

Association of Computing Machinery (ACM)

Style Guide, WCAG 2.0 Level A

ACM

12/19/16

Page 2 of 21

TABLE OF CONTENTS

Overview ... 4

Media Types .. 4

Images ... 4

Best Practice: Provide Alternative Text for Images ... 4

Best Practice: Ensure complex images provide sufficient descriptions ... 5

Best Practice: Ensure CSS background images that convey meaning have textual and visible equivalents

 .. 5

Color and Contrast .. 6

Best Practice: Ensure color is not the sole means of communicating information or indicating error

messages .. 6

Best Practice: Ensure text and images of text provide sufficient contrast .. 6

Navigation ... 7

Best Practice: Provide a mechanism for skipping past repetitive navigation links 7

Best Practice: Ensure pages do not automatically refresh .. 8

Page Structure .. 8

Best Practice: Ensure that the reading order of content is logical .. 8

Best Practice: Ensure content is visible to assistive technologies ... 9

Keyboard Accessibility .. 9

Best Practice: Avoid the sole use of device-dependent event handlers ... 9

Best Practice: Ensure all active elements receive keyboard focus .. 10

Best Practice: Ensure custom controls provide proper textual roles and descriptions 10

Focus Control .. 11

Best Practice: Avoid using event handlers that trigger focus or context changes on user input 11

Forms .. 13

Best Practice: Provide a valid label for form fields .. 13

Best Practice: Ensure CAPTCHAs are accessible both visually and audibly ... 13

Best Practice: Avoid use of placeholder values to label or explain input .. 14

Best Practice: Ensure elements with multiple labels are rendered appropriately 14

Page 3 of 21

Best Practice: Ensure form field constraints are clearly indicated .. 15

Data Tables ... 15

Best Practice: Ensure data table headers are properly identified ... 15

Best Practice: Ensure headers and cells are properly associated .. 16

Best Practice: Ensure complex data table headers are properly identified .. 16

Dialogs .. 17

Best Practice: Ensure dialogs use proper structure ... 17

Best Practice: Ensure that keyboard focus remains within modal dialogs .. 18

ARIA and Dynamic Content .. 18

Best Practice: Avoid forced focus changes that are not user-initiated ... 18

Best Practice: Indicate live regions for dynamically changing content ... 19

Best Practice: Ensure content updates define focus updates appropriately .. 20

Resources .. 21

SSB Bart Group ... 21

SSB BART Group Labs .. 21

ARIA .. 21

W3C Web Accessibility Initiative (WAI) .. 21

Page 4 of 21

OVERVIEW

The Association of Computing Machinery (ACM) is committed to diversity, inclusion and accessibility in everything

we do. These core values are fundamental to the way we operate our organization and support our constituents.

ACM works with SSB BART Group to ensure compliance with accessibility standards through audits and policy

development.

This style guide is intended to assist developers, designers, project managers, or other employees engaged in

developing or creating content for the web. This style guide includes WCAG 2.0 Level A high priority accessibility

best practices, examples, and implementation techniques for the associated best practices and examples.

MEDIA TYPES

IMAGES

All images provided within a web site or web application must have meaningful alternative text. Meaningful text

equivalents, provided either via the alt attribute or via an external longdesc file, ensure that users with

disabilities can access image content. Screen reader software announces image alternatives to users who are blind

or visually impaired. Users who have low vision rely on alternative text when images are small, have poor contrast

or when images are magnified to large sizes and become pixilated. Users of voice-recognition software utilize the

alternative text of the image to gain focus on actionable images.

BEST PRACTICE: PROVIDE ALTERNATIVE TEXT FOR IMAGES

EXAMPLE

<img alt="Man with cavity"

src="https://s3-us-west-

2.amazonaws.com/s.cdpn.io/t-

168/cav1.jpg">

<img alt="Young woman with

cavity" src="https://s3-us-west-

2.amazonaws.com/s.cdpn.io/t-

168/cav2.jpg">

<img alt="Pig eating chocolate

cake" src="https://s3-us-west-

2.amazonaws.com/s.cdpn.io/t-

168/pigcake.jpg">

RECOMMENDATIONS

Add an appropriate alt attribute for images including poster images of videos that do not contain alt

attributes. An alt attribute should be a concise and meaningful replacement for the image.

