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Abstract—Storage system traces are important for examining
real-world applications, studying potential bottlenecks, as well
as driving benchmarks in the evaluation of new system designs.
While file system traces have been well-studied in earlier work,
it has been some time since the last examination of the SMB
network file system. The purpose of this work is to continue
previous SMB studies to better understand the use of the protocol
in a real-world production system in use at the University
of Connecticut. The main contribution of our work is the
exploration of I/O behavior in modern file system workloads
as well as new examinations of the inter-arrival times and run
times for I/0 events. We further investigate if the recent standard
models for traffic remain accurate. Our findings reveal interesting
data relating to the number of read and write events. We notice
that the number of read and write events is significantly less
than creates and the average number of bytes exchanged per
I/0 is much smaller than what has been seen in previous studies.
Furthermore, we find an increase in the use of metadata for
overall network communication that can be taken advantage of
through the use of smart storage devices. Index terms— Server
Message Block, Storage System Tracing, Network Benchmark,
Storage Systems, Distributed 1/0.

I. INTRODUCTION

Over the last twenty years, data storage provisioning has
been centralized through the use of network file systems. The
architectures of these storage systems can vary from storage
area networks (SAN), network attached storage (NAS), clus-
tered file systems, hybrid storage, amongst others. However,
the front-end client-facing network file system protocol in
most enterprise IT settings tends to be, for the most part, solely
SMB (Server Message Block) because of the preponderance
of Microsoft (MS) Windows clients. While there are other
network file systems such as Network File System (NFS) and
clustered file systems such as Ceph, PanFS, and OrangeFS,
they tend to be used less extensively in most non-research
networks.

In spite of the prevalence of SMB usage within most
enterprise networks, there has been very little analysis of SMB
workloads in prior academic research. The last major study
of SMB was more than a decade ago [1], and the nature of
storage usage has changed dramatically over the last decade.
It is always important to revisit commonly used protocols to
examine their use in comparison to the expected use case(s).
This is doubly so for network communications because the
nuances of networked data exchange can greatly influence the

effectiveness and efficiency of a chosen protocol. Since an
SMB-based trace study has not been undertaken recently, we
took a look at its current implementation and use in a large
university network.

Our study is based on network packet traces collected on
the University of Connecticut’s centralized storage facility
over a period of three weeks in May 2019. This trace-driven
analysis can help in the design of future storage products as
well as providing data for future performance benchmarks.
Benchmarks allow for the stress testing of various aspects of
a system (e.g. network, single system). Aggregate data analysis
collected from traces can lead to the development of synthetic
benchmarks. Traces can also expose systems patterns that can
also be reflected in synthetic benchmarks. Finally, the traces
themselves can drive system simulations that can be used to
evaluate prospective storage architectures.

We created a new tracing system to collect data from
the university storage network system. The tracing system
was built around the high-speed PF_RING packet capture
system [2] and required the use of proper hardware and
software to handle incoming data. We also created a new
trace capture format based on the DataSeries structured data
format developed by HP [3]. PF_RING acts as a kernel module
that aids in minimizing packet loss/timestamping issues by not
passing packets through the kernel data structures. DataSeries
was modified to filter specific SMB protocol fields along with
the writing of analysis tools to parse and dissect the captured
packets. Specific fields were chosen to be the interesting fields
kept for analysis. The DataSeries data format allowed us
to create data analysis code that focuses on I/O events and
ID tracking: e.g. Tree Identifier (TID) and User Identifier
(UID). The future vision for this information is to combine
ID tracking with the OpLock information in order to track
resource sharing of the different clients on the network, as
well as using IP information to recreate communication in a
larger network trace to establish a better benchmark.

The contributions of this work are the new traces of SMB
traffic over a large university network as well as new analysis
of this traffic. Our new examination of the captured data
reveals that despite the streamlining of the CIFS/SMB protocol
to be less “chatty”, the majority of SMB communication is still
metadata based I/O rather than actual data I/O. We found that
read operations occur in greater numbers and cause a larger
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overall number of bytes to pass over the network. Additionally,
the average number of bytes transferred for each write I/O is
smaller than that of the average read operation. We also find
that the current standard for modeling network 1/0 holds for
the majority of operations, while a more representative model
needs to be developed for reads.

