

SummerSim’20, July 20-22, 2020, Madrid, Spain; ©2020 Society for Modeling & Simulation International (SCS)

COMPARISON OF CONTAINER-BASED PLATFORMS FOR QUANTUM COMPUTING SIMULATION

Ginés Carrascal
Guillermo Botella

Alberto A. Del Barrio

IBM

Dept. of Computer Architecture and Automation
Universidad Complutense de Madrid

Sta. Hortensia 26-28,
Madrid, Spain

Prof. José García Santesmases 9,
Madrid, Spain

gines_carrascal@es.ibm.com {gbotella, abarriog }@ucm.es

ABSTRACT

Quantum Computing allows for substantial speed-ups e.g. for integer factorization or database search,
compared to conventional computation. However, since real quantum computers are an emerging tech-
nology, a significant amount of research in this domain still relies on simulations of quantum computa-
tions on conventional machines. This paper proposes a containerized environment to simulate quantum
circuits, making this environment quick and easy to share within research teams. Also test the environ-
ment implementing an arithmetic circuit (Vedral’s adder) and compares the performance of two of the
current more used environments: IBM QISKit and Google Cirq.

Keywords: Quantum Computing, Container, performance analysis.

1 INTRODUCTION

Computer engineers are already interacting with quantum computers. These new and modern technolo-
gies present challenges to computer engineering students and practitioners (ACM / IEEE, 2016). Quan-
tum computing is already a reality. The arrival of the first commercial quantum computer, the IBM Q
System One, has shown us that this discipline has reached a maturity that was difficult to imagine no
more than five years ago (IBM, 2019).

2020 is being a very busy year in terms of quantum computing, and we have reason to anticipate that
very important achievements in this discipline will come in the coming months thanks, above all, to the
efforts of companies such as IBM, Google or Microsoft, and to a lesser extent Amazon and China’s
Alibaba. Governments, particularly those of the USA, the European Union and China, are funding work in
the area with the concern that quantum computers may give the country that gets there first a major
advantage. For example, the 2019 U.S. National Quantum Initiative Act authorized $1.2 billion funding
over the next 5-10 years (Smith, 2018).

Carrascal, Botella and Del Barrio

Quantum computation has theoretically been proven to be superior to conventional computation for
important applications. For example, quantum algorithms for integer factorization - Shor’s algorithm
(Shor, 1994) or database search - Grover’s Search (Grover, 1996) have been proposed that lead to signif-
icant, sometimes even exponential, speedups compared to conventional computations.

Real quantum computing hardware has been in the recent years. The first publicly available quantum
processor has been made accessible by IBM through their project IBM Quantum Experience (IBM 2020).
Via IBM’s cloud infrastructure, the community can access a quantum processor with 5 qubits (launched
in March 2017) and 16 qubits (launched in June 2017), respectively, to conduct experiments. IBM fur-
ther plans to increase the number of available qubits to 53 – similar to Google’s plans to provide a quan-
tum chip with 53 qubits that demonstrates quantum supremacy (Pednault et al., 2019).

However, thus far, real quantum computers remains an emerging technology. This requires, besides oth-
ers, that respective developments have to be conducted while still relying on conventional technologies.
In particular, this is an issue when it comes to simulating quantum computations or corresponding quan-
tum algorithms. Although these quantum computations describe approaches to solve several problems
significantly faster than a conventional technology, they still have to be simulated on conventional ma-
chines thus far. Furthermore, simulation plays an important role in the verification of existing and future
quantum computers.

This paper reports on a prototype docker container environment that can be installed on any container
platform, from simple local Docker to more advanced cloud container platforms using Kubernetes. Sec-
tion 2 describes the experimental frameworks used to evaluate the performance of containerized quan-
tum platforms. Section 3 introduces metrics used throughout this paper and addresses the implementa-
tion of the testbenches. Sections 4 describes the proposed containerized environment. Section 5
presents the results from the tests. Section 6 presents our conclusions.

