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ABSTRACT

This paper reports on the co-simulation of a team of robots deployed in an exploration task, coordinated by
a bio-inspired exploration algorithm. The co-simulation integrates the high-level exploration algorithm with
detailed implementations of the robot controllers and kinematic models. Co-simulation results are used to
find and correct mismatches between submodels.
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1 INTRODUCTION

Cyber-Physical Systems (CPSs) are complex systems that integrate digital controllers and physical compo-
nents. Simulation is one of the techniques that are usually applied, together with testing, in the analysis of
system behaviors. Due to the existence of continuous and discrete components, simulation of CPSs often
takes the form of co-simulation (Gomes et al. 2018), which allows the coordinated execution of different
sub-systems, each modeled and simulated with its most appropriate tool.

Bio-inspired cooperative algorithms are exploited in several robotic applications for spatial exploration in an
unknown environment, i.e., where some target must be reached, and each robot has no a priori knowledge of
the environment and can only acquire local information from its sensors and possibly from communication
with other robots. In most cases, safety-related targets are involved, such as fires, mines, human casualties
to rescue, or dangerous materials.

In this work, a coordination algorithm (Palmieri, Yang, Rango, and Marano 2017) based on Ant Colony
Optimization (ACO) (Dorigo et al. 2006) has been implemented. This algorithm has been co-simulated on
the INTO-CPS platform (Larsen et al. 2018) together with a control algorithm for point-to-point movement
of the robot and with a model of the robot kinematics. The implementation has been validated by simula-
tion, and the results of various simulations made it possible to tune both the coordination and the control
algorithms’ implementation.

The main contribution of this paper is showing the value of using co-simulation and design space exploration
in the development of a CPS obtained by composing a high-level control algorithm with pre-existing closed
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implementations of lower-level robot kinematics. Co-simulation helped developers pinpoint issues arising
from different assumptions on the two models.

The rest of this paper is structured as follows: a selection of related works is presented in Sec. 2, basic
notions on the algorithms and co-simulation framework are introduced in Sec. 3, and Sec. 4 illustrates the
simulation workflow as applied in the case at hand. Sec. 5 concludes the paper.

2 RELATED WORK

This section presents a selection of works on multi-robot coordination and on CPS co-simulation.

A very large and growing body of literature is available on the topic of multi-robot system coordination.
Many works follow bio-inspired approaches, focused on various forms of swarm intelligence emerging
from the behavior of natural living societies, such as flocks of birds, ant or bee or bacterial colonies.

Work (De Rango et al. 2015) provides a description of possible approaches where a bio-inspired exploration
algorithm has been applied to a swarm of robots in order to explore a mined region and to start a cooperative
task to secure the area. Also Masár (Masár 2013) proposes biologically inspired methods and algorithms for
space exploration and surveillance.

Many works are based on the concept of stigmergy, i.e., the mechanisms whereby the movement of indi-
vidual members of an insect society is guided by the intensity of olfactive tracks left by other individuals.
For example, (Alfeo et al. 2019) report on the swarm coordination of Unmanned Aerial Vehicles, using a
differential evolutionary algorithm. Paper (Dorigo et al. 2006) presents the ACO approach as a bio-inspired
strategy for optimization problems, and the research in (Chen et al. 2013) exploits pheromone-based explo-
ration with the ACO method.

Karaboga and Akay (Karaboga and Akay 2009) report on a bio-inspired approach based on Artificial Bee
Colony for optimization of a large set of numerical test functions. Their results have been compared with
those obtained by genetic algorithms, Particle Swarm Optimization (PSO) algorithms, differential evolution
algorithms, and evolution strategies. PSO has been applied by Pugh et al. (Pugh et al. 2005) to optimization
problems with noisy perturbancies.

The fundamental concepts of co-simulation are exposed in many works, such as (Gomes et al. 2018), and
the Functional Mock-up Interface (FMI) standard is defined in (Blochwitz et al. 2012). In the following,
some works more closely related to the present paper are referenced.

A methodology for formal analysis and modeling of software components in CPSs is presented in (Bernarde-
schi et al. 2018), together with supporting tools. The methodology describes how to integrate a simulation
of logic-based specifications of software components with Simulink models of continuous processes.