If the image does not convey any meaning, such as a spacer image or separation line, or if the image is

redundant to adjacent text enter a null alt attribute (alt="") should be assigned, the image should be

turned into a CSS background image.

Figure 1: All images that convey meaning must

provide meaningful alternative text

http://www.acm.org/
http://www.ssbbartgroup.com/

Page 5 of 21

BEST PRACTICE: ENSURE COMPLEX IMAGES PROVIDE SUFFICIENT DESCRIPTIONS

EXAMPLE

Figure 2: Complex images require a description of the image along with alternative text to provide context to the image

<div id="chocmap">

<img src="https://s3-us-west-2.amazonaws.com/s.cdpn.io/t-

168/chocmap.png" alt="Map showing chocolate consumption capitals

Seattle, Los Angeles, Austin, Chicago, New York, Raleigh, and Miami">

<img src="https://s3-us-west-2.amazonaws.com/s.cdpn.io/t-

168/chocmap2.png" alt="Chocolate Consumption Map">

<table class="table">

…

</table>

RECOMMENDATIONS

Create an appropriate description that describes the image in detail. Ideally the longdesc attribute should

not be used to reference another page as this description may not be keyboard accessible and is only

often available to screen reader users (based on the browser implementation). A longer description

should be provided on the same page of the image or via a link near the image.

BEST PRACTICE: ENSURE CSS BACKGROUND IMAGES THAT CONVEY MEANING HAVE TEXTUAL

AND VISIBLE EQUIVALENTS

EXAMPLE

<a class="header-btn search-btn"

href="#" title="Search" aria-

expanded="false">Search

<style>

.btn-container .search-btn {

 background-image:

url("http://www.ssbbartgroup.com/w

content/themes/ssbbart/css/../image

s/layout/icon-search.png");

}

</style>

Figure 3: The Search button is a background

image. A visual textual equivalent is

provided on screen.

RECOMMENDATIONS

Alternative text should be provided on-screen, as CSS positioned off-screen text, or by using a standard

inline img with equivalent alternative text in addition to the background image.

The key to meeting this requirement is that the alternative for the background image must be accessible

to users of assistive technology as well as visually to users with low vision who cannot view CSS images

but that may not be using assistive technology.

COLOR AND CONTRAST

When colors are used as the sole method for identifying screen elements, controls, or giving instructions, persons

who are blind, color blind, or have low vision may find the web page unusable.

BEST PRACTICE: ENSURE COLOR IS NOT THE SOLE MEANS OF COMMUNICATING INFORM ATION

OR INDICATING ERROR MESSAGES

EXAMPLE

<h1>Contact Information</h1>

<p>* = Required Field</p>

<label class="required" for="fname">*First

Name</label>

<input type="text" id="fname">

<label class="required" for="lname">*Last

Name</label>

<input type="text" id="lname">

<label for="email">Email Address</label>

<input type="text" id="email">

Figure 4: The forms provide a visual cue as well as color

to indicate required fields.

RECOMMENDATIONS

Ensure that all information communicated via color is available through some other method of

identification, such as on-screen text labels. For indicating required fields, one method is to use a

character to indicate the required field. The character and its meaning should be described in instructions

located at the beginning of the form.

BEST PRACTICE: ENSURE TEXT AND IMAGES OF TEXT PROVIDE SUFFICIENT CONTRAST

EXAMPLE

Page 7 of 21

Figure 5: Blue text against a white background provides sufficient contrast, with a luminosity contrast ratio of 9.25:1.

RECOMMENDATIONS

Text less than 18 point or bold text less than 14 point must have a luminosity contrast ratio of 4.5:1 or

more. Text 18 point or larger or bold text 14 point or larger must have a luminosity contrast ratio of 3:1

or more.

NAVIGATION

Navigation requirements ensure that accessible navigation structures are provided for users with disabilities.

Provision of accessible navigation structures will affect multiple types of users with disabilities and is a key

requirement across all leading accessibility standards.

BEST PRACTICE: PROVIDE A MECHANISM FOR SKIPPING PAST REPETITIVE NAVIGATION LINKS

EXAMPLE

<style type="text/css">

a.nav {

position: absolute;

left: -10em;

top: -10em;}

a.nav:focus, a.nav:active {

position: absolute;

left: .5em;

top: .5em;

background-color:lightblue;}

</style>

<body>

<div style="margin-top:1.5em;">

<a class="nav"

href="#jumptocontent">Skip to main

content

First

Repetitive Link

(many intervening links and other

content)

Last

Repetitive Link

</div>

<a name="jumptocontent" tabIndex="-

1">

Figure 6: The page contains a "Skip to Main Content Link" in order to skip past navigation links.