2 CONSIDERED ENVIRONMENTS

There are many alternatives for programming quantum computers, including Qiskit (Qiskit, n.d.), Cirq
(Cirq, n.d.), pyQuil (PyQuil documentation, n.d.), Q# (Quantum Development Kit | Microsoft, n.d.), and
ProjectQ (damian_projectq, n.d.). Qiskit, Cirq or pyQuil are better suited for using real quantum devices.
These three frameworks have been developed by companies that have achieved real quantum comput-
ers and have been tested and evolved around the real needs of the interaction with the hardware.

For this work we have chosen Qiskit and Cirq, because they provide both a 100% python based local
quantum simulator (PyQuil is a python library that calls an independent C quantum virtual machine).

We briefly describe Qiskit and Cirq the selected quantum environments for this comparison, addressing
their respective strengths.

2.1 IBM's Quantum Experience

IBM, through its IBM Quantum Experience initiative (IBM Quantum Experience, n.d.), has been providing
any user with remote access to multiple quantum computers based on superconducting technology
since 2016. It is the first platform that allowed access to its computers and on which more experiments
have been run to date.

Carrascal, Botella and Del Barrio

Three computers, two 5 qubits (Yorktown and Tenerife), as well as a 16 qubit third (Rueschlikon), are
available free of charge. The service can be accessed with the same software for using commercial com-
puters of 20 and 53 qubits.

Qiskit is an Open Source project developed in Python. It includes several separate modules:

• Terra (Qiskit Terra | A solid foundation for quantum computing, n.d.): The basic module, which
imports all translation functionalities to OpenQASM[16] for interaction with quantum computers.

• Ignis (Qiskit Ignis | Understanding and mitigating noise in quantum systems., n.d.): Provides
tools for noise characterization, hardware parameterization, etc.

• Aer (Qiskit Aer | A high performance simulator framework for quantum circuits, n.d.): Imple-
ments a simulator with noise modeling.

• Ibmq Provider (IBM Q Account | Access to world-leading quantum systems and simulators., n.d.):
Allows access to IBM remote quantum computers and dimulators.

• Aqua (Qiskit Aqua | Algorithms for quantum computing applications, n.d.): Provides a layer of
abstraction of quantum gates, allowing the application of already imported quantum algorithms to
higher level applications.

Qubits are declared in "quantum registers" and classical bits in what they have called "classical regis-
ters". Such classical registers are used to accommodate the result of applying a measure on a quantum
register.

All quantum operations to be applied on one or more quantum records are encompassed in a "quantum
circuit". It is useful to have circuits as independent functional units, because you can operate them sepa-
rately, thus being able to add them and build more complex circuits, etc.

2.2 Google’s Cirq

Currently in the alpha phase, Cirq is the open source system designed by Google for the design and sim-
ulation of quantum circuits. It is a Python library specifically designed for NISQ (Noisy Intermediate-Scale
Quantum) systems. As stated in the introduction to such a platform, Cirq attempts to expose the details
of the hardware to the programmer rather than creating an abstraction layer, claiming that the control
of the details ultimately determines whether a circuit is feasible to work with.

The simulator, which is capable of simulating up to 25 qubits, is integrated into the software and runs
locally. Google also has two real quantum computers available, FoxTail and Bristlecone, which are only
accessible upon invitation from the platform.

The operations implemented by Cirq are aimed at programming functions that design circuits, which will
be introduced as an input argument to the simulator, quantum computer or other algorithm analysis
system.

Carrascal, Botella and Del Barrio

3 TESTING THE SELECTED SIMULATORS

3.1 The Quantum Circuit

A comparison of the most suitable platforms was carried out through a quantitative performance analy-
sis. We perform the simulation of an arithmetic circuit, specifically the adder circuit proposed in Vedral,
Barenco & Ekert (Vedral et al., 1996), and applied successively to add numbers from 1 to 8 bits.
This is a linear-depth ripple-carry quantum addition circuit. Previous addition circuits required many an-
cillary qubits linearly; the aforementioned adder uses only a single ancillary qubit. Also, it has less depth
and fewer gates than previous ripple-carry adders. The objective was to simulate the same circuit on
each platform, extracting metrics from the circuit created and the results obtained, in order to be able,
through the same parameters extracted from different platforms, to compare objective values.
We have selected this kind of circuit for the comparison because of its O(n) complexity in the number of
gates with the size in bits of the numbers added, so been able to create small enough circuits to perform
this tests in the local simulator.
The implementation of the adder circuit begins by first implementing the carry operation, going on to
calculate and store the most significant digit of the sum. The carry operation is then undone, applying
the same gates in reverse order on each qubit, in order to retrieve the initial state, allowing us to imple-
ment the sum operation on the initial values. Finally, the sum is implemented, applying it bitwise from
the least significant to the most significant qubit. As shown in Figure 1(Qiskit implementation for 4 bits),
qubits from q0_0 to q0_3 are used for coding the first summing, q1_0 to q1_4 are used both for the sec-
ond summing and the result. The rest are the ancillas and the classical registers to read the result.