Previous work (Palmieri, Bernardeschi, and Masci 2017) takes into account possible critical applications and
aims at exploiting co-simulation to perform preemptive analysis, in order to detect conditions that may cause
the system to violate safety requirements. The Line Following Robot case study (The INTO-CPS Associ-
ation 2019) available from the INTO-CPS project (Larsen et al. 2018) is used as an example. Moreover, a
framework for the co-simulation of CPSs involving human-machine interfaces was presented by the authors
in (Palmieri et al. 2020). The framework supports formal methods experts in the analysis of safety-critical
aspects of user interfaces, and generates interactive FMI-compliant prototypes.

Design Space Exploration (DSE) is used in (Palesi and Givargis 2002) to explore efficiently a parametric
system in order to find optimal configurations in a multi-objective design space.
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3 BACKGROUND

This section describes the bio-inspired exploration algorithm, the controller for the movement of a single
robot and the co-simulation framework.

3.1 A bio-inspired exploration algorithm

One category of bio-inspired algorithms is stigmergic algorithms. These algorithms are abstractions of
behaviors exhibited by social insects: Each individual releases an amount of substances called pheromones,
whose presence is sensed by other individuals, which make choices based on that information.

Stigmergic exploration algorithms maintain a map of the area to explore. The map is partitioned into cells,
e.g., by a rectangular grid. The map is shared among all agents involved in the exploration, but each agent
can access only a limited area around its current position. Each cell has a value, pheromone level in the fol-
lowing, used to mimic the release and sensing of pheromone. An agent “releases pheromone” by increasing
the pheromone level in its current and nearby cells. The release of pheromone decreases with distance from
the current cell, and afterwards the pheromone evaporates, i.e., its pheromone level decreases with time.

In this work, the exploration algorithm presented in (Palmieri, Yang, Rango, and Marano 2017) has been
considered as a case study. The goal of this discrete-time algorithm is to maximize the area explored by
a number NR of robots. The cited algorithm specifies (i) the computation of the pheromone level (Equa-
tions (1–4)), and (ii) the exploration strategy (Equations (5) and (6)).

Each robot releases pheromone in the cells contained within a radius Rs from the current position (the cell
center). If a robot r at time t is at point (x(t)k ,y(t)k ), its distance from a cell c is

r(t)kc =

√
(x(t)k − xc)2 +(y(t)k − yc)2 (1)

and the amount of pheromone released in cell c is

∆τ
(t)
kc = ∆τ0e−

r(t)kc
a1 +

ε

a2
if r(t)kc ≤ Rs; ∆τ

(t)
kc = 0 otherwise , (2)

where the constant ∆τ0 is the maximum pheromone release, ε is a uniform random variable representing
noise, and a1 and a2 are tuning parameters of the algorithm.

With ρ
(t)
c the evaporation fraction and τ

(t)
c the pheromone level for cell c at time t, the pheromone evaporated

at time t , named ξ
(t)
c , is shown in Equation 3. The evaporation fraction depends on the evaporation rate per

time unit coefficient (ERTU%) and on the time elapsed since the last time tv the cell has received pheromone.
The value of tv is set to 0 at the beginning for all the cells.

ρ
(t)
c = (t− tv)ERTU% ; ξ

(t)
c = ρ

(t)
c τ

(t)
c . (3)

The pheromone level of a cell is then given by

τ
(t)
c = 0 for t = 0 ; τ

(t)
c = τ

(t−1)
c −ξ

(t−1)
c +

NR

∑
k=1

∆τ
(t)
kc for t > 0 . (4)