II. RELATED WORK

We summarize major works in trace study in Table I.
Tracing collection and analysis from previous studies have pro-
vided important insights and lessons such as an observations
of read/write event changes, overhead concerns originating in
system implementation, bottlenecks in communication, and
other revelations found in the traces. Previous tracing work
has shown that one of the largest and broadest hurdles to
tackle is that traces (and benchmarks) must be tailored to the
system being tested. There are always some generalizations
taken into account, but these generalizations can also be a
major source of error (e.g. timing, accuracy, resource usage)
[9]1, [13], [17], [18], [19], [20], [21], [22], [23]. To produce a
benchmark with high fidelity one needs to understand not only
the technology being used but how it is being implemented
within the system [11], [22], [23]. All these aspects lend to
the behavior of the system; from timing and resource elements
to how the managing software governs actions [8], [13], [17].
Furthermore, in pursuing this work one may find unexpected
results and learn new things through examination [1], [11],
[17]. These studies are required in order to evaluate the
development of technologies and methodologies along with
furthering knowledge of different system aspects and capa-
bilities. As has been pointed out by past work, the design
of systems is usually guided by an understanding of the file
system workloads and user behavior.

Leung et al. [1] found that over 67% of files were never
opened by more than one client and that read-write access
patterns are more frequent. Anderson et al. [18] found that a
source of decreased precision came from the kernel overhead
for providing timestamp resolution. This would introduce
substantial errors in the observed system metrics due to the
use inaccurate tools when benchmarking I/O systems. These
errors in perceived I/O response times can range from +350%
to -15%. Issues of inaccuracies in scheduling I/O can result in
as much as a factor 3.5 difference in measured response time
and factor of 26 in measured queue sizes. These inaccuracies
pose too much of an issue to ignore.

Orosz and Skopko [19] examined the effect of the kernel
on packet loss and showed that when taking network measure-
ments, the precision of the timestamping of packets is a more
important criterion than low clock offset, especially when
measuring packet inter-arrival times and round-trip delays at a
single point of the network. One solution for network capture
is the tool Dumpcap. However, the concern with Dumpcap
is that it is a single threaded application and was suspected
to be unable to handle new arriving packets due to the small
size of the kernel buffer. Work by Dabir and Matrawy [20]
attempted to overcome this limitation by using two semaphores

to buffer incoming strings and improve the writing of packet
information to disk. Skopké [21] examined the concerns of
software-based capture solutions and observed that software
solutions relied heavily on OS packet processing mechanisms.
Furthermore, depending on the mode of operation (e.g. inter-
rupt or polling), the timestamping of packets would change.
As seen in previous trace work [1], [11], [17], the general
perceptions of how computer systems are being used versus
their initial purpose have allowed for great strides in elim-
inating actual bottlenecks rather than spending unnecessary
time working on imagined bottlenecks. Without illumination
of these underlying actions (e.g. read-write ratios, file death
rates, file access rates) these issues cannot be readily tackled.

III. BACKGROUND

The Server Message Block (SMB) is an application-layer
network protocol mainly used for providing shared access to
files, shared access to printers, shared access to serial ports,
miscellaneous communications between nodes on the network,
as well as providing an authenticated inter-process communi-
cation mechanism. The SMB 1.0 protocol [24] has been found
to have high/significant impact on performance due to latency
issues. Monitoring revealed a high degree of “chattiness” and
disregard of network latency between hosts. Solutions to this
problem were included in the updated SMB 2.0 protocol
which decreases ‘“chattiness” by reducing commands and sub-
commands from over a hundred to nineteen [25]. Additional
changes, most significantly increased security, were imple-
mented in the SMB 3.0 protocol (previously named SMB 2.2).