Carrascal, Botella and Del Barrio

Figure 1: Adder circuit for 4 bit numbers implemented in Qiskit. Source: own compilation

Figure 2 shows the same circuit using Cirq. The picture is more compact than the Qiskit one but is more
difficult to follow by non-experts because of the lack of graphical capabilities of the library.

Carrascal, Botella and Del Barrio

Figure 2: Adder Circuit for 4 bit numbers implemented in Cirq. Source: own compilation

3.2 Performance Test

A python test program was developed to test both environments in the same circumstances.

Firs, two functions specific to each library were defined, one to create the circuit (see Appendix A) and
other to perform a simulation.

The following test sequence was used, from 1 to 8 bit numbers: Create the circuit, measure the execu-
tion time of 100 simulations adding 1+1:

import timeit

times=[]

for i in range(1,9):

 s = f"""\

from __main__ import get_adder

from __main__ import simulate

circuit = get_adder({i},"{"0"*i}1","{"0"*i}1")

"""

 times.append(timeit.timeit('simulate(circuit)', setup=s, number=100))

 print(i,times[-1])

print(times)

8 bit numbers is our limit because it is necessary to include 3n+1 = 25 qubits to implement the adder cir-
cuit.

Carrascal, Botella and Del Barrio

4 CONTAINERIZED ENVIRONENT

Container technologies offer the possibility of packaging application codes and all their dependencies
and then agilely launching many instances with different parameters and variations of that application.
Containers are portable, scalable and are standardized so that they can easily and rapidly be deployed in
a cloud-based environment and have the additional advantage of quicker processing speed when com-
pared to VMs (Varghese et al., 2016).

Containers also have the feature that they can run on the same machine and share the OS kernel with
other containers, each running as isolated process in the user space. Containers can also offer the ad-
vantage that they can isolate the software from its environment in a way that ensures that the container
incorporates portability and performs uniformly across many different platforms.

Docker was selected as container software for building this prototype (Boettiger, 2015). This software
has been thoroughly tested and is also a stable production level container technology (Rad et al., 2017).
The fundamental building block of this Docker technology is the container image. The Docker image cre-
ates a docker container. The image is a lightweight, stand alone, executable package that includes the
code, runtime, system tools, system libraries and settings needed to run an application.

The selected base image was Jupyter Notebook (Project Jupyter, n.d.). The Jupyter Notebook is an open-
source web application that allows you to create and share documents that contain live code, equations,
visualizations and narrative text. Uses include: data cleaning and transformation, numerical simulation,
statistical modeling, data visualization, machine learning, and much more.

Two Docker images where created, one for Qiskit and other for Cirq, including all the needed dependen-
cies and ready to run.

Once instantiated, each container provides a URL to access the environment from any web browser. This
point is key to enable both the local installation and also a cloud deployment where a research team can
share their programs and computational power in a centralized way.

5 RESULTS

The described test was performed in a MacBook Pro (16-inch, 2019), Processor: 2,4 GHz 8-Core Intel
Core i9, Memory: 32 GB 2667 MHz DDR4.

Each container was configured with 8 CPUs, 2 GB of memory and 1GB of swap in the Docker environ-
ment.

Table 1 shows the execution time of 100 simulations of the adder circuit implemented for different
amount of qubits

Table 1: Time measure for increasing number of qubits

Summing bits Total qubits Qiskit Time Cirq Time

1 4 2.794548899983056 0.159240199951455

2 7 2.8395655000349507 0.2790897999657318

3 10 2.76701419998426 0.4256545000243932

Carrascal, Botella and Del Barrio

4 13 2.7808956000953913 0.605262600001879

5 16 2.6760485999984667 1.0336101999273524

6 19 2.6706397000234574 4.1191501000430435

7 22 2.69583350000903 29.681731199962087

8 25 2.693196399952285 310.2610318000661

To facilitate the comparison, the results are plot in Figure 3, in logarithmic scale.