The exploration strategy is based on a repulsive reaction to pheromone by the robots, i.e., each robot tries to
avoid cells that have already been visited. This strategy lets robots move towards unexplored regions of the
map with a higher probability, with the objective of improving the map coverage in a given time.
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If c(t)k is the cell occupied by robot k at time t, the set of cells accessible from c(t)k is denoted by A(c(t)k ).
This set contains only the cells whose center is within the radius RS and are not occupied by an obstacle
or a robot. In typical applications of the ACO algorithm, the pheromone level has an attractive effect and
individual agents tend to follow or join each other. This attractive behavior can be modeled by expressing
the probability that the robot moves to a cell c ∈ A(c(t)k ) as

p(c|c(t)k ) =
(τ

(t)
c )φ (η

(t)
c )λ

∑b∈A(c(t)k )
(τ

(t)
b )φ (η

(t)
b )λ

, (5)

where η is a heuristic correction factor used to escape local minima, and φ and λ are tuning parameters. To
obtain a repulsive behavior, the exploration algorithm chooses a cell c̄(t) satisfying the condition

p(c̄(t)|c(t)k ) = min
c∈A(c(t)k )

[p(c|c(t)k )] . (6)

3.2 Robot control

ψ

φ

∆y
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Figure 1: Reference frames for robot movement.

In this work, it is assumed that an exploration task is carried out by a number of single-axle robotic vehicles,
controlled in linear speed v and turning speed ω . At each step of the algorithm described above, each robot
moves from its current cell to the next one, chosen by the algorithm. To control the robot in this point-to-
point movement, a method from (Siciliano and Khatib 2016) has been chosen for its simplicity. With this
method, the robot coordinates are transformed from the map’s Cartesian frame to a local polar frame (ρ,φ)
originated in the target waypoint (xd,yd) (Fig. 1). In this frame, angle φ is the robot’s bearing as seen from
the target waypoint, while ψ is the robot’s heading in the map’s frame. Angle β is the error between the
instantaneous heading and the desired heading:

β = arctan
(

y− yd

x− xd

)
−ψ +π , (7)

It is worth recalling that the “arctan” function is well-defined over the entire real domain. However, its
input argument can diverge as x approaches xd when y ̸= yd. An accepted solution to this issue is to use the
alternative function “atan2”, which accepts numerator and denominator as two separate arguments and thus
is numerically stable.



Bernardeschi, Domenici, Fagiolini, and Palmieri

The robot movement is split in two phases: a maneuver phase to align the heading to the waypoint, and
a moving phase to reach it. If kβ and kv are the feedback gains for error β and speed v, respectively, the
control law in the maneuver phase is {

v = 0

ω = kβ β
(8)

and the control law in the moving phase is{
v = kvρ(ρ2 cosβ +β

2 sinβ )

ω = kβ β .
(9)

The rotational speeds ωl and ωr of the left and right wheel depend on wheel radius R and axle length L:
ωl =

Lω +2v
2R

ωr =
Lω−2v

2R
.

(10)

3.3 FMI-based co-simulation

The FMI (Blochwitz et al. 2012) is a tool-independent standard for co-simulation and model exchange of
dynamic models. It defines a container, called Functional Mock-up Unit (FMU), and an interface defining
interaction and data exchange between FMUs. An FMU contains the executable implementation of a model,
created with the tool chosen by its developers, and the information or tools needed to execute it.

An FMI-complying host environment provides a master program that orchestrates the FMUs, implementing
a co-simulation algorithm and providing a communication framework. The host environment used in this
work is the INTO-CPS Application (Larsen et al. 2018). The INTO-CPS application has a form-based user
interface to define the interconnections between FMUs and to display the evolution in time of the simulated
variables.

4 SIMULATION WORKFLOW

This section describes the activities involved in the co-simulation workflow, which can be summarized as
follows: (i) implementing the coordination algorithm, the control algorithm, and the kinematic model of the
robots; (ii) defining the co-simulation architecture; (iii) performing simulation; and (iv) assessing the results
and, if needed, revising choices and simulating again.

In this work, co-simulation has been used to model an exploration task performed by robot vehicles, coor-
dinated by the algorithm in Sec. 3.1. The algorithm is executed by a supervisory controller, called planner
in the following, to visit all regions of the grid. More specifically, the goal of the planner is to have all
the cells visited by at least one robot. Co-simulation made it possible to integrate the off-the-shelf robot
implementations with the planner implementation.