The rough order of communication for SMB session file
interaction contains five steps. First is a negotiation where a
Microsoft SMB Protocol dialect is determined. Next, a session
is established to determine the share-level security. After this,
the Tree ID (TID) is determined for the share to be connected
to as well as a file ID (FID) for a file requested by the client.
From this establishment, I/O operations are performed using
the FID given in the previous step.

The only data that needs to be tracked from the SMB
traces are the UID (User ID) and TID for each session. The
SMB commands also include a MID (Multiplex ID) value
that is used for tracking individual packets in each established
session, and a PID (Process ID) that tracks the process running
the command or series of commands on a host. For the
purposes of our tracing, we do not track the MID or PID
information. Some nuances of the SMB protocol I/O to note
are that SMB/SMB2 write requests are the actions that push
bytes over the wire while for SMB/SMB2 read operations it
is the response packets.

IV. PACKET CAPTURING SYSTEM
A. University Storage System Overview

We collected traces from the University of Connecticut
Information Technology Services (ITS) centralized storage
server, which consists of five Microsoft file server cluster
nodes. These blade servers are used to host SMB file shares
for various departments at the university as well as personal



Study | Date of Traces FS/Protocol Network FS | Trace Approach Workload
Ousterhout, et al. [4] 1985 BSD Dynamic Engineering
Ramakrishnan, et al. [5] 1988-89 VAX/VMS X Dynamic Engineering, HPC, Corporate
Baker, et al. [6] 1991 Sprite X Dynamic Engineering
Gribble, et al. [7] 1991-97 Sprite, NFS, VxFS X Both Engineering, Backup
Douceur and Bolosky [8] 1998 FAT, FAT32, NTFS Snapshots Engineering
Vogels [9] 1998 FAT, NTFS Both Engineering, HPC
Zhou and Smith [10] 1999 VFAT Dynamic PC
Roselli, et al. [11] 1997-00 VXFS, NTFS Dynamic Engineering, Server
Agrawal, et al. [12] 2000-2004 FAT, FAT32, NTFS Snapshots Engineering
Ellard, et al. [13] 2003 NFS X Dynamic Engineering, Email
Leung, et al. [1] 2007 CIFS X Dynamic Corporate, Engineering
Vrable, et al. [14] 2009 FUSE X Snapshots Backup
Benson, et al. [15] 2010 AFS, MapReduce, NCP, SMB X Dynamic Academic, Corporate
Chen, et al. [16] 2012 MapReduce X Dynamic Corporate
This paper 2020 SMB X Dynamic Academic, Engineering, Backup
TABLE T

SUMMARY OF MAJOR FILE SYSTEM STUDIES OVER THE PAST DECADES. FOR EACH STUDY THE TABLES SHOWS THE DATES OF THE TRACE DATA, THE
FILE SYSTEM OR PROTOCOL STUDIED, WHETHER IT INVOLVED NETWORK FILE SYSTEMS, THE TRACE METHODOLOGY USED, AND THE WORKLOADS
STUDIED. DYNAMIC TRACE STUDIES ARE THOSE THAT INVOLVE TRACES OF LIVE REQUESTS. SNAPSHOT STUDIES INVOLVE SNAPSHOTS OF FILE SYSTEM
CONTENTS.
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drive share space for faculty, staff and students, along with
at least one small group of users. Each server is capable of
handling 1 Gb/s of traffic in each direction (e.g. outbound
and inbound traffic). Altogether, the five-blade server system
can in theory handle 5 Gb/s of data traffic in each direction.
The blade servers serve as SMB heads, but the actual storage
is served by a pair of NetApp SAN appliance nodes that sit
behind the SMB heads. The NetApp storage provides 588 TB
of usable disk storage fronted by 4 TB of flash cache. This
system does not currently implement load balancing. Instead,
the SMB servers are set up to spread the load with a static
distribution across four of the active cluster nodes while the
passive fifth node takes over in the case of any other nodes
going down.

The actual tracing was performed with a tracing server
connected to a switch outfitted with a packet duplicating
element as shown in the topology diagram in Figure 1. A
10 Gbps network tap was installed in the file server switch,
allowing our storage server to obtain a copy of all network
traffic going to the 5 file servers. The reason for using 10 Gbps
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hardware is to help ensure that the system is able to capture
information on the network at peak theoretical throughput.