Figure 3: Comparison of execution time of 100 iterations in logarithmic scale

The data in Table 1 and Figure 3 illustrates the importance of testing the performance change related to
the number of qubits for Quantum simulators. Due to the nature of quantum computing, simulating it
with classical computers, at the end will need exponential resources as the number of qubits grow.

To compare different simulators, more important than the punctual performance is the stability of the
performance in the range of qubits that is researchable for the simulator. Indeed, the maximum number
of qubits that the simulator can manage with a determined hardware resources may vary substantially
depending on this measure.

On a real quantum computer (IBMQ), the execution time is more dependant in queue time than in the
quantum processor time. Single qubit gates are approximately 10 ns, and two qubit gates 100 ns.

Here is a rough breakdown of the processing time for a quantum circuit like this:

• Loading the experiment into the instruments that create the pulses (~ 15s)
• 1024 repetitions (shots) of running calibration pulses & circuit (~ 5s)

o Reset qubits (relaxation) + calibration: ~ 4ms
o Reset qubits (relaxation) + circuit: ~ 1ms

0.10

1.00

10.00

100.00

1000.00

0 5 10 15 20 25 30

Execution time for 100 iterations

Qiskit Time Cirq Time

Carrascal, Botella and Del Barrio

6 CONCLUSIONS

In this paper we have proposed an easy to use and to share containerized environment for Quantum
computing Simulation. This kind of environments

Using this environment and an arithmetic circuit (Vedral adder), equivalent implementations have been
created in Qiskit and Cirq. These implementations have been used to test the performance of both
frameworks in equal conditions, increasing the amount of qubits from 4 to 25.

We believe that it is interesting using real useful algorithms to test the performance rather than only
aleatory circuits for the sake of generality and clarity.

Analyzing the time measures, Qiskit presents a high performance simulator, sustaining a stable time of
simulation with the increase of qubits. Although Cirq shows smaller times with few qubits, it presents a
clear exponential degradation with the amount of qubits, as expected in a direct implementation, there-
fore, not suitable for high volume simulations.

In the future we should extend this work in two ways: Firstly, implementing more arithmetic circuits and
secondly, creating more containerized environments for other quantum computing simulator frame-
works.

ACKNOWLEDGMENTS

This paper has been supported by the CM under grant S2018/TCS-4423,the EU (FEDER) and the Spanish
MINECO under grant RTI2018-093684-B-I00 and by Banco Santander under grant PR26/16-20B-1and by
PID 2018-2020 (UCM) Innova Docentia, PR 209.

A APPENDICES

Qiskit implementation of the Vedral adder circuit:

def get_adder(n, sumando_1, sumando_2):

 a = QuantumRegister(n)

 b = QuantumRegister(n+1)

 c = QuantumRegister(n)

 resultado = ClassicalRegister(n+1)

 qc = QuantumCircuit(a,b,c,resultado)

 for i in range(n):

 if sumando_1[i] == "1":

 qc.x(a[n - (i+1)])

 for i in range(n):

 if sumando_2[i] == "1":

Carrascal, Botella and Del Barrio

 qc.x(b[n - (i+1)])

 for i in range(n-1):

 qc.ccx(a[i], b[i], c[i+1])

 qc.cx(a[i], b[i])

 qc.ccx(a[i], b[i], c[i+1])

 qc.ccx(a[n-1], b[n-1], b[n])

 qc.cx(a[n-1], b[n-1])

 qc.ccx(a[n-1], b[n-1], b[n])

 qc.cx(c[n-1], b[n-1])

 for i in range(n-1):

 qc.ccx(c[(n-2)-i], b[(n-2)-i], c[(n-1)-i])

 qc.cx(a[(n-2)-i], b[(n-2)-i])

 qc.ccx(a[(n-2)-i], b[(n-2)-i], c[(n-1)-i])

 qc.cx(c[(n-2)-i], b[(n-2)-i])