Page 8 of 21

<!-- (main content area on the

page, ideally beginning with an h1

element) -->

</body>

RECOMMENDATIONS

Include a mechanism allowing users to skip past groups of links. When links appear at the top of the page,

the skip link should be the very first active element in the page (i.e. the first tab stop), and its target

should be the beginning of the main content area that is unique to that page. The easiest way to

accomplish this requirement is through the use of intra-document links. There are multiple 'forms' that a

skip link can take, such as a text link, an image link, or something else.

BEST PRACTICE: ENSURE PAGES DO NOT AUTOMATICALLY REFRESH

EXAMPLE

Non-Compliant Example

<body

onload=setTimeout("location.href=

'http://www.example.com'",5000)>

 Reload

</body>

Compliant Example

<body>

<p>Please reload this page!

Reload

</body>

RECOMMENDATIONS

If a page must refresh itself allow the user to control whether or how the page refreshes. Often page

refreshes are performed using a meta refresh with a time-out (or a page being redirect to itself after a

certain amount of time). The page refresh must be able to be :

 Turned off

 Adjusted or

 Extended

There are exceptions to when pages can refresh including if 20 hours has elapsed, if there is an exception

for real-time data transactions, or when it is essential to the purpose of the page.

PAGE STRUCTURE

Page structure is concerned with ensuring that proper structural markup is used within pages. This is especially

important for assistive technology which may or may not be programmed to perform the same level of "coping"

that can be found in browsers (which are created by multinational corporations) or assistive technology brands

that cost several hundred dollars or more. Even in the case of "better" assistive technologies, poor markup will

cause rendering problems, to the point of reading text out of order or even not reading it at all.

BEST PRACTICE: ENSURE THAT THE READING ORDER OF CONTENT IS LOGICAL

EXAMPLE

<div id="main-container">

<div>

<div class="column1">Name:</div>

<div class="column2">Jane Doe</div>

Page 9 of 21

</div>

<div>

<div class="column1">Age:</div>

<div class="column2">35</div>

</div>

</div>

RECOMMENDATIONS

Alter the relative order of the rendered page so that content including structural markup and the content

to which it applies are read logically by assistive technology. This can be achieved by re-ordering the

source code or inserting content into the DOM in an a logical location relative to related content. Ensure

that elements of the DOM are ordered in the same manner as they would be read visually on the page.

BEST PRACTICE: ENSURE CONTENT IS VISIBLE TO ASSISTIVE TECHNOLOGIES

EXAMPLE

Non-Compliant Example

<style>

p.note:before {

 content: "Note: "

}

</style>

<body>

<p class="note">Hello World</p>

</body>

Compliant Example

<p>Note: Hello World</p>

RECOMMENDATIONS

Until assistive technology products are able to fully access content that exists outside of the DOM, all

content that an assistive technology user is expected to access should be rendered in more standard ways

that are reliably part of the page's DOM.

KEYBOARD ACCESSIBILITY

All functionality must be actionable regardless of the input method used. This requirement is necessary to ensure

that people who are blind, people with low vision, and people with dexterity impairments who do not use the

mouse can access all functionality.

BEST PRACTICE: AVOID THE SOLE USE OF DEVICE-DEPENDENT EVENT HANDLERS

EXAMPLE

<div tabindex="0"

onclick="alert('you clicked.

onclick was activated');"

onkeypress="if

(event.keyCode == 13) {

Figure 7: The visual text on the page is displayed in a logical

order in the DOM to ensure screen reader users and users who

remove styles from the page render the content in a logical

order.

Figure 8: The text "Note" is provided within the

HTML to ensure content is rendered by assistive

technologies

Figure 9: onClick and onKeyPress are used to provide keyboard and

mouse functionality to the custom control.

Page 10 of 21

alert('you pressed enter');

}">View this onclick with

onKeyPress example</div>

RECOMMENDATIONS

Insert a redundant device-dependent event handler to allow users of assistive technologies a method to

access the functionality. Event handlers that depend on a device, generally the mouse, should contain

redundant non-device-dependent event handlers.

