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ABSTRACT 

Quantum Computing allows for substantial speed-ups e.g. for integer factorization or database search, 
compared to conventional computation. However, since real quantum computers are an emerging tech-
nology, a significant amount of research in this domain still relies on simulations of quantum computa-
tions on conventional machines. This paper proposes a containerized environment to simulate quantum 
circuits, making this environment quick and easy to share within research teams. Also test the environ-
ment implementing an arithmetic circuit (Vedral’s adder) and compares the performance of two of the 
current more used environments: IBM QISKit and Google Cirq. 

Keywords: Quantum Computing, Container, performance analysis.  

1 INTRODUCTION 

Computer engineers are already interacting with quantum computers. These new and modern technolo-
gies present challenges to computer engineering students and practitioners (ACM / IEEE, 2016). Quan-
tum computing is already a reality. The arrival of the first commercial quantum computer, the IBM Q 
System One, has shown us that this discipline has reached a maturity that was difficult to imagine no 
more than five years ago (IBM, 2019).  

2020 is being a very busy year in terms of quantum computing, and we have reason to anticipate that 
very important achievements in this discipline will come in the coming months thanks, above all, to the 
efforts of companies such as IBM, Google or Microsoft, and to a lesser extent Amazon and China’s 
Alibaba. Governments, particularly those of the USA, the European Union and China, are funding work in 
the area with the concern that quantum computers may give the country that gets there first a major 
advantage. For example, the 2019 U.S. National Quantum Initiative Act authorized $1.2 billion funding 
over the next 5-10 years (Smith, 2018). 
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Quantum computation has theoretically been proven to be superior to conventional computation for 
important applications. For example, quantum algorithms for integer factorization - Shor’s algorithm 
(Shor, 1994) or database search - Grover’s Search (Grover, 1996) have been proposed that lead to signif-
icant, sometimes even exponential, speedups compared to conventional computations. 

Real quantum computing hardware has been in the recent years. The first publicly available quantum 
processor has been made accessible by IBM through their project IBM Quantum Experience (IBM 2020). 
Via IBM’s cloud infrastructure, the community can access a quantum processor with 5 qubits (launched 
in March 2017) and 16 qubits (launched in June 2017), respectively, to conduct experiments. IBM fur-
ther plans to increase the number of available qubits to 53 – similar to Google’s plans to provide a quan-
tum chip with 53 qubits that demonstrates quantum supremacy (Pednault et al., 2019). 

However, thus far, real quantum computers remains an emerging technology. This requires, besides oth-
ers, that respective developments have to be conducted while still relying on conventional technologies. 
In particular, this is an issue when it comes to simulating quantum computations or corresponding quan-
tum algorithms. Although these quantum computations describe approaches to solve several problems 
significantly faster than a conventional technology, they still have to be simulated on conventional ma-
chines thus far. Furthermore, simulation plays an important role in the verification of existing and future 
quantum computers. 

This paper reports on a prototype docker container environment that can be installed on any container 
platform, from simple local Docker to more advanced cloud container platforms using Kubernetes. Sec-
tion 2 describes the experimental frameworks used to evaluate the performance of containerized quan-
tum platforms. Section 3 introduces metrics used throughout this paper and addresses the implementa-
tion of the testbenches. Sections 4 describes the proposed containerized environment. Section 5 
presents the results from the tests. Section 6 presents our conclusions. 

2 CONSIDERED ENVIRONMENTS 

There are many alternatives for programming quantum computers, including Qiskit (Qiskit, n.d.), Cirq 
(Cirq, n.d.), pyQuil (PyQuil documentation, n.d.), Q# (Quantum Development Kit | Microsoft, n.d.), and 
ProjectQ (damian_projectq, n.d.). Qiskit, Cirq or pyQuil are better suited for using real quantum devices. 
These three frameworks have been developed by companies that have achieved real quantum comput-
ers and have been tested and evolved around the real needs of the interaction with the hardware. 

For this work we have chosen Qiskit and Cirq, because they provide both a 100% python based local 
quantum simulator ( PyQuil is a python library that calls an independent C quantum virtual machine).  

We briefly describe Qiskit and Cirq the selected quantum environments for this comparison, addressing 
their respective strengths. 

2.1 IBM's Quantum Experience 

IBM, through its IBM Quantum Experience initiative (IBM Quantum Experience, n.d.), has been providing 
any user with remote access to multiple quantum computers based on superconducting technology 
since 2016. It is the first platform that allowed access to its computers and on which more experiments 
have been run to date.  
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Three computers, two 5 qubits (Yorktown and Tenerife), as well as a 16 qubit third (Rueschlikon), are 
available free of charge. The service can be accessed with the same software for using commercial com-
puters of 20 and 53 qubits. 