B. High-speed Packet Capture

In order to maximize our faithful capture of the constant rate
of traffic, we implement on the tracing server an ntop [26]
solution called PF_RING [2] to dramatically improve the
storage server’s packet capture speed. We had to tune an
implementation of tshark (wireshark’s terminal pcap im-
plementation) to maximize the packet capture rate. t shark
outputs .pcap files which captures all of the data present in
packets on the network. We configure t shark so that it only
captures SMB packets. Furthermore, to optimize this step, a
capture ring buffer flag is used to minimize the amount of
space used to write .pcap files, while optimizing the amount
of time to filter data from the .pcap files. The file size used
was in a ring buffer where each file captured was 64000 kB.

The .pcap files from tshark do not lend themselves to
easy data analysis, so we translate these files into .ds files
using the DataSeries [3] format, an XML-based structured
data format designed to be self-descriptive, storage and access



Total Days 21

Total Sessions 2,413,589

Number of SMB Operations 281,419,686 (100%)
Number of General SMB Operations | 210,705,867 (74.87%)
Number of Creates 54,486,043 (19.36%)
Number of Read I/Os 8,355,557 (2.97%)
Number of Write I/0s 7,872,219 (2.80%)

R:W I/O Ratio 1.06
Total Data Read (GB) 0.97
Total Data Written (GB) 0.6
Average Read Size (B) 144
Average Write Size (B) 63

TABLE 1T
SUMMARY OF TRACE I/O STATISTICS FOR THE TIME OF APRIL 30TH,
2019 TO MAY 20TH, 2019

efficient, and highly flexible. For our purposes, there is no
need to track all data that is exchanged, only information that
illuminates the behavior of the clients and servers that interact
over the network (i.e. I/O transactions). It should also be noted
that all sensitive information being captured by the tracing
system is hashed to protect the privacy of the users of the
storage system. Furthermore, the DataSeries file retains only
the first 512 bytes of the SMB packet - enough to capture
the SMB header information that contains the I/O information
we seek, while the body of the SMB traffic is not retained
in order to better ensure privacy. The reasoning for this limit
was to allow for capture of longer SMB AndX message chains
due to negotiated MaxBufferSize. It is worth noting that in the
case of larger SMB headers, some information is lost, however
this is a trade-off by the university to provide, on average, the
correct sized SMB header but does lead to scenarios where
some information may be captured incompletely. This scenario
only occurs in the cases of large AndX Chains in the SMB
protocol, since the SMB header for SMB 2 is fixed at 72 bytes.
In those scenarios the AndX messages specify only a single
SMB header with the rest of the AndX Chain attached in a
series of block pairs.

C. DataSeries Analysis

Building upon existing code for the interpretation and
dissection of the captured .ds files, we developed C/C++
code to examine the captured traffic information. From this
analysis, we are able to capture read, write, create and general
I/O information at both a global scale and individual tracking
ID (UID/TID) level. In addition, read and write buffer size
information is tracked, as well as the inter-arrival and response
times. Also included in this data is oplock information and IP
addresses. The main contribution of this step is to aggregate
observed data for later interpretation of the results. This step
also creates an easily digestible output that can be used to
re-create all tuple information for SMB/SMB?2 sessions that
are witnessed over the entire time period. Sessions are any
communication where a valid UID and TID is used.

V. DATA ANALYSIS

Table II shows a summary of the SMB traffic captured,
statistics of the I/O operations, and read/write data exchange
observed for the network filesystem. This information is
further detailed in Table III, which illustrates that the majority

1/0 Operation SMB SMB2 Both
General Operations 2,418,980 | 208,286,887 | 210,705,867
General % 99.91% 74.66% 74.87%
Create Operations 0 54,486,043 54,486,043
Create % 0.00% 19.53% 19.36%
Read Operations 1,931 8,353,626 8,355,557
Read % 0.08% 2.99% 2.97%
Write Operations 303 7,871,916 7,872,219
Write % 0.01% 2.82% 2.80%
Combine Protocol Operations | 2,421,214 | 278,998,472 | 281,419,686
Combined Protocols % 0.86% 99.14% 100%
ABLE TIT

PERCENTAGE OF SMB AND SMB2 PROTOCOL COMMANDS FOR THE
TIME OF APRIL 30TH, 2019 TO MAY 20TH, 2019

of I/O operations are general (74.87%). As shown in Table IV,
general I/O includes metadata commands such as connect,
close, query info, etc.