Ensure that when keyboard event handlers are associated with elements that the element must be able

to receive keyboard focus. For elements that do not typically receive focus such as the div or img

element a tabIndex attribute of 0 or greater must be set on the element. Note, anchor tags without

href attributes but with onClick attributes will not by default receive keyboard focus. The following

device dependent event handlers correspond to the device independent event handlers:

Event Handler Alternative

onClick onKeyPress

onMouseDown onKeyDown

onMouseUp onKeyUp

onMouseOver onFocus

onMouseOut onBlur

onDblClick onKeyDown

ng-Click (Angular) Any Key Event

BEST PRACTICE: ENSURE ALL ACTIVE ELEMENTS RECEIVE KEYBOARD FOCUS

EXAMPLE

Figure 10: The “Products” link provides visual focus as well as programmatic focus. Any element that can be activated with

the mouse, must also be activated with the keyboard.

RECOMMENDATIONS

Ensure that all actionable elements are accessible from the keyboard. This can be achieved by using

standard HTML elements that are, by default, actionable from the keyboard, such as anchors and inputs.

Other elements can be used to simulate user interface components such the div, td, and span tags,

however, the tabIndex attribute must be assigned with 0, indicating the element's placement in the

tab order. In addition, developers must convey to users of assistive technology that the element is

actionable by assigning a role, and provide keyboard access through the use of device independent event

handlers (i.e. onkeypress, onkeydown, onfocus, etc.)

BEST PRACTICE: ENSURE CUSTOM CONTROLS PROVIDE PROPER TEXTUAL ROLES AND

DESCRIPTIONS

Page 11 of 21

EXAMPLE

Home<span

class="hidden"> Tab - Selected

User Activity<span

class="hidden"> Tab

Contact Us<span

class="hidden"> Tab

<style>

.hidden {

 position:

absolute;

 left:-500px;

 top:0;

 width:1;

 height:1;

 overflow:hidden;

}

</style>

RECOMMENDATIONS

Ensure that proper textual descriptions are provided for custom components within the application.

Indicate the role and state of the element. ARIA should also be used to indicate the control's role and

state. For example, for a div or span element that represents a button, the role of "button" should be

used. For elements that simulate links, the role should be "link". For anchors and buttons, the onclick

event handles both keyboard and mouse clicking. For elements other than button or anchor, both

onclick and keyboard event handlers will need to be used. The keyboard event handler such as

onKeyUp will receive all key up events, and thus, must be modified to only trigger on the enter or space

key for buttons or the enter key for anchors.

FOCUS CONTROL

Focus control is a user's ability to control keyboard and reading focus within a web page or application. Keyboard

focus is the location where keyboard actions will be interpreted by the application. It is often indicated visually by

the cursor or a selection highlight, or programmatic dotted rectangle. Reading focus is the location where a screen

reader begins to render content. Users who are blind, have low vision, or have mobility impairment rely heavily on

proper control of keyboard and reading focus when browsing web based content.

BEST PRACTICE: AVOID USING EVENT HANDLERS THAT TRIGGER FOCUS OR CONTEXT CHANGES

ON USER INPUT

EXAMPLE

Non-Compliant Example

<label for="select1">Go to W3C Specifcation</label>

 <select id="select1" onchange="goToPage('select1')">

Figure 11: The tabs indicate a role of link as well as the selection state.

Page 12 of 21

 <option value="http://www.w3.org/TR/HTML4">HTML 4

</option>

 <option value="http://www.w3.org/TR/CSS21">CSS 2.1

</option>

 <option value="http://www.w3.org/TR/WCAG10">Web Content

Accessibility Guideines 1.0</option>

 <option value="http://www.w3.org/TR/WCAG20">Web Content

Accessibility Guideines 2.0</option>

 <option value="http://www.w3.org/TR/UAAG10">User Agent

Accessibility Guidelines 1.0</option>

 <option value="http://www.w3.org/TR/ATAG10">Authoring

Tool Accessibility Guidelines 1.0</option>

 </select>

Compliant Example

<p>

 <label for="select2">W3C Specifcations </label>

 <select id="select2" >

 <option value="http://www.w3.org/TR/HTML4">HTML 4 </option>

 <option value="http://www.w3.org/TR/CSS21">CSS 2.1 </option>

 <option value="http://www.w3.org/TR/WCAG10">Web Content

Accessibility Guideines 1.0</option>

 <option value="http://www.w3.org/TR/WCAG20">Web Content

Accessibility Guideines 2.0</option>

 <option value="http://www.w3.org/TR/UAAG10">User Agent

Accessibility Guidelines 1.0</option>

 <option value="http://www.w3.org/TR/ATAG10">Authoring Tool

Accessibility Guidelines 1.0</option>

 </select>

 <input type="button" value="Go To Specification"