4.1 Implementation of the exploration algorithm

As described in Sec. 3.1, the exploration algorithm is a very general model of a bio-inspired behavior. When
the algorithm is used as a planning strategy for a practical application, appropriate values must be chosen for
its parameters. These choices may be based on experimental data, or heuristics, or a combination of both.
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Simulation can play an important role in this task, especially as it makes it possible to introduce system
features in the model that are necessarily absent in the algorithm. In particular, the physical behavior of the
agents (e.g., robot vehicles) is a crucial factor in the algorithm’s implementation.

The algorithm is structured in three high-level tasks, executed in sequence for each robot at each simulation
step, that operate on a shared data structure representing the map: (a) choose the next cell, according to
equation (6); (b) compute evaporation in all cells, according to equation (3); and (c) release pheromone in
accessible cells, according to equation (2). Task (a) is further composed of three subtasks, which (i) identify
the cell whose center is the current robot position, (ii) find the set of accessible cells, and (iii) choose the
next robot position.

4.2 Implementation of the robot controller

Algorithm 1 Robot control 1.
1: compute β ; {Eqn. 7}
2: if moving then
3: if |∆x|+ |∆y|< δρ then
4: switch to maneuver;
5: stop robot;
6: end if
7: else if maneuver then
8: if |β |< δβ then
9: switch to moving;

10: end if
11: end if

The control laws in Sec. 3.2 are implemented by Algorithm 1, where δρ is a tolerance on the distance from
the waypoint, and δβ is a tolerance on the alignment error. However, co-simulation shows that in a few cases
the algorithm becomes unstable as ∆x or ∆y are close to zero. The reason is that the control laws assume
that the robot position does not change in the maneuver phase, i.e., they assume the robot turns around its
center of mass without any translation and so ∆x and ∆y do not change their sign. Instead, the mechanics of
turning of the single-axle vehicle used in the co-simulation causes the center of mass to move, so that ∆x or
∆y, but not both at the same time, can change their sign, causing instability in the algorithm.

This is an example of how experimental validation complements formal modeling. Splitting the robot move-
ment into clearly separated phases of pure rotation and pure translation is an appealing modeling choice and
a reasonable approximation in many cases. But in this case, deviations from the ideal case are noticeable,
requiring the control algorithm to be changed. The deviations have been detected by visual inspection of
simulation results, and further work could involve the development of an automatic procedure to compare
simulation results for the actual robot to results for an ideal one.

This problem is corrected by checking if the above condition on ∆x and ∆y holds (comparing ∆x and ∆y
to a threshold δthr), and in that case truncating the value of ∆x or ∆y to zero. The alignment error β is
then computed. Accordingly, Algorithm 2 performs the check and chooses the next control phase, and
Algorithm 3 applies the corresponding control law.

4.3 Co-simulation architecture

The co-simulation model is structured in three levels: (i) the exploration planner, (ii) the robot controllers,
and (iii) the robot plants. As shown in Fig. 2, each robot is simulated with one FMU for the robot controller
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Algorithm 2 Robot control 2a.
1: compute β ; {Eqn. 7}
2: if moving then
3: if |∆x|+ |∆y|< δρ then
4: switch to maneuver;
5: stop robot;
6: end if
7: else if maneuver then
8: if (|∆x|< δthr or |∆y|< δthr) then
9: if |∆x|< δthr then

10: ∆x← 0;
11: end if
12: if |∆y|< δthr then
13: ∆y← 0;
14: end if
15: end if
16: if |β |< δβ then
17: switch to moving;
18: end if
19: end if

Algorithm 3 Robot control 2b.
1: if maneuver then
2: linear speed← 0; {Eqn. (8)}
3: else
4: compute linear speed; {Eqn. (9)}
5: end if
6: compute turning speed; {Eqn. (8) or (9)}
7: compute wheel speeds; {Eqn. (10)}

(Sec. 4.2) and one for the plant. The latter is an off-the-shelf FMU available from an INTO-CPS example
project (The INTO-CPS Association 2019). The FMU was designed to model a small sized two-wheel
robot, with parametric axle length and wheel radius. For the co-simulation shown in this section, the default
values in the example have been used for all the parameters, with the exception of the initial battery level,
which has been considerably increased to avoid an abrupt stop caused by loss of energy. The 20-sim model
of the robot is available on the INTO-CPS application GitHub repository.