Our examination of the collected network filesystem data
revealed interesting patterns for the current use of CIFS/SMB
in a large academic setting. The first is that there is a major
shift away from read and write operations towards more
metadata-based ones. This matches the last CIFS observations
made by Leung et. al. [1] that files were being generated and
accessed infrequently. The change in operations are due to a
movement of use activity from reading and writing data to
simply checking file and directory metadata. However, since
the earlier study, SMB has transitioned to the SMB2 protocol
which was supposed to be less “chatty”. As a result, we
would expect fewer general SMB operations. Table III shows
a breakdown of SMB and SMB2 usage over the time period
of May. From this table, one can see that the SMB2 protocol
makes up 99.14% of total network operations compared to just
0.86% for SMB, indicating that most clients have upgraded
to SMB2. However, 74.66% of SMB2 I/O are still general
operations. Contrary to the purpose of implementing the SMB2
protocol, there is still a large amount of general I/O.

Taking a deeper look at the SMB2 operations, shown in
Table IV, we see that 9.06% of the general operations are
negotiate commands. These are commands sent by the client
to notify the server which dialects of the SMB2 protocol the
client can understand. The three most common commands are
close, tree connect, and query info. The latter two relate to
metadata information of shares and files accessed. However,
the close operation corresponds to the create operations. Note
that the create command is also used as an open file. Notice
that the number of closes is greater than the total number of
create operations by 9.35%. These extra close operations are
most likely due to applications doing multiple closes that do
not need to be performed.

A. I/O Data Request Sizes

Each SMB Read and Write command is associated with
a data request size that indicates how many bytes are to be
read or written as part of that command. Figure 2 shows the
probability density function (PDF) of the different sizes of
bytes transferred for read and write I/O operations respectively,
as well as showing cumulative distribution functions (CDF) for
bytes read and bytes written. The most noticeable aspect of



SMB2 General Operation | Occurrences | Percentage of Total
Close 80,114,256 28.71%
Tree Connect 48,414,491 17.35%
Query Info 27,155,528 9.73%
Negotiate 25,276,447 9.06%
Tree Disconnect 9,773,361 3.5%
10Ctl 4,475,494 1.6%
Set Info 4,447,218 1.59%
Query Directory 3,443,491 1.23%
Session Setup 2,041,208 0.73%
Lock 1,389,250 0.5%
Flush 972,790 0.35%
Change Notify 612,850 0.22%
Logoff 143,592 0.05%
Oplock Break 22,397 0.008%
Echo 4,715 0.002%
Cancel 0 0.00%
ABLE TV

BREAKDOWN OF GENERAL OPERATIONS FOR SMB2 FROM APRIL 30TH,
2019 TO MAY 20TH, 2019.
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Fig. 2. PDF and CDF of Bytes Transferred for Read and Write I/O

these graphs is that the majority of bytes transferred for read
and write operations is around 64 bytes. It is worth noting that
write I/Os also have a larger number of very small transfer
amounts. This is unexpected in terms of the amount of data
passed in a frame. Part of the reason is due to a large number of
long-term scripts that only require small but frequent updates,
as we observed several running scripts creating a large volume
of files. A more significant reason was because we noticed
Microsoft Word would perform a large number of small reads
at ever growing offsets. This was interpreted as when a user is
viewing a document over the network and Word would load the
next few lines of text as the user scrolled down the document;
causing “loading times” amid use. Finally, a large degree of
small writes were observed to be related to application cookies
or other such smaller data communications.