onclick="goToPage('select2')"/>

</p>

Figure 13: Compliant Example - A button is provided after the dropdown menu to give the user control over changes in

content.

Figure 12: Non-Compliant Example - The onChange event causes a new page to load

when pressing the down arrow in the dropdown menu.

Page 13 of 21

RECOMMENDATIONS

For dropdown selection controls, add in a form button (i.e. Apply) that allows the user to trigger the form

update event. Ensure that this element has a text value that properly communicates its function.

When an additional button is not an option, developers can use the onBlur event which will be fired

when the user tabs out of the field to trigger focus changes. To preserve the 'one click' functionality for

mouse users, the onBlur event should be coupled with the onMouseDown event which should trigger

the change for mouse users. This approach should allow mouse and keyboard users to select the item

without requiring an associated button.

FORMS

Maximizing the ability to successfully fill out online forms is critical to ensuring that all users have access to the full

functionality of web applications. Unless properly marked up, users with disabilities face significant challenges in

filling out and submitting forms online. To ensure that users with disabilities can effectively utilize online forms,

developers must ensure forms use proper markup, provide logical field grouping, and make sense when rendered

by assistive technology.

BEST PRACTICE: PROVIDE A VALID LABEL FOR FORM FIELDS

EXAMPLE

<label for=”ship1”>Ship To:

</label>

<input type=”text” id=”ship1”

name=”shiptoaddr1” size=”30”>

RECOMMENDATIONS

Define form labels using the label element whenever an on-screen label is present. The label element's

value is then explicitly associated with the relevant form field using the for and id attributes. Use of the

label element provides an added benefit as it increases the target area that users can click to focus the

form field.

BEST PRACTICE: ENSURE CAPTCHAS ARE ACCESSIBLE BOTH VISUALLY AND AUDIBLY

EXAMPLE

Figure 15: Google’s reCAPTCHA provides audio and visual support for user input.

Figure 14: The "Ship To" label is directly associated with

the input field by referencing the id of the input field.

Page 14 of 21

Figure 16: Search field provides placeholder

as well as an off-screen label. Placeholder is

not taking place of the label for the form

field.

RECOMMENDATIONS

Add an alternative version of the CAPTCHA that uses a different sense such as an audible version of the

CAPTCHA content. In addition, make sure the alternative is made prominently available and is

implemented in an accessible way. For example, for an audio CAPTCHA provide a link to play the audio,

and focus the edit field where the characters must be typed. The audio must be audible or else it won't be

usable by users who are blind or visually impaired. The visual CAPTCHA should continue to be used to

facilitate use by people who are deaf or hard of hearing

BEST PRACTICE: AVOID USE OF PLACEHOLDER VALUES TO LABEL OR EXPLAIN INPUT

EXAMPLE

<div data-ssb_ev="keydown,keyup" data-ssb_ts="4.5">

<label class="screen-reader-

text" for="s" data-

ssb_ev="keydown,keyup" data-ssb_an="search

for:" data-ssb_ts="4.5">Search for:</label>

<input id="search-

input" placeholder="Search" name="s" value="

" title="Search" data-

ssb_ev="keydown,keyup" data-

ssb_an="search" data-

ssb_ts="4.5" type="search">

<input id="search-submit" value="Go" data-

ssb_ev="keydown,keyup" data-

ssb_an="go" data-ssb_ts="4.5" type="submit">

</div>

RECOMMENDATIONS

Ensure that the placeholder attribute is not a replacement for the label element nor is it redundant

with the label. Whenever multiple labels are associated with a single form field, use the aria-

labelledby attribute, aria-label attribute or the title attribute to provide all the relevant text

information for the field.

