Education Advisory Committee and Education Board

The ACM education activity has been reorganized into two entities: the Education Advisory Committee and the Education Board. The Board wields the final executive and decision-making power to facilitate the work of the Education Advisory Committee. The Advisory Committee is a task-force-based, networking-oriented environment whose aim is to promote ACM's educational mission to as wide a range of constituencies as possible: universities, community colleges, high schools, corporations, and the US government.

  • Education Board

      Jane  C. Prey  
      Chris  Stephenson  
      Elizabeth  K Hawthorne  
    Past Chair
      Mehran Sahami  
      Scott Buck  
      Tracy  Camp  
      Andrea  Danyluk  
      Alison  J  Derbenwick Miller  
      Andrew  McGettrick  
      Paul  Tymann  
      R.  Venkatesh  
    ACM Headquarters
      Yan Timanovsky  
    CSTA, ex officio
      Jake Baskin  
  • Education Advisory Committee

      Jane  C. Prey  
      Chris  Stephenson  
    Vice Chair
      Elizabeth  K Hawthorne  
    Past Chair
      Mehran Sahami  
    ACM India Representative
      R.  Venkatesh  
      Michael  E. Caspersen  
      Thomas  Cortina  
      Michelle  Craig  
    Janice  E  Cuny  
      Leigh Ann  Delyser  
      Armando  Fox  
      Judith  Gal-Ezer  
      Michael  Goldweber  
      Steven  Ira  Gordon  
      Shuchi  Grover  
      Christopher  Hundhausen  
      Andrew  J  Ko  
      Briana  Morrison  
      Andrew  K.  Petersen  
      Susan  Reiser  
      Mihaela  Sabin  
      Robert  B  Schnabel  
      Ben  Shapiro  
      Peter  J  Thiemann  
      Jodi  L  Tims  
      Gerrit  Van Der Veer  
      Ellen  L  Walker  
      Mark  Allen  Weiss  
      Pat  Yongpradit  
      Stuart  Zweben  
    CSAB Representative
      Paul Leidig  
    Headquarters Liaison
      Yan Timanovsky  
      Alison Clear  
      Eric  Roberts  
    Brazilian Computer Society (SBC) Representative
      Renata Araujo  
    ACM China Representative
      Ming Zhang  

Live Online Training: Security for Machine Learning

Join Katharine Jarmul for an in-depth exploration of security best practices for machine learning. You’ll get an introduction to important concepts for deploying and securing your machine learning models as well as practical tools to use to test robustness of your models. Along the way, Katharine walks you through approaches for securing models at the source, including obfuscation and anonymization strategies.

Featured resource: Live Online Training: Security for Machine Learning