Additionally, almost no read transfer sizes are less than 32
bytes, whereas 20% of the writes are smaller than 32 bytes.
Table V shows a tabular view of this data. For reads, 34.97%
are between 64 and 512 bytes, with another 28.86% at 64-
byte request sizes. There are a negligible percentage of read
requests larger than 512. This read data differs from the size
of reads observed by Leung et al. by a factor of four smaller.

Transfer size Reads Writes
<4 0.098% 11.16%
=4 1.16% 4.13%
>4,< 64 34.89% 28.14%
=64 28.86% 52.41%
> 64, < 512 34.97% 4.15%
=512 0.002% 2.54e-5%
= 1024 1.22e-5% | 3.81e-5%
ABLE V

PERCENTAGE OF TRANSFER SIZES FOR READS AND WRITES

Leung et al. showed that 60-70% of writes were less than 4K
in size and 90% less than 64K in size. In our data, however,
we see that almost all writes are less than 1K in size. In fact,
11.16% of writes are less than 4 bytes, 52.41% are 64-byte
requests, and 43.63% of requests are less than 64 bytes. In
the ten years since the last study, it is clear that writes have
become significantly smaller. In our analysis of a subset of
the writes, we found that a significant part of the write profile
was writes to cookies which are necessarily small files. The
preponderance of web applications and the associated tracking
is a major change in how computers and data storage are used
compared to a decade ago. These small data reads and writes
significantly alter the assumptions that most network storage
systems are designed for.

In comparison of the read, write, and create operations we
found that the vast majority of I/O belong to creates. By the
fact that there are so many creates, it seems apparent that many
applications create new files rather than updating existing files
when files are modified. Furthermore, read operations account
for the largest aggregate of bytes transferred over the network.
However, the number of bytes transferred by write commands
is not far behind, although, non-intuitively, including a larger
number of standardized relatively smaller writes. The most
unexpected finding of the data is that all the read and writes
are performed using much smaller buffers than expected; about
an order of magnitude smaller (e.g. bytes instead of kilobytes).

B. I/O Response Times

Most previous tracing work have not reported I/O response
times or command latency, which is generally proportional to
data request size, but under load, the response times give an
indication of server load. In Table VI we show a summary
of the response times for read, write, create, and general
commands. We note that most general (metadata) operations
occur fairly frequently, run relatively slowly, and happen at
high frequency. We also observe that the number of writes is
very close to the number of reads. The write response time for
their operations is very small - most likely because the storage
server caches the write without actually committing to disk.
Reads, on the other hand, are in most cases probably not going
to hit in the cache and require an actual read from the storage
media. Although read operations are only a small percentage
of all operations, they have the highest average response time.
As noted above, creates happen more frequently, but have a
slightly slower response time, because of the extra metadata
operations required for a create as opposed to a simple write.

Figures 3 and 4 shows the inter arrival times CDFs and
PDFs. As can be seen, SMB commands happen very fre-
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Fig. 4. PDF of Inter-Arrival Time for SMB I/O

quently - 85% of commands are issued less than 1000 us
apart. As mentioned above, SMB is known to be very chatty,
and it is clear that servers must spend a significant amount of
time dealing with these commands. For the most part, most
of these commands are also serviced fairly quickly as seen in
Figures 5 and 6. Interestingly, the response time for the general
metadata operations follows a similar curve to the inter-arrival
times.

The response time for write operations (shown in Figure 5)
does not follow the step function similar to the bytes written
CDF in Figure 2. This is understandable as the response time

Reads Writes | Creates | General

1/0 % 2.97 2.80 19.36 74.87

Avg RT (us) 59,819.7 519.7 698.1 7,013.4

Avg IAT (us) | 33,220.8 | 35,260.4 | 5,094.5 1,317.4
TABLE VI

SUMMARY OF TRACE STATISTICS: AVERAGE RESPONSE TIME (RT) AND
INTER ARRIVAL TIME (IAT)
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for a write would be expected to be a more standardized
action and not necessarily proportional to the number of
bytes written. However, the read response time is smoother
than the bytes read CDF (Figure 2). This is most likely due
to the fact that some of the reads are satisfied by server
caches, thus eliminating some long access times to persistent
storage. However, one should notice that the response time
on read operations grows at a rate similar to that of write
operations. This, again, shows a form of standardization in
the communication patterns although some read I/O take a far
greater period of time; due to larger amounts of read data sent
over several standardized size packets.