BEST PRACTICE: ENSURE ELEMENTS WITH MULTIPLE LABELS ARE RENDERED APPROPRIATELY

EXAMPLE

<label id="l1">Sodium

intake:</label>

<input aria-labelledby="l1

span1" type="text" id="s1"

/>

mg

RECOMMENDATIONS

Whenever multiple labels are associated with a single form field, utilize the aria-labelledby, aria-

label, or title attribute or other appropriate markup or method to provide all the relevant text

information for the field. Be sure to validate the implementation with Assistive Technology testing.

Figure 17: Sodium Intake form provides two labels through an explicit

label element and aria-labelledby.

Page 15 of 21

BEST PRACTICE: ENSURE FORM FIELD CONSTRAINTS ARE CLEARLY INDICATED

EXAMPLE

<div>* = Required Field</div>

<form>

<label for="FullName">Full

Name*</label>

<input type="text" id="FullName">

<label for="Email">Email*</label>

<input type="text" id="Email">

<label for="pnumber">Phone

Number</label>

<input type="text" id="pnumber">

<label for=”date”>Date <span

id=”dateFormat”>

MM/DD/YY</label>

<input type=”text” id=”date”>

...

 </form>

RECOMMENDATIONS

Ensure that all label text, including field name, required state, and any required formatting information is

provided. This is best done by enclosing this information in the label element. There are additional

techniques that can be used to associate constraints with fields including the aria-required

attribute, the HTML5 required attribute and other mechanisms to assign/associate an accessible name

to a field such as aria-label and aria-labelledby. The aria-describedby attribute can also

be used to associate form field instructions and constraints with a form field. Keep in mind that

constraints including required or optional fields must be communicated both visually and

programmatically.

DATA TABLES

Properly structured data tables ensure that all users can access data that is presented along rows and columns.

Data table structural markup will identify and associate table header cells with data cells in the body of a table.

Users who are blind have significant difficulty accessing page content when proper table formatting is not

provided.

BEST PRACTICE: ENSURE DATA TABLE HEADERS ARE PROPERLY IDENTIFIED

EXAMPLE

Page 16 of 21

Figure 18: Simple table using th tags for table headers and td tags for table data cells.

RECOMMENDATIONS

Specify table headers for the table utilizing the th element. Upon identifying table headers, ensure that

the headers are properly associated with table content. For complex tables with multiple levels/headers,

alternative approaches may be required such as splitting up a complex table into multiple simple tables.

BEST PRACTICE: ENSURE HEADERS AND CELLS ARE PROPERLY ASSOCIATED

EXAMPLE

Figure 19: Complex table with th tags and scope attribute on the columns and rows and td tags for table data cells.

RECOMMENDATIONS

Associating data cells with headers can be accomplished in two ways, the first works well for less complex

data tables and enjoys a far greater level of support by assistive technologies like screen readers. The

recommended implementation is to enclose the column header cells and (optionally) the row header cells

in the th element (rather than td), AND to set the scope attribute to either scope=col (column

headers) or scope=row (row headers). This explicitly associates the header cell with the other data cells

in the same column (or row). When a header cell spans multiple columns or rows the appropriate

scope="colgroup" or scope="rowgroup" should be used in lieu of scope="col" or

scope="row".

BEST PRACTICE: ENSURE COMPLEX DATA TABLE HEADERS ARE PROPERLY IDENTIFIED

EXAMPLE

Page 17 of 21

Figure 20: Complex table showing th tag and scope attribute on columns and rows, colgroup for merged cells, and id

and headers to map td cells to th cells.

RECOMMENDATIONS

Complex data tables are any data table with more than one row or column of header cells and/or multiple

levels. Data tables must identify the header cells that label the data cells in the same column or row.

Indicating that a cell is a header cell via the th element allows screen readers and other assistive

technologies to identify data tables from layout tables and provide properly navigate within them. For

complex data tables, the header cells must be identified with an id so that each data cell (td) has a

header attribute that references the id attribute of the th elements that are headers for the data cell.

DIALOGS

Dialogs typically contain standard HTML elements and content that are displayed on top of the original page. The

visual metaphor usually involves a graying-out or lightboard effect of the original page content behind the dialog,

Persons who use a mouse typically benefit from functionality that makes the dialog appear at the screen position

of the link (or other active element) that was clicked, and that either enforces its modality by trapping mouse clicks

outside the dialog or its non-modality by dismissing the dialog if the mouse is clicked outside of it. To ensure the

accessibility of these simulated controls to persons using assistive technology or the keyboard, several functional

and textual requirements must be met.