A central FMU (the planner) contains the implementation of the exploration algorithm (Sec. 4.1). The
planner FMU receives the current position of each robot that has reached its waypoint, and returns the new
waypoint to the robot’s controller FMU, closing the higher-level feedback loop. In the low-level loop, the
plant FMU provides the controller with the current position and heading, and the controller returns the
control linear and turning speeds.

4.4 Graphical Interface

A Graphical User Interface (GUI) has been implemented starting from a pre-existent NodeJS (OpenJS Foun-
dation 2020) project of the authors to visualize a two-dimensional representation of the robot movements
as the simulation progresses (Palmieri et al. 2020). The graphical interface communicates with the planner
through websockets. The planner sends the updated values to the GUI every co-simulation step.
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Figure 2: Co-simulation architecture.

The view of the map is displayed in a web page as a square grid, with color-coded lines representing robot
paths and black squares representing obstacles. Next to the map, a legend identifies the robots and displays
their co-ordinates, together with the percentage of visited cells.

Fig. 3 shows a twelve by twelve map, with four obstacles uniformly distributed around the center of the
quadrants and four robots placed in cells located near the left bottom corner. In the left picture, the initial
environment is shown; in the right picture two robots that avoid the obstacle are shown. Another part of
the interface is a set of forms to enter application-specific data, such as initial values or parameters. This
interface hides the native INTO-CPS application interface, which is rather complex, as it is designed to
support general-purpose experiments and provide access to the co-simulation infrastructure, in particular to
the FMUs and their interconnections. The interface for the bio-inspired exploration algorithm is tailored
for the co-simulation architecture shown in Fig. 2, and it relieves the users from the task of specifying the
interconnections between the FMUs.

Figure 3: Graphical interface: two simulation snapshots.
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Table 1: Parameter values from (Palmieri, Yang, Rango, and Marano 2017).

Parameter Value Parameter Value
Rs 4 η 0.9

∆τ0 2 a1 0.5
ϕ 1 a2 0.5
λ 1 ε uniform in [0, 1]

4.5 Co-simulation Results

The FMUs described above have been deployed on the INTO-CPS application to run simulations aimed
at showing the effects of different algorithm parameter values and map dimensions. A first result of the
experiments is the validation of the entire system model (the bio-inspired algorithm, the controller algorithm
and the kinematics of the robots). Co-simulations show that the robots actually move towards adjacent cells
and explore the map. Two series of simulations have been run, one for a map size of twelve by twelve and one
for a size of twenty by twenty. In both series, the ERTU% parameter varied in the set {0.2,0.002,0.00002}.
The other parameters, taken from (Palmieri, Yang, Rango, and Marano 2017), are in Table 1.

Simulations are executed with the DSE tool of the INTO-CPS application. For the smaller map, two cases
are simulated, one without obstacles and one with four obstacles arranged as in Fig. 3. For the larger map,
only the case with obstacles is reported. Each simulation lasts 20 simulated minutes. The values in the Table
2 have been obtained by generating 10 different runs for each parameter combination (map size, obstacles
and ERTU%). At each run, the random number generator has been initialized with a different seed.

The results show that, independently of the map size and the number of obstacles, a low value of exploration
rate was achieved for ERTU% = 0.2, while the exploration rate increases for lower values of ERTU%. This
is due to the interplay between the assumptions in the configuration of the exploration algorithm and those
in the robot kinematics. In fact, a high value of ERTU% means that, during the movement of a robot, the
pheromone levels in the neighboring cells vanish quickly, so that the robots soon loose the pheromone trail
and begin to move randomly.

The value of 0.2 was taken from (Palmieri, Yang, Rango, and Marano 2017), where the simulation’s goal was
studying energy consumption, so that the robot speed was not included in the physical model. In the present
work, instead, the physical model of the robot is included, and the relationship between evaporation rate and
robot speed significantly affects the simulation. In this case, the experiments showed that an ERTU% value
of 0.002 is appropriate for the physical characteristics of the chosen robots, because the average exploration
percentage significantly increases with respect to 0.2.