Qiskit is an Open Source project developed in Python. It includes several separate modules: 

• Terra (Qiskit Terra | A solid foundation for quantum computing, n.d.): The basic module, which 
imports all translation functionalities to OpenQASM[16] for interaction with quantum computers. 

• Ignis (Qiskit Ignis | Understanding and mitigating noise in quantum systems., n.d.): Provides 
tools for noise characterization, hardware parameterization, etc. 

• Aer (Qiskit Aer | A high performance simulator framework for quantum circuits, n.d.): Imple-
ments a simulator with noise modeling. 

• Ibmq Provider (IBM Q Account | Access to world-leading quantum systems and simulators., n.d.): 
Allows access to IBM remote quantum computers and dimulators. 

• Aqua (Qiskit Aqua | Algorithms for quantum computing applications, n.d.): Provides a layer of 
abstraction of quantum gates, allowing the application of already imported quantum algorithms to 
higher level applications. 

Qubits are declared in "quantum registers" and classical bits in what they have called "classical regis-
ters". Such classical registers are used to accommodate the result of applying a measure on a quantum 
register. 

All quantum operations to be applied on one or more quantum records are encompassed in a "quantum 
circuit". It is useful to have circuits as independent functional units, because you can operate them sepa-
rately, thus being able to add them and build more complex circuits, etc. 

2.2 Google’s Cirq 

Currently in the alpha phase, Cirq is the open source system designed by Google for the design and sim-
ulation of quantum circuits. It is a Python library specifically designed for NISQ (Noisy Intermediate-Scale 
Quantum) systems. As stated in the introduction to such a platform, Cirq attempts to expose the details 
of the hardware to the programmer rather than creating an abstraction layer, claiming that the control 
of the details ultimately determines whether a circuit is feasible to work with. 

The simulator, which is capable of simulating up to 25 qubits, is integrated into the software and runs 
locally. Google also has two real quantum computers available, FoxTail and Bristlecone, which are only 
accessible upon invitation from the platform. 

The operations implemented by Cirq are aimed at programming functions that design circuits, which will 
be introduced as an input argument to the simulator, quantum computer or other algorithm analysis 
system. 
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3 TESTING THE SELECTED SIMULATORS 

3.1 The Quantum Circuit 

A comparison of the most suitable platforms was carried out through a quantitative performance analy-
sis. We perform the simulation of an arithmetic circuit, specifically the adder circuit proposed in Vedral, 
Barenco & Ekert (Vedral et al., 1996), and applied successively to add numbers from 1 to 8 bits. 
This is a linear-depth ripple-carry quantum addition circuit. Previous addition circuits required many an-
cillary qubits linearly; the aforementioned adder uses only a single ancillary qubit. Also, it has less depth 
and fewer gates than previous ripple-carry adders. The objective was to simulate the same circuit on 
each platform, extracting metrics from the circuit created and the results obtained, in order to be able, 
through the same parameters extracted from different platforms, to compare objective values. 
We have selected this kind of circuit for the comparison because of its O(n) complexity in the number of 
gates with the size in bits of the numbers added, so been able to create small enough circuits to perform 
this tests in the local simulator. 
The implementation of the adder circuit begins by first implementing the carry operation, going on to 
calculate and store the most significant digit of the sum. The carry operation is then undone, applying 
the same gates in reverse order on each qubit, in order to retrieve the initial state, allowing us to imple-
ment the sum operation on the initial values. Finally, the sum is implemented, applying it bitwise from 
the least significant to the most significant qubit. As shown in Figure 1(Qiskit implementation for 4 bits), 
qubits from q0_0 to q0_3 are used for coding the first summing, q1_0 to q1_4 are used both for the sec-
ond summing and the result. The rest are the ancillas and the classical registers to read the result. 
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Figure 1: Adder circuit for 4 bit numbers implemented in Qiskit. Source: own compilation 

 
 
  
Figure 2 shows the same circuit using Cirq. The picture is more compact than the Qiskit one but is more 
difficult to follow by non-experts because of the lack of graphical capabilities of the library. 
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Figure 2: Adder Circuit for 4 bit numbers implemented in Cirq. Source: own compilation 

3.2 Performance Test 

A python test program was developed to test both environments in the same circumstances. 

Firs, two functions specific to each library were defined, one to create the circuit (see Appendix A) and 
other to perform a simulation. 

