-0-LL

The clustering algorithm has been validated by applying the algorithm to the u. py; trend between the pi-
Control simulation (pre-industrial control simulation, Eyring et al. (2016), initial conditions of the 1pctCO2
run) and the last time point analysed in this document (4xCO2), and comparing it with the results presented
in Ayarzagiiena et al. (2020), where the trends for the same climate variable for the period between piControl
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Table 4: Models clusters for ¢py;

Cluster 1 Cluster 2 Cluster 3
CanESM5 CNRM-CM6-1 CESM2-WACCM
GFDL-CM4 CNRM-ESM2-1 IPSL-CM6A-LR

MIROC6 GISS-E2-2-G
HadGEM3-GC31-LL
INM-CM5-0
MRI-ESM2-0
UKESM1-0-LL

and abrupt4xCO2 simulation (Eyring et al. 2016) are discussed. In general, the trends have been observed
to be similar. There is a difference in the trends of GFDL-CM4 and UKESM1-0-LL: one analysis shows
no response versus the other, which shows a response. This is possibly due to the difference in calculation
methods. Note that the clusters given in table 5 are different from those presented in the previous tables 3
and 4.

Table 5: Trends between piControl and 4xCO2 (1pctCO2) or abrupt4xCO2 simulation periods.

Model Trend Trend (Ayarzagiiena et al. 2020)
CanESM5 Clusterl, 1 T

CESM2 Clusterl, 1 T
GFDL-CM4 Cluster 1, T No response
GISS-E2-2-G Clusterl, 1 T
IPSL-CM6A-LR Cluster 1, 1 T

MIROC6 Cluster1, 1 T
HadGEM3-GC31-LL Cluster 2, T
INM-CM5-0 Cluster 2, T T
CESM2-WACCM Cluster 3, | 1
CNRM-CM6-1 Cluster 3, | -
CNRM-ESM2-1 Cluster 3, | 1
MRI-ESM2-0 Cluster 4, no response  No response
UKESM1-0-LL Cluster 4, no response 1

4.2 Application of Prediction Algorithm

Referring to the combination of predictions, a weight has been given to each of the cluster centers obtained
in section 4.1. This weight has been calculated based on the average value of the different variables for the
models in each cluster at point 1.3xCO2, and how this result compares with the reanalysis values, by means
of a Euclidean distance. A weighted average is then calculated with the three predictions for both variables
separately.

The prediction results obtained after applying the full process described in the introduction of section 2, for
the two studied atmospheric features, are shown in figure 5. We observe that the climate variable u. pyy in-
creases from its initial point to a final position which is higher than the initial condition, whereas the climate
variable @py; decreases in time. Thus, in general, the PNJ would become stronger and shift equatorward
under increasing CO2 concentrations. The PNJ shift would indicate that the polar vortex would become
larger, which agrees well with its intensification.
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Figure 5: Prediction of u. pyy and @pyy at 2xCO2 and 4xCO2.

5 CONCLUSIONS

In this paper, we have presented a method to obtain future projections of stratospheric polar night jet based
on mining a group of climate models at different atmospheric carbon levels. The goodness of fit of the
method has been proven by validating the climate database and the clustering algorithm with alternative
approaches commonly used in climate physics. The results of the predictions indicate that there will be a
decrease in the center latitude of the polar night jet at 2xCO2 and 4xCO2 concentrations, and that the average
zonal wind climatology on the polar night jet will also suffer an increase in these two CO2 concentrations.
This would indicate a stronger polar vortex in the future, which could also then impact on surface weather
and wind resources over Europe.
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