BEST PRACTICE: ENSURE DIALOGS USE PROPER STRUCTURE

EXAMPLE

<div role="dialog" aria-

modal="true"

aria-labelledby="login">

 <h2 id="login" class=”sr-

only”>Log In</h2>

 ...

 <button>OK</button>

 <button>CANCEL</button>

</div>

RECOMMENDATIONS

Use semantic structures such as the dialog element or an ARIA role of dialog (when appropriate). When

the dialog is not modal or the dialog role is not appropriate other roles such as role="region" should

be used with aria-labelledby.

Figure 21: Log In dialog with role="dialog" and aria-labelledby

to provide a label for the dialog.

Page 18 of 21

BEST PRACTICE: ENSURE THAT KEYBOARD FOCUS REMAINS WITHIN MODAL DIALOGS

EXAMPLE

...

<div id="otherpagecontent">

<a aria-label="Create Report - Opens dialog"

href="javascript:openLayer();document

.getElementById('popup_layer1').focus

();">

Create Report

</div>

...

<div role="dialog" aria-modal="true"

aria-labelledby="modal-title" aria-

describedby="desc"

tabindex="-1">

 <button id="b1"

onblur="document.getElementById('b1')

.focus();"

aria-label="close">X</button>

 <h2 id="modal-title">Create

Report</h2>

 <p id="desc">Dialog description</p>

 <p>Dialog text</p>

</div>

RECOMMENDATIONS

Developers must ensure that when a modal dialog is open, focus remains within the dialog. This can be

done by using onFocus and onBlur and other JavaScript techniques to manage the focus

appropriately. Ensure that tab and shift+tab are handled appropriately. Ideally focus should wrap from

the last element to the first element. It may also be beneficial to hide the rest of the page content from

the screen reader user by setting aria-hidden="true" on the other page content.

ARIA AND DYNAMIC CONTENT

ARIA is a W3C specification for the creation of Accessible Rich Internet Applications. ARIA aims to provide support

to users of assistive technology in three main areas that were not previously addressed by the (X)HTML

specifications: indicating main structural areas of a page, creation of roles and properties of user interface

elements, and as a method to indicate alerts, page changes and dynamically updating information.

Valid ARIA markup should always be used. Developers should set ARIA properties correctly by including roles based

on the intended purpose. When ARIA attributes (state, roles, and properties) are not used correctly assistive

technology may not function as expected. For example, setting a role of dialog forces assistive technology into

"forms" mode disallows the use of the virtual or browse cursor. Another example is that if the content enclosed in

the element is primarily static content that is not actionable, a role of dialog is likely not appropriate. Any content

in a dialog must be obtainable either by directly tabbing or be associated with content that is in the tab order.

BEST PRACTICE: AVOID FORCED FOCUS CHANGES THAT ARE NOT USER-INITIATED

Figure 22: Focus remains in the dialog when tabbing

through the dialog content by using JavaScript focus.

Page 19 of 21

EXAMPLE

<body onload="setTimer(2000);">

 <label for="fname">First

Name:</label>

 <input type=text id="fname">

 <label for="lname">Last

Name:</label>

 <input type="text id="lname">

 <p>The following section is

updated every 2 seconds with

current data</p>

 <div tabIndex=0 accessKey="k"

id="dynam" style="border:solid;

border-color:blue; border-

width:thin;">Dynamic Content</div>

</body>

RECOMMENDATIONS

Ensure that focus is not forcibly shifted to a new location without user interventions except when

immediate user interaction is needed and instructions are provided to the user indicating where focus will

be moved (for example emergency alerts and time out warnings that allow the user to request additional

time. It may be useful to provide an option to allow forced focus changes that are not triggered by user

interaction to be disabled as a user option.

BEST PRACTICE: INDICATE LIVE REGIONS FOR DYNAMICALLY CHANGING CONTENT

EXAMPLE

The highest

point in Florida is 345 feet above sea level.

RECOMMENDATIONS

Mark areas of the page that change as live regions using the WAI-ARIA states and properties module. In

order for documents/application that include live region properties to validate, they should be served as

HTML 5 or should be prefixed by the WAI-ARIA namespace aria-live. Each live region may declare the

following properties:

1. aria-live (off, polite, or assertive): the level of priority of an alert, or the

amount of verbosity screen reader users can expect from an alert or live region.