C. File Extensions

Tables VII and VIII show a summary of the various file
extensions that were seen within the SMB2 traffic during the
three-week capture period; following the smb?2.filename field.
The easier to understand is Table VIII, which illustrates the



SMB?2 Filename Extension | Occurrences | Percentage of Total
-Travel 33,396,147 15.26
o 28,670,784 13.1
e 28,606,421 13.07
N 27,639,457 12.63
one 27,615,505 12.62
<No Extension> 27,613,845 12.62
d 2,799,799 1.28
1 2,321,338 1.06
X 2,108,279 0.96
h 2,019,714 0.92
TABLE VII

Topr 10 FILE EXTENSIONS SEEN OVER THREE WEEK PERIOD

SMB?2 Filename Extension | Occurrences | Percentage of Total

doc 352,958 0.16

docx 291,047 0.13

ppt 46,706 0.02

pptx 38,604 0.02

xls 218,031 0.1

xlIsx 180,676 0.08

odt 28 0.000013

pdf 375,601 0.17

xml 1,192,840 0.54

txt 167,827 0.08
TABLE VIIT

COMMON FILE EXTENSIONS SEEN OVER THREE WEEK PERIOD

number of common file extensions (e.g. doc, ppt, xIs, pdf)
that were part of the data. Originally, we expected that these
common file extensions would be a much larger total of traffic.
Howeyver, as seen in Table VIII, these common file extensions
were less than 2% of total files seen. The top ten extensions
that we saw (Table VII) comprised approximately 84% of
the total seen. Furthermore, the majority of extensions are
not readily identified. Upon closer examination of the tracing
system it was determined that many files simply do not have
a valid extension. These range from Linux-based library files,
manual pages, odd naming schemes as part of scripts or back-
up files, as well as date-times and IPs as file names. There
are undoubtedly more, but exhaustive determination of all
variations is seen as out of scope for this work.

D. Distribution Models

For simulations and analytic modeling, it is often useful
to have models that describe storage systems I/O behavior.
In this section, we attempt to map traditional probabilistic
distributions to the data that we have observed. Specifically,
taking the developed CDF graphs, we perform curve fitting
to determine the applicability of Gaussian and Weibull distri-
butions to the network filesystem I/O behavior. Note that an
exponential distribution, typically used to model interarrival
times and response times, is a special case of a Weibull
distribution where k = 1. Table IX shows best-fit parametrized
distributions for the measured data.

As indicated by the error bounds, one can see that the
Weibull distributions are generally much better fits for all
the different distributions. Furthermore, the Poisson arrival
assumption (exponential distribution & = 1) is only valid
for general 1/O, but the write and create service times are
exponential. Interestingly, the read and write buffer sizes are
very close to exponential, though a Gaussian distribution is a
close fit. The models for the write and create operations are
similar, while those for read operations are not. Furthermore,

there is less similarity between the modeled behavior of
general operation inter arrival times and their response times,
showing the need for a more refined model for each aspect of
the network filesystem interactions.

E. System Limitations and Challenges

When initially designing the tracing system used in this
paper, different aspects were taken into account, such as space
limitations of the tracing system, packet capture limitations
(e.g. file size), and speed limitations of the hardware. One
limitation encountered in the packet capture system deals with
the functional pcap (packet capture file) size. The concern
being that the pcap files only need to be held until they
have been filtered for specific protocol information and then
compressed using the DataSeries format, but still allow for
room for the DataSeries files being created to be stored.
Another concern was whether or not the system would be able
to function optimally during periods of high network traffic.
All aspects of the system, from the hardware to the software,
have been altered to help combat these concerns and allow for
the most accurate packet capturing possible.