We may recall that the robot kinematics were embodied in an off-the-shelf FMU that was not meant to be
modified, a common constraint in real-world development. Reuse of off-the-shelf components is a funda-
mental issue in all industrial development processes. While the concept of reuse has always been implicit in
engineering practice, software engineering is arguably the field where it has been studied more extensively,
leading to the definition of such concepts as software modules and components, and design patterns. In
this framework, software reuse is based on interface compatibility between components, and to methods to
verify and validate interface compatibility.

Taking these ideas and methods back to the field of systems engineering requires carrying them from soft-
ware components to more general models. In particular, simulation is analogue to software integration, as
it assists in revealing interface-related issues. This approach has proved useful in the present work, but
deeper issues remain to be dealt with. First, the very concept of interface must be adapted to cyber-physical
systems, where continuous signal flows, as opposed to discrete messages or operation calls, are the rule.
Then, languages to formally define the interfaces must be devised. Last (and not least), theories must be
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Table 2: DSE results.

Exploration rate (%)
map size obstacles ERTU% Average Minimum Maximum
12 x 12 0 0.2 81.04 70.83 92.36
12 x 12 0 0.002 96.45 91.66 98.61
12 x 12 0 0.00002 97.56 94.44 100
12 x 12 4 0.2 80.29 71.43 90.71
12 x 12 4 0.002 96.21 88.57 99.29
12 x 12 4 0.00002 97.00 91.43 99.29
20 x 20 4 0.2 37.93 29.29 45.96
20 x 20 4 0.002 66.21 60.10 71.46
20 x 20 4 0.00002 72.95 70.45 75.51

developed for the analysis of systems defined in terms of component interfaces, upon which analysis and
synthesis tools may be built.

Co-simulation of the exploration algorithm with the physical model allows better calibration of the ERTU%
parameter. Another situation where co-simulation has allowed us to discover possible instability issues due
to different assumptions in different submodels has been discussed in Sec. 4.2. More precisely, when ∆x
and ∆y approach zero, the control law (control subsystem) assumes that the robot is not moving during the
maneuvering phase, while the mechanics (plant subsystem) can make small motions of the robot’s center of
mass, with positive or negative signs, thus leading to instability of the algorithm.

Simulations had shown that a 100% exploration rate is reached in the case of no obstacles. Another experi-
ment achieved 100% exploration rate in the presence of obstacles, at the cost of longer operation time. The
map is ten by ten, four obstacles are placed at the center of the map, and in the initial condition each robot is
located at a different corner of the map. The ERTU% = 0.002 and the simulation lasts 60 simulated minutes.
Fig. 4 shows two screenshots: the first steps on the left, and the complete paths on the right.

Figure 4: Another experiment with 100% exploration coverage.

5 CONCLUSIONS

In this paper a bio-inspired exploration algorithm, which coordinates multiple robots, has been co-simulated
together with the physical model of the robots. Co-simulation allows subsystems modeled with different
tools to be simulated. The algorithm and the controller of the robot have been written in C, while the
kinematics of the robot is modeled in 20-sim. One of the advantages of co-simulation is that complex
systems made up of heterogeneous subsystems can be modeled and simulated in a straightforward way,
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building each respective submodel with its specific language. This applies to many weakly-coupled systems
such as the one considered in this work, which does not address strongly-coupled ones, e.g., exhibiting
multi-body interactions, which require an accurate choice of time-stepping algorithms (Lacoursière and
Härdin 2017).

This work also shows that co-simulation provides developers with the means to investigate the implied as-
sumptions underlying the various submodels, and detect problems arising from subtle semantic mismatches,
as discussed in Sec.s 4.2 and 4.5. DSE tools currently support semi-automatic exploration of design space or
input space subsets that developers consider useful to reveal such mismatches. This is particularly important
with complex CPSs whose submodels are developed independently and at different levels of abstraction.

Many lines of further research are open, such as the issues mentioned in Sec. 4.2, on detecting deviations
from expected behaviors, and in Sec. 4.5, on defining interfaces for subsystem models and analyze the results
of their composition. The authors propose to tackle these issues by the integration of formal verification and
simulation (Bernardeschi et al. 2019, Domenici et al. 2018).
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