The following test sequence was used, from 1 to 8 bit numbers: Create the circuit, measure the execu-
tion time of 100 simulations adding 1+1: 

import timeit 

times=[] 

for i in range(1,9): 

    s = f"""\ 

from __main__ import get_adder 

from __main__ import simulate 

circuit = get_adder({i},"{"0"*i}1","{"0"*i}1")  

""" 

    times.append(timeit.timeit('simulate(circuit)', setup=s, number=100)) 

    print(i,times[-1]) 

 

print(times) 

8 bit numbers is our limit because it is necessary to include 3n+1 = 25 qubits to implement the adder cir-
cuit. 
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4 CONTAINERIZED ENVIRONENT 

Container technologies offer the possibility of packaging application codes and all their dependencies 
and then agilely launching many instances with different parameters and variations of that application. 
Containers are portable, scalable and are standardized so that they can easily and rapidly be deployed in 
a cloud-based environment and have the additional advantage of quicker processing speed when com-
pared to VMs (Varghese et al., 2016). 

Containers also have the feature that they can run on the same machine and share the OS kernel with 
other containers, each running as isolated process in the user space. Containers can also offer the ad-
vantage that they can isolate the software from its environment in a way that ensures that the container 
incorporates portability and performs uniformly across many different platforms. 

Docker was selected as container software for building this prototype (Boettiger, 2015). This software 
has been thoroughly tested and is also a stable production level container technology (Rad et al., 2017). 
The fundamental building block of this Docker technology is the container image. The Docker image cre-
ates a docker container. The image is a lightweight, stand alone, executable package that includes the 
code, runtime, system tools, system libraries and settings needed to run an application.  

The selected base image was Jupyter Notebook (Project Jupyter, n.d.). The Jupyter Notebook is an open-
source web application that allows you to create and share documents that contain live code, equations, 
visualizations and narrative text. Uses include: data cleaning and transformation, numerical simulation, 
statistical modeling, data visualization, machine learning, and much more. 

Two Docker images where created, one for Qiskit and other for Cirq, including all the needed dependen-
cies and ready to run.  

Once instantiated, each container provides a URL to access the environment from any web browser. This 
point is key to enable both the local installation and also a cloud deployment where a research team can 
share their programs and computational power in a centralized way. 

5 RESULTS 

The described test was performed in a MacBook Pro (16-inch, 2019), Processor: 2,4 GHz 8-Core Intel 
Core i9, Memory: 32 GB 2667 MHz DDR4. 

Each container was configured with 8 CPUs, 2 GB of memory and 1GB of swap in the Docker environ-
ment. 

Table 1 shows the execution time of 100 simulations of the adder circuit implemented for different 
amount of qubits  

Table 1: Time measure for increasing number of qubits 

Summing bits Total qubits Qiskit Time Cirq Time 

1 4 2.794548899983056 0.159240199951455 

2 7 2.8395655000349507 0.2790897999657318 

3 10 2.76701419998426 0.4256545000243932 
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4 13 2.7808956000953913 0.605262600001879 

5 16 2.6760485999984667 1.0336101999273524 

6 19 2.6706397000234574 4.1191501000430435 

7 22 2.69583350000903 29.681731199962087 

8 25 2.693196399952285 310.2610318000661 

 

To facilitate the comparison, the results are plot in Figure 3, in logarithmic scale. 

 

Figure 3: Comparison of execution time of 100 iterations in logarithmic scale 

The data in Table 1 and Figure 3 illustrates the importance of testing the performance change related to 
the number of qubits for Quantum simulators. Due to the nature of quantum computing, simulating it 
with classical computers, at the end will need exponential resources as the number of qubits grow.  

To compare different simulators, more important than the punctual performance is the stability of the 
performance in the range of qubits that is researchable for the simulator. Indeed, the maximum number 
of qubits that the simulator can manage with a determined hardware resources may vary substantially 
depending on this measure. 

On a real quantum computer (IBMQ), the execution time is more dependant in queue time than in the 
quantum processor time. Single qubit gates are approximately 10 ns, and two qubit gates 100 ns. 

Here is a rough breakdown of the processing time for a quantum circuit like this: 

• Loading the experiment into the instruments that create the pulses (~ 15s) 
• 1024 repetitions (shots) of running calibration pulses & circuit (~ 5s) 

o Reset qubits (relaxation) + calibration: ~ 4ms 
o Reset qubits (relaxation) + circuit: ~ 1ms 
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6 CONCLUSIONS 

In this paper we have proposed an easy to use and to share containerized environment for Quantum 
computing Simulation. This kind of environments 

Using this environment and an arithmetic circuit (Vedral adder), equivalent implementations have been 
created in Qiskit and Cirq. These implementations have been used to test the performance of both 
frameworks in equal conditions, increasing the amount of qubits from 4 to 25.  