Because the data is being collected from an active network,
there will be differing activity depending on the time, the day,
the week, and the academic calendar. For example, although
the first week or so of the academic year may contain a large
amount of traffic, this does not mean that trends of that period
of time will occur for every week of the year (except perhaps
the final week of the semester). The trends and habits of the
network will change based on the time of year, time of day,
and even depend on the exam schedule. A comprehensive
examination requires looking at all different periods of time
to see how all these factors play into the storage system
utilization.

VI. CONCLUSIONS AND FUTURE WORK

Our analysis of this university network filesystem illustrated
the current implementation and use of the CIFS/SMB protocol
in a large academic setting. We notice the effect of caches on
the ability of the filesystem to limit the number of accesses to
persistent storage. The effect of enterprise storage disks access
time can be seen in the response time for read and write
I/O. Metadata operations dominate the majority of network
communication, which is of less surprise since SMB is a
known chatty protocol. We do notice that the CIFS/SMB
protocol continues to be chatty with metadata I/O operations
regardless of the version of SMB being implemented; 74.66%
of I/O being metadata operations for SMB2. We also find
that read and write transfer sizes are significantly smaller
than would be expected and requires further study as to the
impact on current storage systems. Examination of the return
times for these different I/O operations shows that exponential
distribution curve fitting equation is most accurate at modeling
the CDF of the various I/O operations. This shows that the
current model is still effective for the majority of I/O, but
that for read operations there needs to be further research in
modeling their behavior. Our work finds that write and create



Model Gaussian Weibull
€T — [ 2
CDF L [T e a 1 e(=z/Nk
2w J —o0
1/0 Operation o o k A
General RT 3606.66+20.6% | 2.74931e+0640.02% | 0.565240.02% | 980.9721+0.05%
General IAT 786.72+0.35% 10329.6+£0.02% | 0.9031+£0.02% | 743.2075+0.02%
Read RT 44718.5£26.2% 1.72776e+07+£0.05% | 0.0004+0.00% 1.5517+0.18%
Read IAT 24146+33.4% 1.189e+0740.05% | 0.000540.00% 3.8134+0.15%
Write RT 379.823+0.74% 4021.72+£0.05% | 0.8569+0.05% | 325.2856+0.09%
Write IAT 25785.7+£33.2% 1.22491e+07+0.05% | 0.0004+0.00% 3.1287+0.17%
Create RT 502.084£1.15% 21678.4+£0.02% | 0.9840+0.02% | 496.9497+0.03%
Create IAT 3694.82+33.5% | 4.65553e+061+0.02% | 0.000840.00% 2.3504+0.04%
Read Buff Transfer 82.9179+0.92% 1117.94£0.05% | 1.0548+0.03% 85.2525+0.07%
Write Buff Transfer | 46.250740.97% 640.621£0.05% | 1.0325+0.04% 46.8707+£0.07%
TABLE TX

COMPARISON OF p, o, k, AND A VALUES FOR CURVE FITTING EQUATIONS ON CDF GRAPHS

response times can be modeled similarly, but that the read
response times require the alteration of the general model.
However, the general I/O can be modeled using the same
standard; which has similar shape and scale to that of the
write and create operations.

The analysis work will eventually incorporate oplocks and
other aspects of resource sharing on the network to gain a
more complete picture of the network’s usage and bottlenecks.
Network filesystem usage from an individual user scope has
become simple and does not contain a greater deal of read,
write, and create operations. Further analysis will be made in
examining how the determined metrics change when examined
at the scope of a per share (i.e. TID) or per user (i.e. UID).
At this level of examination, we will be able to obtain a better
idea of how each share is interacted with, as well as how files
and directories are shared, and access control is implemented.
Due to the large number of metadata operations, the use of
smart storage solutions could be used to minimize the impact
of these I/0. Smart storage elements can aid by performing
metadata operations without the need to access persistent
storage, thus causing shorter response times. In this manner,
the use of smart storage can also help reduce bottlenecks with
larger network filesystems and minimize the effect of traffic
on overall network performance.
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