 qc.cx(a[(n-2)-i], b[(n-2)-i])

 qc.barrier(b)

 qc.measure(b,resultado)

 return qc

def simulate(circuit):

 my_backend = Aer.get_backend("qasm_simulator")

 job = execute(qc, my_backend, shots=20)

 job_stats = job.result().get_counts()

 return job_stats

Carrascal, Botella and Del Barrio

Cirq implementation of the Vedral adder circuit:

def get_adder(n, sumando_1, sumando_2):

 a = [cirq.GridQubit(0, i) for i in range(n)]

 b = [cirq.GridQubit(1, i) for i in range(n+1)]

 c = [cirq.GridQubit(2, i) for i in range(n)]

 # Create a circuit

 circuit = cirq.Circuit()

 for i in range(n):

 if sumando_1[i] == "1":

 circuit.append(X(a[n - (i+1)]))

 for i in range(n):

 if sumando_2[i] == "1":

 circuit.append(X(b[n - (i+1)]))

 for i in range(n-1):

 circuit.append(CCX(a[i], b[i], c[i+1]))

 circuit.append(CX(a[i], b[i]))

 circuit.append(CCX(a[i], b[i], c[i+1]))

 circuit.append(CCX(a[n-1], b[n-1], b[n]))

 circuit.append(CX(a[n-1], b[n-1]))

 circuit.append(CCX(a[n-1], b[n-1], b[n]))

 circuit.append(CX(c[n-1], b[n-1]))

 for i in range(n-1):

 circuit.append(CCX(c[(n-2)-i], b[(n-2)-i], c[(n-1)-i]))

 circuit.append(CX(a[(n-2)-i], b[(n-2)-i]))

 circuit.append(CCX(a[(n-2)-i], b[(n-2)-i], c[(n-1)-i]))

 circuit.append(CX(c[(n-2)-i], b[(n-2)-i]))

 circuit.append(CX(a[(n-2)-i], b[(n-2)-i]))

Carrascal, Botella and Del Barrio

 circuit.append(cirq.measure(*b, key='m')) # Measurement.

 return circuit

def simulate(circuit):

 simulator = cirq.Simulator()

 result = simulator.run(circuit, repetitions=20)

 frequencies = result.histogram(key='m', fold_func=bitstring)

 return frequencies

REFERENCES

Announcing Cirq: An Open Source Framework for NISQ Algorithms. (n.d.). Google AI Blog. Retrieved Jan-
uary 28, 2020, from http://ai.googleblog.com/2018/07/announcing-cirq-open-source-frame-
work.html

Association for Computing Machinery [ACM] / Institute of Electrical and Electronics Engineers [IEEE].
(2016). Computer Engineering Curricula 2016. In Computer Engineering Curricula 2016. CE2016. Cur-
riculum Guidelnes for Undergraduate Degree Programas in Computer Engineering. IEEE, ACM.
https://www.acm.org/binaries/content/assets/education/ce2016-final-report.pdf

Boettiger, C. (2015). An introduction to Docker for reproducible research, with examples from the R en-
vironment. ACM SIGOPS Operating Systems Review, 49(1), 71–79.
https://doi.org/10.1145/2723872.2723882

damian_projectq. (n.d.). ProjectQ. ProjectQ. Retrieved January 28, 2020, from https://projectq.ch/

Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. ArXiv:Quant-
Ph/9605043. http://arxiv.org/abs/quant-ph/9605043

IBM Q Account | Access to world-leading quantum systems and simulators. (n.d.). Retrieved January 30,
2020, from https://qiskit.org/ibmqaccount

IBM Quantum Experience. (n.d.). IBM Quantum Experience. Retrieved January 28, 2020, from
https://quantum-computing.ibm.com

IBM Unveils World’s First Integrated Quantum Computing System for Commercial Use—Jan 8, 2019.
(n.d.). Retrieved January 26, 2020, from https://newsroom.ibm.com/2019-01-08-IBM-Unveils-
Worlds-First-Integrated-Quantum-Computing-System-for-Commercial-Use

Pednault, E., Gunnels, J., Maslov, D., and Gambetta, J. (2019, October 21). On “Quantum Supremacy.”
IBM Research Blog. https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/