We believe that it is interesting using real useful algorithms to test the performance rather than only 
aleatory circuits for the sake of generality and clarity.  

Analyzing the time measures, Qiskit presents a high performance simulator, sustaining a stable time of 
simulation with the increase of qubits. Although Cirq shows smaller times with few qubits, it presents a 
clear exponential degradation with the amount of qubits, as expected in a direct implementation, there-
fore, not suitable for high volume simulations. 

In the future we should extend this work in two ways: Firstly, implementing more arithmetic circuits and 
secondly, creating more containerized environments for other quantum computing simulator frame-
works. 
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A APPENDICES 

Qiskit implementation of the Vedral adder circuit: 

def get_adder(n, sumando_1, sumando_2): 

    a = QuantumRegister(n) 

    b = QuantumRegister(n+1) 

    c = QuantumRegister(n) 

    resultado = ClassicalRegister(n+1) 

 

    qc = QuantumCircuit(a,b,c,resultado) 

 

    for i in range(n): 

        if sumando_1[i] == "1": 

            qc.x(a[n - (i+1)]) 

    for i in range(n): 

        if sumando_2[i] == "1": 
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            qc.x(b[n - (i+1)]) 

 

    for i in range(n-1): 

        qc.ccx(a[i], b[i], c[i+1]) 

        qc.cx(a[i], b[i]) 

        qc.ccx(a[i], b[i], c[i+1]) 

 

    qc.ccx(a[n-1], b[n-1], b[n]) 

    qc.cx(a[n-1], b[n-1]) 

    qc.ccx(a[n-1], b[n-1], b[n])   

 

    qc.cx(c[n-1], b[n-1]) 

 

    for i in range(n-1): 

        qc.ccx(c[(n-2)-i], b[(n-2)-i], c[(n-1)-i]) 

        qc.cx(a[(n-2)-i], b[(n-2)-i]) 

        qc.ccx(a[(n-2)-i], b[(n-2)-i], c[(n-1)-i]) 

 

        qc.cx(c[(n-2)-i], b[(n-2)-i]) 

        qc.cx(a[(n-2)-i], b[(n-2)-i]) 

 

    qc.barrier(b) 

    qc.measure(b,resultado) 

     

    return qc 

 

 

 

def simulate(circuit): 

    my_backend = Aer.get_backend("qasm_simulator")   

    job = execute(qc, my_backend, shots=20) 

    job_stats = job.result().get_counts() 

     

    return job_stats 
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Cirq implementation of the Vedral adder circuit: 

def get_adder(n, sumando_1, sumando_2): 

    a = [cirq.GridQubit(0, i) for i in range(n)] 

    b = [cirq.GridQubit(1, i) for i in range(n+1)] 

    c = [cirq.GridQubit(2, i) for i in range(n)] 

 

    # Create a circuit 

    circuit = cirq.Circuit() 

 

    for i in range(n): 

        if sumando_1[i] == "1": 

            circuit.append(X(a[n - (i+1)])) 

    for i in range(n): 

        if sumando_2[i] == "1": 

            circuit.append(X(b[n - (i+1)])) 

 

    for i in range(n-1): 

        circuit.append(CCX(a[i], b[i], c[i+1])) 

        circuit.append(CX(a[i], b[i])) 

        circuit.append(CCX(a[i], b[i], c[i+1])) 

 

    circuit.append(CCX(a[n-1], b[n-1], b[n])) 

    circuit.append(CX(a[n-1], b[n-1])) 

    circuit.append(CCX(a[n-1], b[n-1], b[n])) 

 

    circuit.append(CX(c[n-1], b[n-1])) 

 

    for i in range(n-1): 

        circuit.append(CCX(c[(n-2)-i], b[(n-2)-i], c[(n-1)-i])) 

        circuit.append(CX(a[(n-2)-i], b[(n-2)-i])) 

        circuit.append(CCX(a[(n-2)-i], b[(n-2)-i], c[(n-1)-i])) 

 

        circuit.append(CX(c[(n-2)-i], b[(n-2)-i])) 

        circuit.append(CX(a[(n-2)-i], b[(n-2)-i])) 

 



Carrascal, Botella and Del Barrio 

    circuit.append(cirq.measure(*b, key='m'))  # Measurement. 

     

    return circuit 

 

 

def simulate(circuit): 

    simulator = cirq.Simulator() 

    result = simulator.run(circuit, repetitions=20) 

 

    frequencies = result.histogram(key='m', fold_func=bitstring) 

    return frequencies 
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