2. aria-labelledby: points to IDREFS that provide labels for the widget

Figure 23: An access key ("k") is provided to allow keyboard only

users to move focus to the newly updated content.

Figure 24: ARIA live region is provided to render updated content to screen reader users.

aria-live="polite" will render content when the user pauses navigation.

Page 20 of 21

3. aria-describedby: points to IDREFS that provide more descriptive text about the widget

4. aria-controls: points to IDREFS (a list of space-delimited references to unique document

identifiers) that reference elements that are controlled by the current element

5. aria-atomic (true/false): whether an entire live region or just the updated portion

should be announced when a change occurs

6. aria-relevant (additions, removals, text, all): indicates the relevant changes

that occur within a region. This property accepts a space-delimited list of property values.

BEST PRACTICE: ENSURE CONTENT UPDATES DEFINE FOCUS UPDATES APPROPRIATELY

EXAMPLE

...

<form>

<p>Enter text in the search field

and results will be displayed

incrementally below

the search text field<p>

<label for="textSearch">Incremental

Search:</label>

<input type="text" id="txtSearch"

onkeyup="updateContent(this.value)"

>

</form>

<p>Results:

<div tabIndex=-1 accessKey="s"

id="txtToUpdate"></div></p>

...

...

<script type="text/javascript">

var xmlHttp;

...

function updateContent(str) //

called by onKeyUp

{

...

xmlHttp=GetXmlHttpObject(); //

function not shown

...

xmlHttp.onreadystatechange=stateCha

nged;

xmlHttp.open("GET",url+"?param="+st

r,true); // url is defined in code

not shown

xmlHttp.send(null);

}

...

function stateChanged() {

if(xmlHttp.readyState==4)

 {

document.getElementById("txtToUpdat

e").innerHTML=xmlHttp.responseText;

document.getElementById("txtToUpdat

e").focus();

 }

}

...

</script>

RECOMMENDATIONS

Developers should use the JavaScript focus method to set focus to the part of the page that has changed.

Placing a tabindex of -1 on elements that do not usually receive focus such as (div) and (span) allows

these elements to gain focus via the JavaScript focus method without appearing in the tab order. If focus

is given to an anchor, the content of the anchor is automatically focused. Developers should be cautious

when assigning focus to HTML elements that are typically not designed to receive focus. For example,

focus should not be set on fieldsets or legends as unpredictable results may occur.

Page 21 of 21

RESOURCES

SSB BART GROUP

Our ultimate goal at SSB is to create a world where digital systems can be made readily accessible to users with

disabilities—enabling digital technology to become a profound empowering force in their lives. See more

information regarding our services, free webinars, and blog posts on the SSB BART Group Website.

SSB BART GROUP LABS

SSB BART Group Labs provides working, functional examples of a variety of accessibility concepts including forms,

ARIA, dialogs, and many more. The examples are used to demonstrate the various techniques available to produce

accessible web content.

ARIA

Accessible Rich Internet Applications (ARIA) provides accessibility information, such as name, state, role, and value

of an element in order to assist assistive technology users interact with digital content. The ARIA 1.1 Specification

provides information on ARIA roles, states, and properties for widgets.

SSB BART Group also provides guidance on using ARIA on the web.

W3C WEB ACCESSIBILITY INITIATIVE (WAI)

The Web Accessibility Initiative (WAI) develops strategies, guidelines, and resources to help make the Web

accessible to people with disabilities.

http://www.ssbbartgroup.com/
https://labs.ssbbartgroup.com/index.php/Main_Page
https://www.w3.org/TR/wai-aria-1.1/#introduction
http://www.ssbbartgroup.com/whitepapers/aria-guidance/
https://www.w3.org/WAI/

	Structure Bookmarks
	OVERVIEW
	MEDIA TYPES
	RESOURCES

Accessibility Report

		Filename:

		acm-style-guide-wcag-2.0-level-a.pdf

		Report created by:

		

		Organization:

		

[Enter personal and organization information through the Preferences > Identity dialog.]

Summary

The checker found no problems in this document.

		Needs manual check: 2

		Passed manually: 0

		Failed manually: 0

		Skipped: 2

		Passed: 28

		Failed: 0

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Needs manual check		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Needs manual check		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Skipped		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Skipped		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top