Project Jupyter. (n.d.). Retrieved March 4, 2020, from https://www.jupyter.org

Qiskit. (n.d.). Retrieved January 28, 2020, from https://qiskit.org/

Carrascal, Botella and Del Barrio

Qiskit Aer | A high performance simulator framework for quantum circuits. (n.d.). Retrieved January 30,
2020, from https://qiskit.org/aer

Qiskit Aqua | Algorithms for quantum computing applications. (n.d.). Retrieved January 30, 2020, from
https://qiskit.org/aqua

Qiskit Ignis | Understanding and mitigating noise in quantum systems. (n.d.). Retrieved January 30,
2020, from https://qiskit.org/ignis

Qiskit Terra | A solid foundation for quantum computing. (n.d.). Retrieved January 30, 2020, from
https://qiskit.org/terra/

Quantum Development Kit | Microsoft. (n.d.). Microsoft Quantum - US (English). Retrieved January 28,
2020, from https://www.microsoft.com/en-us/quantum/development-kit

Rad, B. B., Bhatti, H. J., and Ahmadi, M. (2017). An Introduction to Docker and Analysis of its Perfor-
mance. 8.

Shor, P. W. (1994). Algorithms for quantum computation: Discrete logarithms and factoring. Proceedings
35th Annual Symposium on Foundations of Computer Science, 124–134.
https://doi.org/10.1109/SFCS.1994.365700

Smith, L. (2018, December 21). H.R.6227 - 115th Congress (2017-2018): National Quantum Initiative Act
[Webpage]. https://www.congress.gov/bill/115th-congress/house-bill/6227

Varghese, B., Subba, L. T., Thai, L., and Barker, A. (2016). Container-Based Cloud Virtual Machine Bench-
marking. 2016 IEEE International Conference on Cloud Engineering (IC2E), 192–201.
https://doi.org/10.1109/IC2E.2016.28

Vedral, V., Barenco, A., and Ekert, A. (1996). Quantum networks for elementary arithmetic operations.
Phys. Rev. A, 54(1), 147–153. https://doi.org/10.1103/PhysRevA.54.147

Welcome to the Docs for the Forest SDK! —PyQuil 2.16.0 documentation. (n.d.). Retrieved January 28,
2020, from http://docs.rigetti.com/en/stable/#

AUTHOR BIOGRAPHIES

GINÉS CARRASCAL received the M.A. Sc. degree in Physics in 1999, from the University of Salamanca,
Spain. After post graduate studies joined IBM in 2000 as IT Architect, and currently working as Quantum
Ambassador. Since 2017, he has been an Interim Assistant Professor of Computer Science with the De-
partment of Software Systems and Computation, UCM. His research interests include applied artificial
intelligence and Quantum Computing. His email address is gines_carrascal@es.ibm.com.

GUILLERMO BOTELLA received the M.A. Sc. degree in Physics in 1998, the M.A.Sc. degree in Electronic
Engineering in 2001 and the Ph.D. degree in 2007, all from the University of Granada, Spain. Currently
he is a Full Professor at the Department of Computer Architecture and Automation of Complutense Uni-
versity of Madrid, Spain. His current research interests include Digital Signal Processing for VLSI, FPGAs,
GPUs, HPC and Vision Algorithms. His email address is gbotella@ucm.es.

ALBERTO A. DEL BARRIO received the Ph.D. degree in Computer Science from the Complutense Uni-
versity of Madrid (UCM), Madrid, Spain, in 2011. Since 2017, he has been an Interim Associate Professor
of Computer Science with the Department of Computer Architecture and System Engineering, UCM. His

Carrascal, Botella and Del Barrio

research interests include Design Automation, Arithmetic as well as Video Coding Optimizations. His
email address is abarriog@ucm.es.

	1 INTRODUCTION
	2 CONSIDERED ENVIRONMENTS
	2.1 IBM's Quantum Experience
	2.2 Google’s Cirq

	3 TESTING THE SELECTED SIMULATORS
	3.1 The Quantum Circuit
	3.2 Performance Test

	4 CONTAINERIZED ENVIRONENT
	5 RESULTS
	6 CONCLUSIONS
	A APPENDICES
	Word Bookmarks
	OLE_LINK1

